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Abstract. Crystallographic literature is relying more on observational rules for the determination
of the motif that could generate the whole representing Bravais lattice of a crystal. Here, we devise
an algebraic method that can serve in this regard at least in cases when the associated unit cell is
made of quasi-orthogonal vectors. To let our approach be applicable to other reduction problems,
we introduce a concept which is about starting first from any ’bad’ crystal cell, not necessarily the
primitive elementary cell, in order to find a ’good’ crystal cell and that means seeking a motif made
of a basis whose vectors are close-to-orthogonal. The orthogonalization loss could happen any time
of vectors swapping which represents a very important process in dealing with lattice reduction,
but it has insufficiently been discussed in this subject. Thus, through our present version of
vectors exchange theorem, and by using examples of two processes, namely the Gram-Schmidt
(GS) procedure and its modified version (MGS), we provide formulations for the new reduced unit
cell vectors and analyze the impact of the repeated exchange of vectors on the orthogonalization
precision. Finally, we give a detailed explanation to our procedure named as Abdelalim-Elmouki
(AE) algorithm. More interestingly, we show that MGS is not only better than GS because of the
classical reason related to numerics, but also because its formulation for the new motif vectors in
four conditions, has been preserved in three times rather than two for GS, and this may recommend
more the introduction of MGS in a harder problem, namely when the crystal dimension is very
big.
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1. Introduction

1.1. Concrete Context of the Problem

A point in a crystal lattice could represent an atom, ion, or molecule. If we take the
example of halite crystal (NaCl) [9] made of sodium Na and chlorine Cl, we find that
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Na+ and Cl− are repeated together (see this kind of crystal structure with more details
in [42] or its representation in short via Figure 1 (a)). In fact, we are working on long
range order crystal as we suppose that from anywhere we look at the crystal, the pattern
of the points is the same everywhere, forming of what we will call a motif and which is
contained in a periodically repeating cell called unit cell. In the technical part of this
work thereafter, a basis will refer to this unit cell and whose vectors easily help in gen-
erating it. Another example would be about Fluorite crystal CaF2 [39] made of calcium
Ca and fluorine F , we find that Ca+2 is repeated every time with two of F− (see this
kind of crystal structure in [51] or its representation in short via Figure 1 (b)). We deduce
from both examples, the existence of a periodic repetition of a group of atoms with long
range order. Another property of these crystals is about the translational symmetry [30],
and which means wherever we move the crystal from one repeating unit to another, the
crystal remains exactly the same. Let us suppose now, three hypothetical crystals whose
repeating cells are formed with just two atoms as in the case of Figure 1 (a) but whose
representations are different because of the positioning of their atoms.

Figure 1: (a) Representation of NaCl: Na+ shown as bigger discs and Cl− as smaller discs. (b) Representation
of CaF2: Ca+2 shown as bigger discs and F− as smaller discs.

For instance, if we take the three arrangements (a), (b) and (c) shown in Figure 2, and
where we consider the bigger discs as points of what we will call a lattice, we obtain three
different forms of lattices. In fact, the lattice is like a crystal, just for instance instead
of talking with atoms, we talk about a periodic arrangement of points, then we have
crystal = lattice+ basis but with respect to the definition that we have provided before
in referring to the motif’s associated unit cell and not exactly any repeating unit cell as
in [20, 29] as some researchers do not totally agree with that popular definition. In fact,
in order to avoid any conflict, we have seen too that it is better to introduce the basis as
defined mathematically rather than considering it as the unit cell itself because one would
wonder if the unit cell is a part of the lattice, then crystal = lattice + basis can simply
be reduced to crystal = lattice.

Using examples of atoms and ions, Maurice Loyal Huggins provided in [25], principles
in order to find the arrangement of points in crystals and he concluded that this arrange-
ment is repeating itself in short intervals while the motif should contain relatively few
points. Here, we deduce that even if we consider the smaller discs, or their points of
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h!]
Figure 2: Representation of different crystals where the centers of the bigger discs are considered as the main
and only points of the different lattices obtained in the three cases. (a) Result of a lattice with points forming
shapes as squares. (b) Result of a lattice with points forming shapes as parallelograms. (c) Result of a lattice
with points forming shapes as centered squares.

intersection with the bigger ones, we will obtain the same patterns of the lattices (a), (b)
and (c) of Figure 2.

After this introductory description of the transformation being followed to move from
the crystal general structure to the lattice framework as an easiest way to study the prop-
erties of the complex crystals, we introduce in the next subsection, some technical issues
that are still open in this regard and that has motivated us to suggest a mathematical-
based method for Bravais cell reduction instead of the observational rules as we will discuss
hereafter.

1.2. Theoretical Context and Motivation

1.2.1. Observational Rules

To the best of our knowledge, there is no algebraic procedure that organizes the operations
followed for the determination of the unit cell that could generate the whole representing
Bravais lattice of a crystal. In fact, this is not feasible simply because of the complex struc-
tures of crystals. Victor Goldschmidt considered to be the founder of modern geochemistry
and crystal chemistry, reported in his lecture [16] delivered to the Faraday Society in 1929,
that there must be a relation between the chemical composition of crystalline substance
and the crystal geometrical structure. W.A. Wooster also reported in 1953 in [53] that
there is closer relation between magnetic measurements and the arrangement of atoms in
a crystal. In 1986, Per Bak asked about the arrangements of atoms in crystals that are
characterized by an icosahedral symmetry, but he concluded in [6] that no mathematical
model could possibly help in describing the structures of such crystals.
In the absence of convincing mathematical methods to deal with this problem, and since
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the determination of a motif is very helpful to researchers who are interested to know
more about crystals through their geometrical shapes, crystallographers suggest some ob-
servational rules. For instance, Frank Hoffman in [22], saw that in order to find the motif
from which we could generate the whole crystal lattice, one could observe, relatively to
the special case that we will treat in this paper, that the sought unit cell basis vectors,
should satisfy the following conditions,

• Be short as much as possible,

• Be perpendicular to the symmetry plane,

• Be orthogonal.

We retake two examples from the above-mentioned reference but with application now to
the crystals considered in Figure 1. In the simplest case (a) of Figure 3, namely the one
representing the Halite crystal NaCl, we can deduce that the red and black unit cells are
equivalent and preferred since they both satisfy the above conditions. As an additional
remark, one could consider a cell that is not necessarily made by the Bravais crystal points
as described in case (a) of Figure 2, and which concerns the example of the red cell that
has only one lattice point in its center.

Figure 3: (a) Choice of red and black cells as the generating Halite crystal unit cells. (b) Choice of green cell
as the generating Fluorite crystal unit cells.

In a more interesting example, if we consider now the other case (b) of Figure 3, namely
representing the Fluorite crystal CaF2 and where we start from the red primitive elemen-
tary cell [28] and which is a name given to the smallest given cell while its vectors are
called primitive translation vectors, then, we will choose the centered green unit cell. As
an additional remark, the blue cell are the intermediary cell obtained by the transforma-
tion of the red cell and then by another transformation, we obtain the green cell. We will
go back to this point in the next section with technical explanation that is more relevant
to our work.
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In front of such recommendations, one would also wonder whether there is a mathematical
method or not and that could serve in determining that crystal reduced basis.

Before going further in our study, let us give more technical information about the story
of such open question.

1.2.2. Literature on the Problem and Goal

In 1970, Mighell and Karen, were among the first authors who wondered about a method
in order to find the crystal reduced cell [45], and they explained in their report in [27], that
the first step is to start with the smallest possible cell and that is called a primitive cell,
while the problem was remaining to show which one of these many possible cells should
be selected. In their opinion, they saw that Niggli [41] described earlier in 1929, what was
defined as a unique reduced cell, but unfortunately, no algebraic procedure was devised
for calculating it if one starts from any cell of the crystal.

Let us retake the example (b) of Figure 3, and let us consider in Figure 4 the primi-
tive translation vectors e1 and e2 referring to the primitive elementary red cell, e3 and e4
referring to the blue cell, and finally the obtained e5 and e6 referring to the green unit cell.

Figure 4: The sums e1 + e2, e3 + e4 and e5 + e6 serving to make the red, blue and green cells in example (b)
of Figure 3. The transformation steps are: e3 = e1, e4 = e1 + e2, e5 = e3 + e4, e6 = e4 − e3.

If we look at the primitive translation vectors e1 and e2 in Figure 4, we can see that
it helps to make the primitive elementary red cell in example (b) of Figure 3 and which
can generate many points of the Bravais lattice, but unfortunately, not all of them. In
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spite of this little detail, it has also helped us to reach the vectors e5 and e6 by simple
transformation as we described above. Let us now call the basis (e1, e2) whose vectors are
not far-to-orthogonal, a ’good’ basis, however, we not not assume that it is ’good’ enough
compared to basis (e5, e6) which is the real ’good’ one and even the ’best’ to make the
sought unit cell or motif.

Figure 5: Vectors e1 and e2 making a ’bad’ basis from which we start to find a ’good’ one and that can help
us to generate the sought motif.

Here, in this work, we consider a more difficult problem, subject to a Bravais lattice
reduction and that is about starting from any couple of vectors like e1 and e2 of Figure
5 as they are supposed not necessarily making a primitive elementary cell, and let us call
(e1, e2) in this case, as a ’bad’ basis, then we wonder how could we start from this basis
in order to each a basis like (e5, e6) of Figure 4.

The most considered practical algorithm in lattice reduction is the Lenstra-Lenstra-Lovász
(LLL) algorithm and that has been introduced in 1982 by A. K. Lenstra, H. Lenstra, Jr.,
J., and L. Lovász [31]. There have always been problems that interested researchers in
the subjects of Diophantine equations as in [2, 13]. The lattice reduction through LLL
has shown to be also beneficial in solving such problems as explained in [47] with ex-
amples of linear problems, quadratic equations, number fields and testing conjectures,
while most authors in this topic have been interested in the complexity analysis of this
method in the hope to find a high performance computer program [1, 3, 5, 8, 14, 17–
19, 32, 33, 35, 38, 40, 43, 46, 49, 50]. This algorithm has been applied to many fields
such as communication systems [4, 36] as in the study of the multiple-input and multiple-
output (MIMO) method [11, 12, 15, 24], while also being used to resolve cryptographic
problems as in [21, 23, 26, 34]. Many problems remain open in this subject as for example
in the study of the floating-point [48]. Here, we choose to focus on the proof of the vectors
swapping and which is a problem that has insufficiently been analyzed in the literature.
In fact, as the combination of orthogonalization with the vectors swapping processes, is
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an indispensable part of this algorithm, we will exhibit through our proof of this first
suggested version of vectors exchange theorem that by the use of any procedure, there
would be a loss of orthogonalization especially due to the repetitive exchange of vectors
in the lattice reduction process. As a final result, the second orthogonalization method
will show to preserve the orthogonality more than the most used one. Going back to
the concrete context of this research and which is about seeking a crystal reduced motif
while studying the impact of the vectors exchange, we should note that the literature
has not answered about the problem that we have presented in Figure 5. In fact, until
nowadays, the interest has been limited to Niggli-like reduction as in [7, 37], in a tentative
to find better results than the old work [41]. With respect to the practical side of this
work, we aim to recommend a lattice reduction computing procedure which respects the
result of the theorem that we will state thereafter and which gives the proof of which or-
thogonalization process should be really followed, differently to what is usually considered.

After the description of the lattice reduction problem, we need to define the orthogonal-
ization processes that will be used in our algorithm. Thus, we start in the next section, by
stating some important properties of the Gram-Schmidt method and its modified version
through theorem 1 with original statements and proof.

2. Orthogonalization Procedures

2.1. GS and MGS from mathematics

In this part of the paper, we consider two ways of orthogonalization [44], namely the
Gram-Schmidt process (GS) and its modified version (MGS), then, we prove through a
numerical example why one option would be better to consider instead of the other. In
fact, the reason behind choosing the MGS is due to the fact that this tries to correct
the orthogonalization at every step of its scheme, which means that sometimes, we would
lose orthogonality more if we follow just the classical approach during the lattice basis
reduction. This study would motivate other researchers working on this particular topic,
to look for other forms of orthogonalizing their vectors while searching good bases for their
lattices. Let E be a vector space of finite dimension n over the real field, with an inner
product ⟨., .⟩ : E × E → R, and we consider in the rest of the paper, that this function
induces a norm defined by

√
⟨., .⟩ and denoted by |.|. First, we recall how we generally

construct an orthogonal GS basis without necessarily orthonormalizing its new vectors.
This is to say that in case of an orthonormalization process, one would simply consider
later, the division of those vectors on their norms at each iteration. Let us then start with
the definition of B = (e1, ..., en) as a basis of Rn, therefore, the associated GS orthogonal
basis B∗ = (e∗1, ..., e

∗
n), is defined as follows

e∗1 = e1

e∗2 = e2 −
⟨e2, e∗1⟩
⟨e∗1, e∗1⟩

e∗1,
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e∗3 = e3 −
⟨e3, e∗1⟩
⟨e∗1, e∗1⟩

e∗1 −
⟨e3, e∗2⟩
⟨e∗2, e∗2⟩

e∗2

...
...

e∗n = en −
n−1∑
k=1

⟨en, e∗k⟩
⟨e∗k, e∗k⟩

e∗k

If we are considering orthonormalization of these vectors and which is the most popular
step to achieve the straightforwardness of coordinate representation, we simply proceed
at each iteration of the orthogonalization process as follows

e∗i → e∗i
|e∗i |

, 1 ≤ i ≤ n

Alternatively, following the MGS process, we consider the associated GS orthogonal mod-
ified basis B∗∗ = (e∗∗1 , ..., e∗∗n ), defined as follows

e∗∗1 = e1

e∗∗2 → e
∗∗(1)
2 = e2 −

⟨e2, e∗∗1 ⟩
⟨e∗∗1 , e∗∗1 ⟩

e∗∗1 ,

e
∗∗(1)
3 = e3 −

⟨e3, e∗∗1 ⟩
⟨e∗∗1 , e∗∗1 ⟩

e∗∗1

e∗∗3 → e
∗∗(2)
3 = e

∗∗(1)
3 − ⟨e∗∗(1)3 , e∗∗2 ⟩

⟨e∗∗2 , e∗∗2 ⟩
e∗∗2

...
...

e∗∗(k−1)
n = en −

⟨en, e∗∗k−1⟩
⟨e∗∗k−1, e

∗∗
k−1⟩

e∗∗k−1, k = 2, ..., n− 1

e∗∗n → e∗∗(k)n = e∗∗(k−1)
n −

⟨e∗∗(k−1)
n , e∗∗k ⟩
⟨e∗∗k , e∗∗k ⟩

e∗∗k , k = 2, ..., n− 1

and if we are considering orthonormalization of these vectors at every iteration, we proceed
as follows

e∗∗1 → e∗∗1
|e∗∗1 |

,

e∗∗i →
e
∗∗(i−1)
i

|e∗∗i−1|
, 2 ≤ i ≤ n

Since we need to use some direct but important properties of such considerations in the
proof of theorem 2 hereafter either in the case of GS or MGS, we prove them now in
the following theorem and they concern the orthogonality between vectors when they are
different and the equality between the linear spans between first input vectors and the
orthogonal vectors obtained.
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Theorem 1. Let B = (e1, ..., en) be a basis of Rn, B∗∗ = (e∗∗1 , ..., e∗∗n ) and B∗ = (e∗1, ..., e
∗
n)

its associated MGS and GS basis respectively, then, the following properties are verified

• ⟨e∗∗(k−1)
i , e

∗∗(k)
j ⟩ = 0 for 1 ≤ i ≤ k < j ≤ n, 2 ≤ k ≤ n− 1,

and ⟨e∗i , e∗j ⟩ = 0 for 1 ≤ i < j ≤ n.

• span(e1, ..., en) = span(e∗∗1 , e
∗∗(1)
2 , e

∗∗(2)
3 , ..., e

∗∗(k)
n ), 2 ≤ k ≤ n− 1

and span(e1, ..., en) = span(e∗1, ..., e
∗
n)

Proof.

• – To the best of our knowledge, there is a lack of rigorous proof of the vec-
tors orthogonality in MGS case. In fact, as we will see hereafter, a reasoning
by induction will help us in the proof of GS case, however, such reasoning
can not work for MGS as there is no kind of relation between the products

⟨e∗∗(k)j , e
∗∗(k−1)
i ⟩ and ⟨e∗∗(k−1)

j , e
∗∗(k−2)
i ⟩, 2 ≤ k ≤ n− 1.

Then, we will proceed as in the following three sub-cases and general case.
Let us show first why the orthogonality property is verified for j = 2, 3, 4.
We start with j = 2, i = 1 and k = 1, then we have

e
∗∗(1)
2 = e2 −

⟨e2, e∗∗1 ⟩
⟨e∗∗1 , e∗∗1 ⟩

e∗∗1 ,

⟨e∗∗(1)2 , e∗∗1 ⟩ = ⟨e2, e∗∗1 ⟩ − ⟨e2, e∗∗1 ⟩
⟨e∗∗1 , e∗∗1 ⟩

⟨e∗∗1 , e∗∗1 ⟩ = 0.

Now, we take j = 3, i = 1, 2 and k = 2, we have

e
∗∗(2)
3 = e

∗∗(1)
3 − ⟨e∗∗(1)3 , e∗∗2 ⟩

⟨e∗∗2 , e∗∗2 ⟩
e∗∗2 ,

then,

⟨e∗∗(2)3 , e
∗∗(1)
2 ⟩ = ⟨e∗∗(1)3 , e

∗∗(1)
2 ⟩ − ⟨e∗∗(1)3 , e

∗∗(1)
2 ⟩

⟨e∗∗(1)2 , e
∗∗(1)
2 ⟩

⟨e∗∗(1)2 , e
∗∗(1)
2 ⟩

= 0.

We also have,

⟨e∗∗(2)3 , e∗∗1 ⟩ = ⟨e∗∗(1)3 , e∗∗1 ⟩ − ⟨e∗∗(1)3 , e
∗∗(1
2 ⟩

⟨e∗∗(1)2 , e
∗∗(1)
2 ⟩

⟨e∗∗(1)2 , e∗∗1 ⟩.

Since, we have already showed that ⟨e∗∗(1)2 , e∗∗1 ⟩ = 0, it remains to show that

⟨e∗∗(1)3 , e∗∗1 ⟩ = 0.
In fact, we have,

⟨e∗∗(1)3 , e∗∗1 ⟩ = ⟨e∗∗(1)3 , e∗∗1 ⟩ − ⟨e3, e∗∗1 ⟩
⟨e∗∗1 , e∗∗1 ⟩

⟨e∗∗1 , e∗∗1 ⟩

= 0.
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An additional last example will be the most interesting as it shows that the few
examples above are not enough to deduce a general logic that imply orthogo-
nality for these three sub-cases.
Thus, we take now j = 4, i = 1, 2, 3 and k = 2, 3, we have

e
∗∗(3)
4 = e

∗∗(2)
4 − ⟨e∗∗(2)4 , e∗∗3 ⟩

⟨e∗∗3 , e∗∗3 ⟩
e∗∗3 ,

then,

⟨e∗∗(3)4 , e
∗∗(2)
3 ⟩ = ⟨e∗∗(2)4 , e

∗∗(2)
3 ⟩ − ⟨e∗∗(2)4 , e

∗∗(2)
3 ⟩

⟨e∗∗(2)3 , e
∗∗(2)
3 ⟩

⟨e∗∗(2)3 , e
∗∗(2)
3 ⟩

= 0.

We also have,

⟨e∗∗(3)4 , e
∗∗(1)
2 ⟩ = ⟨e∗∗(2)4 , e

∗∗(1)
2 ⟩ − ⟨e∗∗(2)4 , e

∗∗(1)
2 ⟩

⟨e∗∗(1)2 , e
∗∗(1)
2 ⟩

⟨e∗∗(1)2 , e
∗∗(1)
2 ⟩

= 0.

In addition, we have,

⟨e∗∗(3)4 , e∗∗1 ⟩ = ⟨e∗∗(2)4 , e∗∗1 ⟩ − ⟨e∗∗(2)4 , e
∗∗(2
3 ⟩

⟨e∗∗(2)3 , e
∗∗(2)
3 ⟩

⟨e∗∗(2)3 , e∗∗1 ⟩.

Since, we have already shown that ⟨e∗∗(1)3 , e∗∗1 ⟩ = 0, it remains to show that

⟨e∗∗(2)4 , e∗∗1 ⟩ = 0.
In fact, we have,

⟨e∗∗(2)4 , e∗∗1 ⟩ = ⟨e∗∗(1)4 , e∗∗1 ⟩ − ⟨e∗∗(1)4 , e∗∗1 ⟩
⟨e∗∗1 , e∗∗1 ⟩

⟨e∗∗1 , e∗∗1 ⟩

= 0.

To generalize all this, let us consider 1 < i ≤ k < j ≤ n and 1 < k ≤ n − 1,
then we have,

⟨e∗∗(k)j , e
∗∗(k−1)
i ⟩ = ⟨e∗∗(k−1)

j , e
∗∗(k−1)
i ⟩ −

⟨e∗∗(k−1)
j , e∗∗k ⟩
⟨e∗∗k , e∗∗k ⟩

⟨e∗∗k , e
∗∗(k−1)
i ⟩

−− If i = k = j − 1, then, ⟨e∗∗k , e
∗∗(k−1)
i ⟩ = ⟨e∗∗k , e

∗∗(k−1)
k ⟩ = ⟨e∗∗k , e∗∗k ⟩

and also, ⟨e∗∗(k−1)
j , e∗∗k ⟩ = ⟨e∗∗(k−1)

j , e∗∗i ⟩ = ⟨e∗∗(k−1)
j , e

∗∗(k−1)
i ⟩.

Thus, ⟨e∗∗(k)j , e
∗∗(k−1)
i ⟩ = 0.

−− If i < k, then, on one hand, ⟨e∗∗k , e
∗∗(k−1)
i ⟩ = 0 because we have,

⟨e∗∗(k), e∗∗(k−1)
i ⟩ = ⟨e∗∗k , ei⟩ −

⟨ei, e∗∗k−1⟩
⟨e∗∗k−1, e

∗∗
k−1⟩

⟨e∗∗k−1, e
∗∗
k ⟩
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and we can just take i = k − 1 which gives ⟨e∗∗(k), e∗∗(k−1)
i ⟩ = 0.

On the other hand,

⟨e∗∗(k−1)
j , e

∗∗(k−1)
i ⟩ = ⟨e∗∗(k−1)

j , ei⟩ −
⟨ei, e∗∗k−1⟩

⟨e∗∗k−1, e
∗∗
k−1⟩

⟨e∗∗k−1, e
∗∗(k−1)
j ⟩

and we can just take i = k − 1 which gives ⟨e∗∗(k−1)
j , e

∗∗(k−1)
i ⟩ = 0.

– If we consider a GS process, this can not be deduced directly from the GS
formulations as done for MGS. Thus, we proceed by induction.
First for j = 2, i = 1, we have

e∗2 = e2 −
⟨e2, e∗1⟩
⟨e∗1, e∗1⟩

e∗1,

⟨e∗2, e∗1⟩ = ⟨e2, e∗1⟩ −
⟨e2, e∗1⟩
⟨e∗1, e∗1⟩

⟨e∗1, e∗1⟩ = 0.

Suppose now that ⟨e∗i , e∗j ⟩ = 0 for 1 < i < j ≤ n and we try to prove that
⟨e∗i , e∗j+1⟩ = 0 for 1 < i < j + 1 ≤ n.
In fact, we have,

⟨e∗i , e∗j+1⟩ = ⟨e∗i , ej+1⟩ −
j∑

k=1

⟨ej+1, e
∗
k⟩

⟨e∗k, e∗k⟩
⟨e∗k, e∗i ⟩

Based on the induction assumption, we have ⟨e∗i , e∗j ⟩ ≠ 0 if i = j and ⟨e∗k, e∗i ⟩ = 0
for 1 < k < i (The case when k = 1, i = 2, already verified above).
Thus,

⟨e∗i , e∗j+1⟩ = ⟨e∗i , ej+1⟩ −
⟨ej+1, e

∗
i ⟩

⟨e∗i , e∗i ⟩
⟨e∗i , e∗i ⟩

= 0

• – On one hand, we have,

e∗∗(k)r = e∗∗(k−1)
r − ⟨e∗∗(k−1)

r , e∗∗r ⟩
⟨e∗∗k , e∗∗k ⟩

e∗∗k , k = 2, ..., r − 1

= er −
⟨er, e∗∗k−1⟩

⟨e∗∗k−1, e
∗∗
k−1⟩

e∗∗k−1 −
⟨e∗∗(k−1)

r , e∗∗r ⟩
⟨e∗∗k , e∗∗k ⟩

e∗∗k , k = 2, ..., r − 1

Thus,

er = e∗∗(k)r +
⟨er, e∗∗k−1⟩

⟨e∗∗k−1, e
∗∗
k−1⟩

e∗∗k−1 +
⟨e∗∗(k−1)

r , e∗∗r ⟩
⟨e∗∗k , e∗∗k ⟩

e∗∗k , k = 2, ..., r − 1

Hence, ei ∈ span(e∗∗1 , e
∗∗(1)
2 , e

∗∗(2)
3 , ..., e

∗∗(k)
r ) for all 1 ≤ i ≤ r and with k =

2, ..., r − 1 (because as a remark, we have (e∗∗1 , ..., e∗∗k−1) ⊆ (e∗∗1 , ..., e∗∗k ) implies
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that span(e∗∗1 , ..., e∗∗k−1) ⊆ span(e∗∗1 , ..., e∗∗k )).

Then, span(e1, , ..., er) ≤ span(e∗∗1 , e
∗∗(1)
2 , e

∗∗(2)
3 , ..., e

∗∗(k)
r ), 1 ≤ i ≤ r, k =

2, ..., r − 1.
On the other hand, the result is obviously satisfied when r = 1 since we have
e∗∗1 = e1.

Suppose now that r ≥ 1, and span(e∗∗1 , e
∗∗(1)
2 , e

∗∗(2)
3 , ..., e

∗∗(k−1)
r ) ⊆ span(e1, , ..., er)

and let us prove that span(e∗∗1 , e
∗∗(1)
2 , e

∗∗(2)
3 , ..., e

∗∗(k)
r ) ⊆ span(e1, , ..., er).

(The assumption span(e∗∗1 , e
∗∗(1)
2 , e

∗∗(2)
3 , ..., e

∗∗(k−1)
r ) ⊆ span(e1, , ..., er) should

be even true as from the formulation,

er = e∗∗(k−1)
r +

⟨er, e∗∗k−1⟩
⟨e∗∗k−1, e

∗∗
k−1⟩

e∗∗k−1, k = 2, ..., r − 1

that sum is known to be unique with e
∗∗(k−1)
r ∈ span(e1, , ..., er)

⊥ and e∗∗k−1 ⊆
span(e1, , ..., er), 2 ≤ k ≤ r − 1).
For 2 ≤ k ≤ r − 1, we have now,

e∗∗(k)r = e∗∗(k−1)
r − ⟨e∗∗(k−1)

r , e∗∗r ⟩
⟨e∗∗r , e∗∗r ⟩

e∗∗r , k = 2, ..., r − 1

= er −
⟨er, e∗∗k−1⟩

⟨e∗∗k−1, e
∗∗
k−1⟩

e∗∗k−1 −
⟨e∗∗(k−1)

r , e∗∗r ⟩
⟨e∗∗r , e∗∗r ⟩

e∗∗r , k = 2, ..., r − 1

Thus, e
∗∗(k)
r = er + f with f ∈ span(e∗∗1 , e

∗∗(1)
2 , e

∗∗(2)
3 , ..., e

∗∗(k−1)
r ).

Then, since we have supposed that span(e∗∗1 , e
∗∗(1)
2 , e

∗∗(2)
3 , ..., e

∗∗(k−1)
r ) ⊆ span(e1, , ..., er),

therefore, e
∗∗(k)
r ∈ span(e1, , ..., er),

hence, span(e∗∗1 , e
∗∗(1)
2 , e

∗∗(2)
3 , ..., e

∗∗(k)
r ) ∈ span(e1, , ..., er).

– On one hand, if we suppose that
⟨er, e∗r⟩
⟨e∗r , e∗r⟩

= 1.

Then,

e∗r = er −
r−1∑
k=1

⟨er, e∗k⟩
⟨e∗k, e∗k⟩

e∗k

is giving,

er =
r∑

k=1

⟨er, e∗k⟩
⟨e∗k, e∗k⟩

e∗k ∈ span(e∗1, ..., e
∗
r).

Thus, span(e1, ..., er) ⊆ span(e∗1, ..., e
∗
r).

On the other hand, by induction, we have for k = 1, e1 = e∗1,
then span(e1) = span(e∗1).
Now, if we suppose that span(e∗1, ..., e

∗
r) ⊆ span(e1, ..., er), then, we have,

e∗r+1 = er+1 −
r∑

k=1

⟨er+1, e
∗
k⟩

⟨e∗k, e∗k⟩
e∗k ∈ span(e1, ..., er+1)
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This is because we have first

r∑
k=1

⟨er+1, e
∗
k⟩

⟨e∗k, e∗k⟩
e∗k ∈ span(e∗1, ..., e

∗
r), and which is in

turn by the induction hypothesis, an element of span(e1, ..., er).
Thus, by the formula of e∗r+1, we deduce that span(e

∗
1, ..., e

∗
r+1) ⊆ span(e1, ..., er+1).

We note that the properties just stated above, are very important in the proof of the
following theorem.

2.2. The Vectors Exchange theorem

The main goal from this part, is to provide a theoretical framework that helps to define
the new motif and whose basis vectors could generate the whole representing Bravais lattice
of a crystal, all around the case when its associated unit cell is made of quasi-orthogonal
vectors. The study also aims to exhibit the change that occurs to the sought Bravais
lattice since during the resolution of this problem, we have to exchange our consecutive
first and newly input vectors many times. In fact, we will consider hereafter, a new basis
denoted as (f1, ..., fn) of the Bravais lattice, and we define it in a way which respects the
fact that during the most important part of lattice reduction algorithmic process, we need
to exchange some vectors ej and ej+1 and which belong to any given bad basis (e1, ..., en)
of the same lattice.

The Bravais lattice L is defined as a discrete subgroup of Rn, and we call it as a Bra-
vais lattice of order k if there exists a family of linearly independent vectors e1, ..., en in

Rn and we have L defined by the set
{ k∑

i=1

aiei | ai ∈ Z
}
.

The importance of this theoretical part, can not be denied as the vectors swapping play
a major role in the algorithmic process of many problems, including the problem of re-
duction of lattice bases, however, this has been underestimated in the understanding of
the process of lattice basis reduction as it has rarely been analyzed in literature. In fact,
as far as we know, there were only two researchers who detected this issue and tried to
solve it. For the theoretical side of this problem, Murray Bremner in [10], one of the
mathematical descendants of Isaac Newton, was the first author who wondered about the
impact of vectors swapping on the precision of orthogonalization as a repeated exchange
could lead to a loss of orthogonality and which is developed in time of the iteration that
comes just before the vectors being swapped, and he even developed a result which meets
the case of GS here. As for the numerical side of this problem, Liguo et al. in [52] tried
to use the greedy algorithm along with the partial column reduction in order to minimize
the number of times of swapping.

In this part of work, we provide a clear definition of another basis of L for every con-
dition on its range j and that is associated to the index of swapping, namely between a
vector ej+1 and ej . As for the result that really exhibits the originality here, it concerns
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first proving that the orthogonality loss would be less considerable in case of MGS, and
even showing that this procedure will preserve the formulations of its sought vectors in
three times rather than two compared to GS method. In front of the results that we
will show hereafter, one would recommend the application of MGS in a harder problem,
namely when the dimension of the Bravais crystal, is very big.

Now, let us go deeper into the technical part. In fact, since we are aiming to start from
any bad basis of the crystal as shown in the more simple particular case of Figure 5, we
generalize our problem here for any dimension n and we consider first the given vectors
e1, ..., en from L, then, we define the exchange process of the basis generated by these
vectors with the help of other vectors f1, ..., fn from L in order to provide in the end, all
formulations of the orthogonal vectors of the last generated orthogonal basis in function
of the first considered one.

In the following, we state the theorem where we define the properties of the new or-
thogonal basis after exchanges steps, and as above, we use one star to denoting vectors of
the GS orthogonal basis and two stars to denoting vectors of the MGS orthogonal basis.

Theorem 2. Let (e1, ..., en) be a basis of a lattice L of order n, and (f1, ..., fn) another

basis of L, with fi =


ei if i ̸= j, j + 1

ej+1 if i = j
ej if i = j + 1

then, the following properties are verified through GS and MGS orthogonalization processes
in the context of repeated exchange of two consecutive input vectors

• If 1 ≤ i < j, then f
∗∗(k)
i = e

∗∗(k)
i , k = 2, ..., n− 1,

and, f∗
i = e∗i .

• If i = j, then, f
∗∗(k)
j = ej+1 −

⟨ej+1, e
∗∗
k−1⟩

⟨e∗∗k−1, e
∗∗
k−1⟩

e∗∗k−1 −
⟨e∗∗(k−1)

j+1 , e∗∗k ⟩
⟨e∗∗k , e∗∗k ⟩

e∗∗k , k = 2, ..., j − 1,

and, f∗
j = e∗j+1 +

⟨ej+1, e
∗
j ⟩

⟨e∗j , e∗j ⟩
e∗j .

• If i = j + 1, then f
∗∗(k)
j+1 = e

∗∗(k)
j , k = 2, ..., n− 1.

and, f∗
j+1 =

|e∗j+1|2

|f∗∗
j |2

e∗j −
⟨ej+1, e

∗
j ⟩

⟨e∗j , e∗j ⟩
|e∗j |2

|f∗∗
j |2

e∗j+1.

• If i > j + 1, then f
∗∗(k)
i = e

∗∗(k)
i , k = 2, ..., i− 1

and, f∗
i = e∗i .

At first sight at the formulations obtained, we can see that the theorem proves that
MGS can not only considered better than GS as we are used to understand by checking
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numerics, but also because the formulation of f
∗∗(k)
i , k = 2, ..., n− 1. has been preserved

in three times rather than two in case of GS, and this may recommend the introduction
of MGS in a harder problem, namely when the dimension of the crystal is very big.

Proof.

• By induction, if i < j, already for the first initial case i = 1, we obviously have f1 =
e1 = e∗∗1 = f∗∗

1 . The same if we consider a GS process, we have f1 = e1 = e∗1 = f∗
1 .

If now, we suppose f∗∗
k = e∗∗r with k < r < j, then, we obviously have

f∗∗(k−1)
r = fr −

⟨fr, f∗∗
k−1⟩

⟨f∗∗
k−1, f

∗∗
k−1⟩

f∗∗
k−1, k = 2, ..., r − 1

= er −
⟨er, e∗∗k−1⟩

⟨e∗∗k−1, e
∗∗
k−1⟩

e∗∗k−1, k = 2, ..., r − 1

= e∗∗(k−1)
r , k = 2, ..., r − 1

which implies that

f∗∗(k)
r = f∗∗(k−1)

r −
⟨f (k−1)

r , f∗∗
k ⟩

⟨f∗∗
k , f∗∗

k ⟩
f∗∗
k , k = 2, ..., r − 1

= e∗∗(k−1)
r −

⟨e(k−1)
r , e∗∗k ⟩
⟨e∗∗k , e∗∗k ⟩

e∗∗k , k = 2, ..., r − 1

= e∗∗(k)r , k = 2, ..., r − 1

In fact, if we consider a GS process and suppose f∗
k = e∗r with k < r < j,, we also

have

f∗
r = fr −

r−1∑
k=1

⟨fr, f∗
k ⟩

⟨f∗
k , f

∗
k ⟩

e∗k

= er −
r−1∑
k=1

⟨fr, f∗
k ⟩

⟨f∗
k , f

∗
k ⟩

e∗k

= er −
r−1∑
k=1

⟨er, e∗k⟩
⟨e∗k, e∗k⟩

e∗k

= e∗r

• Now, if i = j, we have

f
∗∗(k−1)
j = fj −

⟨fj , f∗∗
k−1⟩

⟨f∗∗
k−1, f

∗∗
k−1⟩

f∗∗
k−1, k = 2, ..., j − 1
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= ej+1 −
⟨ej+1, e

∗∗
k−1⟩

⟨e∗∗k−1, e
∗∗
k−1⟩

e∗∗k−1, k = 2, ..., j − 1

which implies that

f
∗∗(k)
j = f

∗∗(k−1)
j −

⟨f (k−1)
j , f∗∗

k ⟩
⟨f∗∗

k , f∗∗
k ⟩

f∗∗
k , k = 2, ..., j − 1

= ej+1 −
⟨ej+1, e

∗∗
k−1⟩

⟨e∗∗k−1, e
∗∗
k−1⟩

e∗∗k−1 −
⟨e∗∗(k−1)

j+1 , e∗∗k ⟩
⟨e∗∗k , e∗∗k ⟩

e∗∗k , k = 2, ..., j − 1

As for the GS process, we have

f∗
j = fj −

j−1∑
k=1

⟨fj , f∗
k ⟩

⟨f∗
k , f

∗
k ⟩

f∗
k

= ej+1 −
j−1∑
k=1

⟨fj , f∗
k ⟩

⟨f∗
k , f

∗
k ⟩

f∗
k

= ej+1 −
j−1∑
k=1

⟨ej+1, e
∗
k⟩

⟨e∗k, e∗k⟩
e∗k

= ej+1 −
j∑

k=1

⟨ej+1, e
∗
k⟩

⟨e∗k, e∗k⟩
e∗k +

⟨ej+1, e
∗
j ⟩

⟨e∗j , e∗j ⟩
e∗j

= e∗j+1 +
⟨ej+1, e

∗
j ⟩

⟨e∗j , e∗j ⟩
e∗j

• Now, if i = j + 1, we have

f
∗∗(k−1)
j+1 = fj+1 −

⟨fj+1, f
∗∗
k−1⟩

⟨f∗∗
k−1, f

∗∗
k−1⟩

f∗∗
k−1, k = 2, ..., j − 1

= ej −
⟨ej , e∗∗k−1⟩

⟨e∗∗k−1, e
∗∗
k−1⟩

e∗∗k−1, k = 2, ..., j − 1

= e
∗∗(k−1)
j , k = 2, ..., j − 1

which implies that

f
∗∗(k)
j+1 = f

∗∗(k−1)
j+1 −

⟨f (k−1)
j+1 , f∗∗

k ⟩
⟨f∗∗

k , f∗∗
k ⟩

f∗∗
k , k = 2, ..., j − 1
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= e
∗∗(k−1)
j −

⟨e(k−1)
j , e∗∗k ⟩
⟨e∗∗k , e∗∗k ⟩

e∗∗k , k = 2, ..., j − 1

= e
∗∗(k)
j , k = 2, ..., j − 1

As for the GS process, we have

f∗
j+1 = fj+1 −

j∑
k=1

⟨fj+1, f
∗
k ⟩

⟨f∗
k , f

∗
k ⟩

f∗
k

= ej −
j−1∑
k=1

⟨ej , f∗
k ⟩

⟨f∗
k , f

∗
k ⟩

f∗
k +

⟨ej , f∗
j ⟩

⟨f∗
j , f

∗
j ⟩

f∗
j

= ej −
j−1∑
k=1

⟨ej , e∗k⟩
⟨e∗k, e∗k⟩

e∗k +

〈
ej , e

∗
j+1 +

⟨ej+1, e
∗
j ⟩

⟨e∗j , e∗j ⟩
e∗j

〉
|f∗

j |2

〈
ej , e

∗
j+1 +

⟨ej+1, e
∗
j ⟩

⟨e∗j , e∗j ⟩
e∗j

〉

N.B. |f∗
j |2 = |e∗j+1|2 +

⟨ej+1, e
∗
j ⟩

⟨e∗j , e∗j ⟩

2

|e∗j |2

and then, we have,

f∗
j+1 = e∗j −

⟨ej+1, e
∗
j ⟩

⟨e∗j , e∗j ⟩
⟨ej , e∗j ⟩
|f∗

j |2
(ej +

⟨ej+1, e
∗
j ⟩

⟨e∗j , e∗j ⟩
e∗j+1)

Since ej = e∗j −
j−1∑
k=1

⟨ek, e∗j ⟩
⟨e∗j , e∗j ⟩

e∗k. Then, ⟨ej , e∗j ⟩ = ⟨e∗j , e∗j ⟩.

Hence,

f∗
j+1 = e∗j −

⟨ej+1, e
∗
j ⟩

⟨e∗j , e∗j ⟩

2 |e∗j |2

|f∗
j |2

−
⟨ej+1, e

∗
j ⟩

⟨e∗j , e∗j ⟩
|e∗j |2

|f∗
j |2

e∗j+1

=

|f∗
j |2 −

⟨ej+1, e
∗
j ⟩

⟨e∗j , e∗j ⟩

2

|e∗j |2

|f∗
j |2

e∗j −
⟨ej+1, e

∗
j ⟩

⟨e∗j , e∗j ⟩

2 |e∗j |2

|f∗
j |2

=
|e∗j+1|2

|f∗
j |2

e∗j −
⟨ej+1, e

∗
j ⟩

⟨e∗j , e∗j ⟩

2 |e∗j |2

|f∗
j |2

• – For i > j + 1, we already know by definition of the basis in this case, that
fi = ei. But let us start with this result.
Since ei can be decomposed into a unique sum of an element of span(e1, ..., ei−1)

⊥

and an element of span(e1, ..., ei−1), i.e. ei ∈ span(e1, ..., ei−1)
⊥⊕span(e1, ..., ei−1)

while knowing that,

ei = e
∗∗(k)
i +

⟨ei, e∗∗k−1⟩
⟨e∗∗k−1, e

∗∗
k−1⟩

e∗∗k−1 +
⟨e∗∗(k−1)

i , e∗∗i ⟩
⟨e∗∗k , e∗∗k ⟩

e∗∗k , k = 2, ..., r − 1
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and at the same time, we also know from theorem 1 that span(e1, ..., ei−1) =

span(e∗∗1 , e
∗∗(1)
2 , e

∗∗(2)
3 , ..., e

∗∗(k)
i−1 ), 2 ≤ k ≤ n−1, then, the element of span(e∗∗1 , ..., e∗∗i−1)

⊥

is exactly e
∗∗(k)
i , therefore, we can say that,

ei ∈ span(e∗∗1 , ..., e
∗∗(k−1)
i−1 )⊥ ⊕ span(e∗∗1 , ..., e

∗∗(k−1)
i−1 ).

Similarly, by having,

fi = f
∗∗(k)
i +

⟨fi, f∗∗
k−1⟩

⟨f∗∗
k−1, f

∗∗
k−1⟩

f∗∗
k−1 +

⟨f∗∗(k−1)
i , f∗∗

i ⟩
⟨f∗∗

k , f∗∗
k ⟩

e∗∗k , k = 2, ..., r − 1

and which also gives in the end that,

fi ∈ span(f∗∗
1 , ..., f

∗∗(k−1)
i−1 )⊥ ⊕ span(f∗∗

1 , ..., f∗∗
i−1(k − 1)).

From another side, we can say that
⟨fi, f∗∗

k−1⟩
⟨f∗∗

k−1, f
∗∗
k−1⟩

f∗∗
k−1 +

⟨f∗∗(k−1)
i , f∗∗

i ⟩
⟨f∗∗

k , f∗∗
k ⟩

e∗∗k and

⟨ei, e∗∗k−1⟩
⟨e∗∗k−1, e

∗∗
k−1⟩

e∗∗k−1 +
⟨e∗∗(k−1)

i , e∗∗i ⟩
⟨e∗∗k , e∗∗k ⟩

e∗∗k are in span(f∗∗
1 , ..., f

∗∗(k−1)
i−1 )

and span(e∗∗1 , ..., e
∗∗(k−1)
i−1 ) respectively, then again, by theorem 1, it becomes the

same as saying they are in span(f1, ..., fi−1) and span(e1, ..., ei−1) respectively
and which born in turn can be reduced to span(e1, ..., ei−1) because we have
fi = ei. From the formulation of fi and ei, we can now deduce directly that f∗

i

and e∗i are both in span(e1, ..., ei−1)
⊥ and that they are even equal.

– As for the GS process, and considering the same introductory result in the
previous case, we choose now to proceed otherwise by saying that since we
have,

fi = f∗
i +

i−1∑
k=1

⟨fi, f∗
k ⟩

⟨f∗
k , f

∗
k ⟩

f∗
i and ei = e∗i +

i−1∑
k=1

⟨ei, e∗k⟩
⟨e∗k, e∗k⟩

e∗k.

Then, the fact that we have fi − ei = 0, it gives us,

f∗
i − e∗i = −

i−1∑
k=1

⟨fi, f∗
k ⟩

⟨f∗
k , f

∗
k ⟩

f∗
i +

i−1∑
k=1

⟨ei, e∗k⟩
⟨e∗i , e∗k⟩

e∗k.

with −
i−1∑
k=1

⟨fi, f∗
k ⟩

⟨f∗
k , f

∗
k ⟩

f∗
i +

i−1∑
k=1

⟨ei, e∗k⟩
⟨e∗k, e∗k⟩

e∗k ∈ vect(e1, ..., ei−1),

Then, we have, f∗
i − e∗i ∈ vect(e1, ..., ei−1)

⊥, and which finally gives f∗
i = e∗i .

As an application of the results stated in theorems 1 and 2, we show in the next section,
how the properties just proven above, are incorporated in the following algorithm and that
we devise to serving the crystal lattice reduction.
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3. Application for Bravais Cell Reduction

3.1. AE algorithm from Theory

In this section, we will explain how we can implement our algorithm using the results
of theorem 2. The steps of the algorithm that we will explain in details hereafter are
defined by the following points

• Initial step and objective, with the three subpoints,

– Basis vectors input,

– Basis reduction input, with introduction of the modified size reduction as long
as the modified Lovász for the MGS case,

– Basis vectors output.

• Intermediary step,

• Vectors exchange theorem step.

In fact, the new conditions on the lattice reduction have given us the idea to call our
procedure by the name of AE algorithm where AE referring to our names since to the best
of our knowledge, it is the first time a theorem-based mathematical algorithm is designed
for the crystal reduction with incorporation of the more convincing MGS process, while
suggesting the two new conditions on size reduction and quasi-orthogonality.

One of the application of vectors swapping, is its introduction in algorithms that are
designed for the reduction of lattice bases. We try in this part to convert the logical
implementation of vectors swapping treated in the vector exchange theorem as an algo-
rithmic process. In general, we define the main goal from reducing a Bravais lattice basis
as the process which starts from this input in order to obtain this output
Initial Step and Objective

• Basis Vectors Input: Choose a random first input basis (e1, ...en) of a Bravais lattice
L.

• Basis Reduction Input: Choose any real constant by which L basis is determined
whether it is reduced or not in the sense of ’quasi-orthogonality’ as in Definition
2 and which could serve as an additional condition to combine with the results of
theorem 2. It is also important to note that reduction through orthogonalization
alone, is mostly used as an introductory step for reduction in such problems in the
sense of ’size’ as in Definition 1 in below, thus, it is very recommended that the
computist chooses two constants and condition for i = 2, ..., n, k = 2, ..., i− 1 on the

two quantities

∣∣∣∣∣⟨f
∗∗(k−1)
i , f∗∗

k ⟩
⟨f∗∗

k , f∗∗
k ⟩

∣∣∣∣∣ for the MGS case or the quantity

∣∣∣∣∣ ⟨fi, f∗
j ⟩

⟨f∗
j , f

∗
j ⟩

∣∣∣∣∣ when it is

about the GS case and by which it is decided whether to go to the First Intermediary
Step in below or not. To get a clearer idea about this part, we provide the following
definition.
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Definition 1. (The modified condition for size reduction devised for MGS) The
Bravais crystal basis (e1, ...en) is reduced in the sense of size if it verifies

– MGS case.∣∣∣∣∣⟨f
∗∗(k−1)
i , f∗∗

k ⟩
⟨f∗∗

k , f∗∗
k ⟩

∣∣∣∣∣ ≤ εMGS, i = 2, ..., n, k = 2, ..., i− 1.

– GS case.∣∣∣∣∣ ⟨fi, f∗
j ⟩

⟨f∗
j , f

∗
j ⟩

∣∣∣∣∣ ≤ εGS, i = 2, ..., n, j = 1, ..., i− 1,

with εMGS , εGS ∈ [1/2, 1[.

Definition 2. (The modified condition for quasi-orthogonality devised for MGS)
The Bravais crystal basis (e1, ...en) is reduced in the sense of quasi-orthogonality if
it verifies

– MGS case. (Proposition)

ε|e∗∗k |2 ≤
∣∣∣e∗∗(k−1)

j+1 +
⟨e∗∗(k−1)

j+1 , e∗∗k ⟩
⟨e∗∗k , e∗∗k ⟩

e∗∗k

∣∣∣2, k = 2, ..., j,

with ε ∈]ε2MGS , 1[.

– GS case.

ε|e∗j |2 ≤
∣∣∣e∗j+1 +

⟨ej+1, e
∗
j ⟩

⟨e∗j , e∗j ⟩
e∗j

∣∣∣2, j = 1, ..., n

with ε ∈]ε2GS , 1[ (known as the Lovász condition [31]).

Proof. Now, we prove the proposition stated in definition 2 and that is about the
modified version of the Lovász condition, namely the quasi-orthogonality condition
that we are suggesting in this paper for the MGS case.
From the theorem 2, we can see that for i = j, namely at the time of the vectors
swapping, we have,

f
∗∗(k)
j = ej+1 −

⟨ej+1, e
∗∗
k−1⟩

⟨e∗∗k−1, e
∗∗
k−1⟩

e∗∗k−1 −
⟨e∗∗(k−1)

j+1 , e∗∗k ⟩
⟨e∗∗k , e∗∗k ⟩

e∗∗k , k = 2, ..., j,

Thus, by using the definition of MGS formulation at n = j + 1, we get, f
∗∗(k)
j =

e
∗∗(k−1)
j+1 −

⟨e(k−1)
j+1 , e∗∗k ⟩
⟨e∗∗k , e∗∗k ⟩

e∗∗k , k = 2, ..., j.

Then, |f∗∗(k)
j |2 = |e∗∗(k−1)

j+1 |2 +

(
⟨e∗∗(k−1)

j+1 , e∗∗k ⟩
⟨e∗∗k , e∗∗k ⟩

)2

|e∗∗k |2, k = 2, ..., j,

and which gives,

|e∗∗(k−1)
j+1 |2 = |f∗∗(k)

j |2 −

(
⟨e∗∗(k−1)

j+1 , e∗∗k ⟩
⟨e∗∗k , e∗∗k ⟩

)2

|e∗∗k |2, k = 2, ..., j.

But before this, in order to obtain shorter vector with respect to f
∗∗(k)
j , we need
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through its formulation shorter vector e∗∗k , which is the same as saying that by the

formulation of |f∗∗(k)
j |2, we need the existence of some ε that is close to 1 and such

that

ε|e∗∗k |2 ≤ |e∗∗(k−1)
j+1 |2 +

(
⟨e∗∗(k−1)

j+1 , e∗∗k ⟩
⟨e∗∗k , e∗∗k ⟩

)2

|e∗∗k |2, k = 2, ..., j.

Then, going back to the equality on |e∗∗(k−1)
j+1 |2, it can be changed now to the in-

equality,

|e∗∗(k−1)
j+1 |2 ≥

ε−

(
⟨e∗∗(k−1)

j+1 , e∗∗k ⟩
⟨e∗∗k , e∗∗k ⟩

)2
 |e∗∗k |2, k = 2, ..., j,

which is equivalent to the condition stated in Definition 2. Just as remark, if we
take ε in ]ε2MGS , 1[, it is better to say that the this condition is verified if ε is close
to 1 as in this case, the crystal basis will be more reduced.

• Basis Vectors Output: Obtaining an MGS reduced basis (f∗∗
1 , ...f∗∗

n ) or GS reduced
basis (f∗

1 , ...f
∗
n) associated to some basis (f1, ...fn) and which was defined in the first

step or before reduction as fi =


ei if i ̸= j, j + 1

ej+1 if i = j
ej if i = j + 1

Once fi is defined, it comes the step where we are in front of the first result of the vectors
exchange theorem and which states that in conditions 1 ≤ i < j or i > j + 1, we have the
equality between the orthogonal basis of the input random vector and the orthogonal basis
of the vector that copied it. Thus, without forgetting the remark given above in the part
of Input, we simply go to the computation of its associated orthogonal bases (f∗∗

1 , ...f∗∗
n )

or (f∗
1 , ...f

∗
n) using either MGS or GS defined respectively as follows

Intermediary Step

• MGS case:

– If 1 ≤ i < j, then we proceed by the following formulations

f∗∗
1 = f1

f∗∗
2 → f

∗∗(1)
2 = f2 −

⟨f2, f∗∗
1 ⟩

⟨f∗∗
1 , f∗∗

1 ⟩
f∗∗
1 ,

f
∗∗(1)
3 = f3 −

⟨f3, f∗∗
1 ⟩

⟨f∗∗
1 , f∗∗

1 ⟩
f∗∗
1

f∗∗
3 → f

∗∗(2)
3 = f

∗∗(1)
3 − ⟨f∗∗(1)

3 , f∗∗
2 ⟩

⟨f∗∗
2 , f∗∗

2 ⟩
f∗∗
2

...
...

f∗∗(k−1)
n = fn −

⟨fn, f∗∗
k−1⟩

⟨f∗∗
k−1, f

∗∗
k−1⟩

f∗∗
k−1, k = 2, ..., n− 1
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f∗∗
n → f∗∗(k)

n = e∗∗(k−1)
n −

⟨f∗∗(k−1)
n , f∗∗

k ⟩
⟨f∗∗

k , f∗∗
k ⟩

f∗∗
k , k = 2, ..., n− 1

– If i > j + 1, then we use from theorem 2, the equality f
∗∗(k)
i = e

∗∗(k)
i , k =

2, ..., i− 1.

• GS case:

– If 1 ≤ i < j, we proceed by the following formulations

f∗
1 = f1

f∗
2 = f2 −

⟨f2, f∗
1 ⟩

⟨f∗
1 , f

∗
1 ⟩

f∗
1 ,

f∗
3 = f3 −

⟨f3, f∗
1 ⟩

⟨f∗
1 , f

∗
1 ⟩

f∗
1 − ⟨e3, e∗2⟩

⟨f∗
2 , f

∗
2 ⟩

f∗
2

...
...

f∗
n = fn −

n−1∑
k=1

⟨fn, f∗
k ⟩

⟨f∗
k , f

∗
k ⟩

f∗
k

– If i > j + 1, then we use from theorem 2, the equality f∗
i = e∗i .

As for the next step and which concerns the vectors swapping and that is presented by
using the second, third and fourth results of the vectors exchange theorem, namely when
we are either in condition i = j or i = j + 1, then we have the following algorithmic form
Vectors Exchange Theorem Step
- MGS case:

• If i = j, set f
∗∗(k)
j = ej+1 −

⟨ej+1, e
∗∗
k−1⟩

⟨e∗∗k−1, e
∗∗
k−1⟩

e∗∗k−1 −
⟨e(k−1)

j+1 , e∗∗k ⟩
⟨e∗∗k , e∗∗k ⟩

e∗∗k , k = 2, ..., j − 1.

• If i = j + 1, set f
∗∗(k)
j+1 = e

∗∗(k)
j , k = 2, ..., n− 1.

- GS case:

• If i = j, set f∗
j = e∗j+1 +

⟨ej+1, e
∗
j ⟩

⟨e∗j , e∗j ⟩
e∗j .

• If i = j + 1, set f∗
j+1 =

|e∗j+1|2

|f∗∗
j |2

e∗j −
⟨ej+1, e

∗
j ⟩

⟨e∗j , e∗j ⟩
|e∗j |2

|f∗∗
j |2

e∗j+1.

In order to present a concrete application of the algorithm above, we provide a numerical
example in the following section.
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3.2. AE algorithm from Numerics

In this section, we will we explain how the AE algorithm can be used through a nu-
merical example.

Mathematically speaking, we have showed in theorem 1 above that GS and MGS pro-
cesses are proven to produce orthogonal vectors, however, the main reason behind thinking
about these two different ways in order to orthogonalize vectors, is that when it comes to
numerical computing, we come in front of a slight difference in the orthogonality results
but that may become important for some problems. Thus, to get convinced by the choice
of MGS as example, we decide to produce numerical results using our own Python code
as we could only find very few examples in literature, explained just through pen or text
rather than programs.

As an important remark, most numerical experiments and problems in lattice reduction
problems, have focused only in providing examples with the assumption that the dimen-
sion of the lattice is equal to the dimension of the space, and this does not meet the
general definition since it is also allowed to consider its order smaller than the one of the
space. The illustrations in Figure 2 where we are moving from third dimensional crystals
to second dimensional lattice, is a good example to get this point.

Example.
Let us suppose that we have a hypothetical fourth dimensional Bravais crystal while the
representing lattice is considered to be defined in the third dimension. Thus, we take for
example our input vectors defined as follows,

e1 = (1, δ, 0, 0),

e2 = (1, 0, δ, 0),

e3 = (1, 0, 0, δ)

with δ = 0.001.

Let us take now the new basis fi = ei with 1 ≤ i < j or i > j + 1 and which corre-
spond to conditions when there is not yet any vectors swapping. Thus, we are allowed to
rewrite our input vectors in this case as

f1 = e1,

f2 = e2,

f3 = e3

Then, if we just consider the non-normalized case for both processes and fix the same
number of digits of precision for all calculations of the products to 32, we find the following
numerical values of the inner products as follow

• MGS process
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f∗∗
1 = (1, δ, 0, 0)

f∗∗
2 = (9.99999× 10−07,−9.99999× 10−04, δ, 0)

= f∗
2

f∗∗
3 = (4.9999975× 10−07,−4.9999975× 10−04,−4.9999975× 10−04, δ)

̸= f∗
3 (even it does not look so at first sight, see proof below)

and which gives,

⟨f∗∗
1 , f∗∗

2 ⟩ = 0.00000000000000016089962580334832 = ⟨f∗
1 .f

∗
2 ⟩

⟨f∗∗
1 .f∗∗

3 ⟩ = 0.00000000000000008044991878079256 = ⟨f∗
1 .f

∗
3 ⟩

⟨f∗∗
2 .f∗∗

3 ⟩ = 0.00000000000000000000000000000000 or just 0

with ⟨f∗
1 .f

∗
2 ⟩ and ⟨f∗∗

1 .f∗∗
3 ⟩ computed as in the following,

• GS process

f∗
1 = (1, δ, 0, 0)

f∗
2 = (9.99999× 10−07,−9.99999× 10−04, δ, 0)

f∗
3 = (4.9999975× 10−07,−4.9999975× 10−04,−4.9999975× 10−04, δ)

and which gives,

⟨f∗
1 , f

∗
2 ⟩ = 0.00000000000000016089962580334832

⟨f∗
1 .f

∗
3 ⟩ = 0.00000000000000008044991878079256

⟨f∗
2 .f

∗
3 ⟩ = 0.00000000000000016089930816599310

Proof. As we noted above, if we look at the values of the components of orthogonal
vectors for both processes, one would observe at first sight that f∗∗

3 = f∗
3 which is not true

because if we are having this, then there would be no need to compute those products. In
fact, this is a very important note for readers who want to try both MGS and GS methods,
to do for f∗∗

3 and f∗
3 the same as we did for getting a precision on the above products,

and as we can observe now, that if we fix the number of digits of precision again to 32, we
obtain the following real values of f∗∗

3 and f∗
3 ,

f∗∗
3 = (0.00000049999975008057487955320276,

−0.00049999975000012493366735588651,

−0.00049999975000012504208757313506,

δ)

f∗
3 = (0.00000049999975000012517253064701,
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−0.00049999974991967528932523823215,

−0.00049999975008057479484990803797,

δ)

Thus, f∗∗
3 ̸= f∗

3 .

Even if we try now the normalized case for both processes, we find that MGS is again
better than GS as we have for this case,

⟨f∗∗
1 , f∗∗

2 ⟩ = ⟨f∗
1 .f

∗
2 ⟩

⟨f∗∗
1 .f∗∗

3 ⟩ = 0.00000000000000000000000000000000 or just 0

̸= ⟨f∗
1 .f

∗
3 ⟩ = 0.00000099999999999999995474811183

⟨f∗∗
2 .f∗∗

3 ⟩ = ⟨f∗
2 .f

∗
3 ⟩

We can now deduce from our example and via MGS, in both non-normalized and nor-
malized cases, that we can obtain better results about the orthogonalization of our input
vectors either for f2 and f3 in the first case, or for f1 and f3 in the second case.
Now, we consider the conditions on i when we need to swap the vectors, namely when we
take the new basis defined by fi = ej+1 if i = j or fi = ej if i = j + 1. This can simply
translated to a different way, by stating that fj = ej+1 and fj+1 = ej and which both
correspond to the original case when we generally swap vectors ej+1 and ej .

Until now, we have shown how to use MGS and GS in order to implement them in the
First Intermediary Step, and why it is preferable to use MGS instead of GS. In order to
understand how the vectors exchange process and make the operations clear, let us first
suppose again that we just start working and we did not decide to swap any vectors. Then,
as explained before, we retake,

f1 = (1, δ, 0, 0),

f2 = (1, 0, δ, 0),

f3 = (1, 0, 0, δ)

We have f∗∗
1 = f1, then we use it to reduce the vector f2. Thus, we get in this step,

f1 = f∗∗
1 ,

f2 = f
∗∗new1
2 ,

f3 = f3

For the size reduction, we can see that we have,

⟨f∗∗(1)new1

2 , f∗∗
1 ⟩

⟨f∗∗
1 , f∗∗

1 ⟩
= 0.00000000000000016089946490388340 which satisfies the condition in

Definition 1. As for the quasi-orthogonality condition of Definition 2, we find that for
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ε = 0.75, the condition is not satisfied, then, we have to swap vectors f∗∗
1 and f

∗∗new1
2 ,

which means, we have now,

f1 = f
∗∗new1
2 ,

f2 = f∗∗
1 ,

f3 = f3

Again, for the size reduction, we can see that we have,

⟨f∗∗(1)new1

2 , f∗∗
1 ⟩

⟨f∗∗
1 , f∗∗

1 ⟩
= 0.00000000000000029761705115610202 which satisfies the condition in

Definition 1. As for the quasi-orthogonality condition of Definition 2, we find that the
condition is satisfied. Then, no need to swap any vectors in this step. This means we
repeat the process again, and then retake f∗∗

1 = f
∗∗new1
2 but use these last two first vectors

in order to get the new reduced vector f
∗∗new2
2 which we will use now for the reduction of

f3. Then, we have,

f1 = f
∗∗new1
2 ,

f2 = f
∗∗new2
2 ,

f3 = f
∗∗new1
3

Now, for the size reduction, we can see that we have,

⟨f∗∗(1)new2

2 , f
∗∗(1)new1

2 ⟩
⟨f∗∗(1)new1

2 , f
∗∗(1)new1

2 ⟩
= 0.00000000000000002049319288085836

and
⟨f∗∗(2)new1

3 , f
∗∗(1)new2

2 ⟩
⟨f∗∗(1)new2

2 , f
∗∗(1)new2

2 ⟩
= 0.00000000000000000000014925455088 which both satisfy

the condition in Definition 1. As for the quasi-orthogonality condition of Definition 2, we

find that the condition is not satisfied between f
∗∗(2)new1

3 and f
∗∗(1)new2

2 . Then, we should
swap these vectors. This means, we will have now,

f1 = f
∗∗new1
2 ,

f2 = f
∗∗new1
3 ,

f3 = f
∗∗new2
2

In this step, we find that the conditions on both size reduction and quasi-orthogonality
are satisfied, then we keep those last vectors.

4. Conclusion

In this paper, we have introduced a theoretical concept which is about seeking a ’good’
crystal cell starting from any ’bad’ crystal cell, in order to determine the reduced unit cell
whose vectors are close-to-orthogonal, through a major part of Bravais basis reduction,
namely the steps of the first version that we have suggested for the vectors exchange
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theorem 2. In fact, we studied the special case when we have known beforehand that
the motif should be made of quasi-orthogonal vectors. In addition, this work has more
interestingly answered about a more general problem often not taking enough place in
the literature, and which is about investigating theoretically, the impact of the repeated
exchange of vectors, on the precision of two different orthogonalization methods, in times
of the reduction process of Bravais basis. Another major point that we have succeeded to
prove in this paper, is that MGS was better than GS, not only in numerics as traditionally
known, but because of its preservation of the orthogonality formulations in spite of the
vectors swapping in three conditions rather than two for GS, and which can lead to MGS
to be more recommended in future in more complicated cases, for instance when the
dimension is very big.
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[48] D. Stehlé. Floating-point lll: theoretical and practical aspects. In The LLL Algorithm:
Survey and Applications. p.179-213, Berlin, Heidelberg: Springer Berlin Heidelberg,
2009.

[49] T. Plantard W. Susilo and Z. Zhang. Lll for ideal lattices: re-evaluation of the security
of gentry–halevi’s fhe scheme. Designs, Codes and Cryptography, 76, p.325-344, 2015.

[50] B. Vallée and A. Vera. Probabilistic analyses of lattice reduction algorithms. In
The LLL Algorithm: Survey and Applications. p.71-143, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009.



REFERENCES 2692
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