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Abstract. In this manuscrit, we establish some results on the existence and uniqueness of fixed
points by using b-multiplicative metric spaces(MMS) endowed with a binary relation. We also
find result on the coincidence of points involving a pair of mappings. Finally some examples are
presented to illustrate the suitability of our results.
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1. Introduction and Prilimaries

In 1922, Banach [1] laid the important result of fixed point theory in metric spaces.
Later on, several authors generalized the Banach contraction principle, see[2–4]. Inspired
by Turinici [5] work, Ran and Reurings [6] in 2004 worked on Banach contraction prin-
ciple in ordered metric space and assumed the contractive condition only to hold on the
comparable elements instead of the whole space. Fixed point in ordered metric space has
been extensively studied in the literature [7–9].
The idea of MMS, which is a generalization of metric space, was first introduced by
Bashirov et al. [10] in 2008. The main idea behind introducing MMS was to replace usual
triangular inequality by the multiplicative triangle inequality. Later on, many research
papers were written on fixed points in MMS [11–16, 18–20]. Czerwik [17] introduced the
notion of b-metric space which is a generalization of metric space. There are some fixed
point results in b-metric space. Later on, Muhammad Usman et al. [21] introduce the
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new notion of b-multiplicative metric space and proved fixed point theorems for single and
multivalued mapping on b-multiplicative metric spaces, endowed with a graph.

In this paper we prove fixed point theorems for mapping on b-multiplicative metric
space endowed with a binary relation and also prove a coincidence of points involving a
pair of mapping and provide some examples to demonstrate our results.

Definition 1. [21]. Let Ḧ be a non-empty set and let k ≥ 1 be a given real number. A
mapping p : Ḧ×Ḧ → R is called a b-multiplicative metric with coefficient k, if the following
conditions hold:

(M1) p(ϖ, ρ) ≥ 1 for all ϖ, ρ ∈ Ḧ and p(ϖ, ρ) = 1 if and only if ϖ = ρ;

(M2) p(ϖ, ρ) = p(ϖ, ρ) for all ϖ, ρ ∈ Ḧ;

(M3) p(ϖ, ρ) ≤ p(ϖ, z)k.p(z, ρ)k for all ϖ, ρ, z ∈ Ḧ.

The triplet (Ḧ,p,k) is called a b-multiplicative metric space.

Definition 2. [4]. Let (Ḧ, p, k) be any b-MMS, {ϖn} be a sequence in Ḧ and ϖ ∈ Ḧ. If
for every multiplicative open ball Bϵ(z) = {ρ : p(ϖ, ρ) < ϵ}, ϵ > 1, there exists a natural
number N ∈ N such that n ≥ N and ϖn ∈ Bϵ(ϖ). Then the sequence {ϖn} is said to be
multiplicative converging to ϖ. We denote as ϖn → ϖ (n → +∞).

Lemma 1. [21] let (Ḧ, p, k) is a b-multiplicative metric space. If a sequence {ϖn} is a
multiplicative convergent, then the multiplicative limit point is unique. Let (Ḧ, p) be a
MMS, {ϖn} be a sequence in Ḧ and ϖ ∈ Ḧ. Then

ϖn → ϖ(n → +∞) ⇔ p(ϖn, ϖ) → 1(n → +∞).

Definition 3. [4]. Let (Ḧ, p) be a MMS and {ϖn} be a sequence in Ḧ.

• Then {ϖn} is said to be multiplicative Cauchy sequence if for ϵ > 1, there exists a
positive integer N ∈ N such that d(ϖm, ϖn) < ϵ for all n,m ≥ N.

• Then {ϖn} is said to be multiplicative Cauchy if and only if p(ϖn, ϖm) → 1(n,m →
+∞).

Definition 4. [4]. If every multiplicative Cauchy sequence in (Ḧ, p) is multiplicative
convergent in Ḧ, then MMS (Ḧ, p) is said to be multiplicative complete

Definition 5. [22]. Let Ḧ be a nonempty set. A subset R̈ of Ḧ2 is called a binary relation
on Ḧ. The subsets, Ḧ2 and ϕ of Ḧ2 are called the universal relation and empty relation
respectively.

Definition 6. [22]. Let R̈ be a binary relation on a nonempty set Ḧ. For ϖ, ρ ∈ Ḧ, we
say that ϖ and ρ are R̈-comparative if either (ϖ, ρ) ∈ R̈ or (ρ,ϖ) ∈ R̈. We denote it by
[ϖ, ρ] ∈ R̈
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Proposition 1. If (Ḧ, p, k ≥ 1) is a b-metric space, R̈ is a binary relation on Ḧ, F̈ is a
self-mapping on Ḧ and λ ∈ [0, 1k ), then these conditions are equivalent.

(I) p(F̈ϖ, F̈ρ) ≤ p(ϖ, ρ)λ for all ϖ, ρ ∈ Ḧ with (ϖ, ρ) ∈ R̈,

(II) p(F̈ϖ, F̈ρ) ≤ p(ϖ, ρ)λ for all ϖ, ρ ∈ Ḧ with [ϖ, ρ] ∈ R̈.

Proof. The implication (II) =⇒ (I) is trivial. Coversely, we assume that (I) holds.
Take ϖ, ρ ∈ Ḧ with [ϖ, ρ] ∈ R̈. if (ϖ, ρ) ∈ R̈, then (II) directly follows from (1). But, if
(ρ,ϖ) ∈ R̈, then using the symmetry of p and (I), we obtain

p(F̈ϖ, F̈ρ) = p(F̈ρ, F̈ϖ) ≤ p(ρ,ϖ)λ = p(ρ,ϖ)λ.

which shows that (I) =⇒ (II).

Proposition 2. If (Ḧ, p, k ≥ 1) is a b-metric space, R̈ is a binary relation on Ḧ, F̈ and S
are self-mapping on Ḧ and λ ∈ [0, 1k ), then these conditions are equivalent.

(1) p(F̈ϖ, F̈ρ) ≤ p(Sϖ, Sρ)λ for all ϖ, ρ ∈ Ḧ with (ϖ, ρ) ∈ R̈,

(2) p(F̈ϖ, F̈ρ) ≤ p(Sϖ, Sρ)λ for all ϖ, ρ ∈ Ḧ with [ϖ, ρ] ∈ R̈.

Definition 7. [23].“Let Ḧ be a non-empty set and R̈ be a binary relation on Ḧ.
(1) The inverse, transpose or dual relation of R̈, denoted by R̈−1 is defined by

R̈−1 = {(ϖ, ρ) ∈ Ḧ2 : (ρ,ϖ) ∈ R̈}
(2) The reflexive closure of R̈, denoted by R̈#, is defined to be the set R̈ ∪ △ϖ

(i.e., R̈# := R̈ ∪ △ϖ).
(3) The symmetric closure of R̈, denoted by R̈s, is defined to be the set R̈ ∪R̈−1

(i.e., R̈# := R̈ ∪R̈−1).

Proposition 3. [24] For a binary relation R̈ defined on a nonempty set Ḧ,

(ϖ, ρ) ∈ R̈s ⇐⇒ [ϖ, ρ] ∈ R̈.

Definition 8. [24]. Let Ḧ be a non-empty set and R̈ a binary relation on Ḧ. A sequence
ϖn ⊂ Ḧ is called R̈- preserving if

(ϖn, ϖn+1) ∈ R̈ for all n ∈ N0.

Definition 9. [24] Let (Ḧ,p) be a metric space. A binary relation R̈ defined on Ḧ is called
p-selfclosed if whenever {ϖn} is an R̈-preserving sequence and

ϖn
p−→ ϖ

then there exists a subsequence {ϖnk
} of {ϖn} with [ϖnk

, ϖ] ∈ R̈ for all k ∈ N0.



I. Alshammari et al. / Eur. J. Pure Appl. Math, 16 (4) (2023), 2405-2418 2408

Definition 10. [24] Let Ḧ be a nonempty set and F̈ a self-mapping on Ḧ. A binary
relation R̈ defined on Ḧ is called F̈-closed if for any ϖ, ρ ∈ Ḧ

(ϖ, ρ) ∈ R̈ =⇒ (F̈ϖ, F̈ρ) ∈ R̈.

Proposition 4. [24] Let Ḧ, F̈ and R̈ be same as in definition 1.10. R̈s must also be
F̈-closed if R̈ is F̈-closed.

Definition 11. [24] Let S and V are self mappings on a nonempty set Ḧ. A binary re-
lation R̈ on Ḧ is called (S,V)-closed if for all ϖ, ρ ∈ Ḧ, (Vϖ, Vρ) ∈ R̈ yield that (Sϖ, Sρ)
belong to R̈.

if we take V= identity mapping, then we conclude that R̈ is S-closed.
if R̈ is S-closed, then R̈s is also S-closed.

Definition 12. [25] Let (Ḧ, p, k ≥ 1) be a b-metric space and let R̈ a binary relation on
Ḧ.

(i) we say that (ϖ, p) is R̈-complete if every R̈-preserving b-Cauchy sequence in Ḧ con-
verges.

(ii) A subset G of Ḧ is called R̈-closed if every R̈-preserving b-convergent sequence in G
converges to a point of G.

Definition 13. [25] Let (Ḧ, p, k ≥ 1) be a b-metric space and let V : Ḧ → Ḧ. A binary
relation R̈ defined on Ḧ is called (V, bp)-self closed if, whenever {ϖn} is an R̈-preserving
sequence and ϖn →p ϖ, there exists a subsequence {ϖni} of {ϖn} with [V ϖni , V ϖ] ∈ R̈
for all i ∈ N.

If V is the identity mapping, then we get the following definitions:

Definition 14. [25] Let (Ḧ, p, k ≥ 1) be a b-metric space. A binary relation R̈ defined on
Ḧ is called bp-self closed if, whenever {ϖn} is an R̈-preserving sequence and ϖn →p ϖ,
there exists a subsequence {ϖnj} of {ϖn} with (ϖnj , ϖ) ∈ R̈ for all j ∈ N.

Definition 15. [26] Let Ḧ be a nonempty set and R̈ a binary relation on Ḧ. A subset G
of Ḧ is called R̈-directed if for each ϖ, ρ ∈ G, there exists z ∈ Ḧ such that (ϖ, z) ∈ R̈ and
(ρ, z) ∈ R̈.

Definition 16. [27] Let Ḧ be a nonempty set and R̈ a binary relation on Ḧ. For ϖ, ρ ∈ Ḧ,
a path of length k (where k is a natural number) in R̈ from ϖ to ρ is a finite sequence
{t0, t1, t2, ....tk} ⊂ Ḧ satisfying the following conditions:
(i) t0 = ϖ and tk = ρ
(ii) (tj , tj+1) ∈ R̈ for each j (0 ≤ j ≤ k − 1).
Note that although they are not necessarily distinct, a path of length k involves k+1 ele-
ments of Ḧ”.
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Definition 17. [25] Let (Ḧ, p, k ≥ 1) be a b-metric space, let R̈ be a binary relation on
Ḧ, and let S and V be two self-mappings on Ḧ. we say that S and V are R̈-compatible if,
for any sequence {ϖn} ∈ Ḧ such that {Sϖn} and {V ϖn} are R̈-preserving and

lim
ϖ→+∞

V (ϖn) = lim
ϖ→+∞

S(ϖn),

we have

lim
ϖ→+∞

d(V P (ϖn), PV ϖn) = 0.

Lemma 2. [28] Let Ḧ be a non empty set and let F̈ be a self mapping on Ḧ. Then there
exists a subset G ⊆ Ḧ such that F̈(G) = F̈(Ḧ) and F̈ : G → Ḧ is one-to one.

.

2. Main Result

In this manuscript, we utilize the following notations:

(i) F(F̈) = the set of all fixed points of F̈,

(ii) Ḧ(F̈; R̈) := {ϖ ∈ Ḧ : (ϖ, F̈ϖ) ∈ R̈},

(iii) γ (ϖ,ρ,R̈) := the class of all paths in R̈ from ϖ to ρ

Theorem 1. Let (Ḧ,p,k ≥ 1) be a b-complete b-multiplicative metric space and R̈ a binary
relation on Ḧ. F̈: Ḧ × Ḧ be a self-mapping satisfying the following conditions given below.

(i) Ḧ(F̈; R̈) is non-empty.

(ii) R̈ is F̈-closed.

(iii) Either F̈ is b-continuous or R̈ is bp-self closed.

(iv) There exists λ ∈ [0, 1k ) such that.

p(F̈ϖ, F̈ρ) ≤ p(ϖ, ρ)λ

Then F̈ has a fixed point. i.e., there exists ϖ∗ ∈ Ḧ such that F̈ϖ∗ = ϖ∗.

(v) γ(ϖ, ρ, R̈s) is non- empty, for each ϖ, ρ ∈ Ḧ, then F̈ has a unique fixed point.

Proof. Let ϖ0 ∈ (F̈; R̈) be an arbitrary element. Now we define the sequence ϖn

of picard iterates i.e., ϖn = F̈ϖn−1 = F̈nϖ0 for all n ∈ N. As (ϖ0, F̈ϖ0) ∈ R̈ and R̈ is
F̈-closed, we get.

(F̈ϖ0, F̈
2ϖ0), (F̈

2ϖ0, F̈
3ϖ0), ......., (F̈

nϖ0, F̈
n+1ϖ0), ....,∈ R̈
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so that

(ϖn, ϖn+1) ∈ R̈, for all n ∈ N (1)

therefore the sequence ϖn is R̈-preserving. Applying the contractivity condition (iv) to
(1). We deduce, for all n ∈ N. that

p(ϖn, ϖn+1) ≤ p(ϖn−1, ϖn)
λ,

which by induction yield that

p(ϖn, ϖn+1) ≤ p(ϖ0, F̈ϖ0)
λn

for all n ∈ N (2)

By using (2) and multiplicative triangular inequality, for all n ∈ N, r ∈ N, we have

p(ϖn, ϖn+r) ≤ p(ϖn, ϖn+1)
kn · p(ϖn+1, ϖn+2)

kn+1 · · · ·p(ϖn+r−1, ϖn+r)
kn+r−1

≤ p(ϖn, ϖn+1)
λnkn · d(ϖn+1, ϖn+2)

λn+1kn+1 · · · ·p(ϖn+r−1, ϖn+r)
λn+r−1kn+r−1

≤ p(ϖ0, F̈ϖ0)
(λk)n+(λk)n+1+···+(λk)n+r−1

≤ p(ϖ0, F̈ϖ0)
(λk)n

1−(λk) .

This implies that p(ϖn, ϖn+r) →b 1, (as n → +∞) Hence, the sequence ϖn is multi-
plicative Cauchy sequence in Ḧ. As (Ḧ, p, k ≥ 1) is b-complete, there exists ϖ∗ ∈ Ḧ such
that

ϖn −→ ϖ∗.

Now, in lieu of (iii) assume that F̈ is b-continuous, we have

ϖn+1 = F̈ϖn
p−→ F̈ϖ∗.

owing to the uniqueness of limit, we obtain F̈ϖ∗ = ϖ∗ i.e., ϖ∗ is a fixed point of F̈.

Alternately, suppose that R̈ is bp − selfclosed. since ϖn is an R̈-preserving sequence
and

ϖn
p−→ ϖ.

by the bp − selfcloseness of R̈, there exists a subsequence {ϖnj} of {ϖn} with

[ϖnj ,ϖ] ∈ R̈ for all j ∈ N

using (iv), Proposition (1.1), we obtain

p(ϖ∗, F̈ϖ∗) ≤ [p(ϖ∗, ϖn+1) · p(ϖn+1, F̈ϖ
∗)]k
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= [p(ϖ∗, ϖn+1) · p(ϖn+1, F̈ϖ
∗)]k

≤ [p(ϖ∗, ϖn+1) · p(ϖn+1, F̈ϖ
∗)λ]k → 1 as n → +∞.

Hence, F̈ϖ∗ = ϖ∗ and ϖ∗ is a fixed point of F̈.
suppose that ρ∗ is another fixed point of F̈.

By assumption (v), there exists a path (say {t0, t1, t2, .....tk, }) of some finite length k
in R̈s from ϖ to ρ so that

t0 = ϖ, tk = ρ, [tj , tj+1] ∈ R̈ for each j (0 ≤ j ≤ k − 1). (3)

As R̈ is F̈-closed, by using proposition (1.3) , we have

[F̈ntj , F̈
ntj+1] ∈ R̈ for each j (0 ≤ j ≤ k − 1) and for each n ∈ N (4)

Making use of (3), (4), (5), triangular inequality, assumption (iv) and proposition (1.1),
we obtain

p(ϖ, ρ) = p(F̈nt0, F̈
ntk) ≤

k−1∏
j=0

(F̈ntj , F̈
ntj+1)

≤
k−1∏
j=0

p(F̈n−1tj , F̈
n−1tj+1)

λ

≤
k−1∏
j=0

p(F̈n−2tj , F̈
n−2tj+1)

λ2

≤ · · ·· ≤
k−1∏
j=0

p(tj , tj+1)
λn

→ 1 as n → +∞ (5)

so, that ϖ=ρ. Hence F̈ has a unique fixed point.

Theorem 2. Let (Ḧ,d,k ≥ 1) be a b-complete b-multiplicative metric space and R̈ a binary
relation on Ḧ. S,V: Ḧ → Ḧ be a self-mapping satisfying the following conditions given
below.

(i) Ḧ(S, V ; R̈) are non-empty and S(Ḧ) ⊆ V (Ḧ);

(ii) R̈ is (S,V)-closed.

(iii) There exists λ ∈ [0, 1k ) such that

d(Sϖ, Sρ) ≤ d(V ϖ, V ρ)λ



I. Alshammari et al. / Eur. J. Pure Appl. Math, 16 (4) (2023), 2405-2418 2412

(iv) Either S is (V,R̈)-continuous or S and V are continuous.
or

(iv’) S and V are R̈- compatible, V is R̈- continuous, and either S is R̈-continuous or R̈
is (V, bd)− self − closed,
Then S and V have a point of coincidence.

Proof. let ϖ0 ∈ Ḧ(S,V,R̈) be an arbitrary element. Then (V ϖ0, Sϖ0) ∈ R̈. If V (ϖ0) =
S(ϖ0), then ϖ0 is a coincidence point of S and V and, hence, we are through.
otherwise, if V (ϖ0) ̸= S(ϖ0), then, in view of S(Ḧ) ⊆ V (Ḧ), we can choose ϖ1 ∈ Ḧ
such that V (ϖ1) = S(ϖ0). Again from S(Ḧ) ⊆ V (Ḧ), we can choose ϖ2 ∈ Ḧ such that
V (ϖ2) = S(ϖ1). construct the sequence {ϖn} ⊂ Ḧ such that

V (ϖn+1) = S(ϖn) for all n ∈ N (6)

Now,we claim that {V ϖn} is R̈- preserving sequence, i.e.,

(V ϖn, V ϖn+1) ∈ R̈ for all n ∈ N (7)

we can show this fact by induction. By equation (6) (with n= 0) and fact that ϖ0 ∈
Ḧ(S, V, R̈), We conclude that (V ϖ0, V ϖ1) ∈ R̈. which means that (7) holds for n=0.

suppose (7) is true for n = r ≥ 0 i.e., (V ϖr, V ϖr+1) ∈ R̈. As R̈ is (S,V)- closed, we
get (Sϖr, Sϖr+1) ∈ R̈. by using , this yield that (V ϖr+1, V ϖr+2) ∈ R̈, i.e., inclusion (7)
holds for n=r+1. Hence by induction, inclusion (7) is valid for all n ∈ N.
in view of (6) and (7), the sequence {Sϖn} is also an R̈-preserving, i.e.,

(Sϖn, Sϖn+1) ∈ R̈ for all n ∈ N

By using (6), (7)and assumption (iii), we find

p(V ϖn, V ϖn+1) = p(Sϖn−1, Sϖn) ≤ p(V ϖn−1, V ϖn)
λ for all n ∈ N (8)

which by induction yield that

p(V ϖn, V ϖn+1) = p(Sϖn−1, Sϖn) ≤ p(V ϖn−1, V ϖn)
λn

for all n ∈ N (9)

By using (9) and multiplicative triangular inequality, for all n ∈ N, r ∈ N, we have
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p(V ϖn, V ϖn+r) ≤ p(V ϖn, V ϖn+1)
kn · p(V ϖn+1, V ϖn+2)

kn+1 · · · p(V ϖn+r−1, V ϖn+r)
kn+r−1

≤ p(V ϖn, V ϖn+1)
λnkn · p(V ϖn+1, V ϖn+2)

λn+1kn+1 · · · ·
p(V ϖn+r−1, V ϖn+r)

λn+r−1kn+r−1

≤ p(V ϖ0, V ϖ1)
(λk)n+(λk)n+1+···+(λk)n+r−1

≤ p(V ϖ0, V ϖ1)
(λk)n

1−(λk) .

This implies that p(V ϖn, V ϖn+r) →b 1, (as n → +∞) Hence, the sequence V ϖn is
multiplicative Cauchy sequence in Ḧ. By using (3), we have V ϖn ⊆ S(Ḧ) and hence V ϖn

is an R̈-preserving b-multiplicative Cauchy sequence in Ḧ. As (Ḧ, p, k ≥ 1) is b-complete,
there exists u ∈ V (Ḧ) such that

lim
ϖ→+∞

V (ϖn) = V (u) (10)

By using (6) and (10), we get

lim
ϖ→+∞

S(ϖn) = V (u) (11)

Now we show that u is a coincidence point of S and V.
Now, in lieu of (iv) consider that p is (V, R̈)-continuous, Thus utilizing (7) and (10) we

obtain

lim
ϖ→+∞

S(ϖn) = S(u) (12)

In view of (11) and (12), we obtain V(u)= S(u). Hence, we are completed. second
, we assume that S and V are continuous and owing to the Lemma 1.1, there exists a
subset G ⊆ Ḧ such that V (G) = V (Ḧ) and V : G → Ḧ is one to one. Now we define
F̈ : V (G) → V (Ḧ) by F̈(V a) = S(a) for all V (a) ∈ V (G) where a ∈ G

As V : G → Ḧ is injective and S(Ḧ) ⊆ V (Ḧ), we get to the conclusion that F̈ is well
defined. Additionally, F̈ is continuous because S and V are continuous. As V (Ḧ) = V (G)
and S(Ḧ) ∈ V (Ḧ), we get S(Ḧ) ∈ V (G). This means that, it is possible to construct
{ϖn} ∈ G satisfying relation (6) and we choose u ∈ G. Utilizing equation (10) and (11)
and the continuity of F̈, we find

S(u) = F̈(V u) = F̈( lim
n→+∞

V ϖn) = lim
n→+∞

F̈(V ϖn) = lim
n→+∞

S(ϖn) = V (u)

Hence, u ∈ Ḧ is a point of coincidence of a pair of maps. This end the proof.
Owing to (6), we have {V ϖn} ⊆ S(Ḧ) and hence, {V ϖn} is b-multiplicative Cauchy

sequence in Ḧ. As Ḧ is b-complete, there exists u ∈ V (Ḧ) such that
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lim
ϖ→+∞

V (ϖn) = V (u). (13)

By using (6) and (13), we get

lim
ϖ→+∞

S(ϖn) = V (u). (14)

As V is R̈-continuous, we find

lim
ϖ→+∞

V (V ϖn) = V ( lim
n→+∞

V (ϖn)) = V (V (u)) (15)

moreover, we get

lim
ϖ→+∞

V (Sϖn) = V ( lim
n→+∞

S(ϖn)) = V (V (u)) (16)

since {Sϖn} and {V ϖn} are R̈-preserving

lim
ϖ→+∞

S(ϖn) = V (u) = lim
n→+∞

V (ϖn) (17)

and S and V are R̈-compatible, we obtain

lim
ϖ→+∞

p(V S(ϖn), SV (ϖn)) = 0. (18)

Now, we demonstrate that V(u) is a coincidence point of S and V.

We assume that S is R̈-continuous. By using (7), we get

lim
ϖ→+∞

S(V ϖn) = S lim
n→+∞

V (ϖn) == S(V (u)) (19)

suppose that V(u) = z, utilizing triangle inequality, we get

p(V z, Sz) ≤ [p(V z, V (Sϖn)) · p(V (Sϖn), Sz)]
k

≤ p(V z, V (Sϖn))
k · [p(V (Sϖn), S(V ϖn) · p(S(V ϖn), Sz)

k2

Making n → +∞ , we get p(Vz,Sz) = 1, which implies Vz = Sz, i.e., z = V(u) is coincidence
point of S and V.

Alternatively, assume that R̈ is (V, bp)-self closed. Since {V ϖn} is R̈-preserving and
V ϖn → V u, in view of the (V, bp)-self closeness of R̈, there exists a subsequence {V ϖni}
of {V ϖn} such that [V V ϖni , V V u] belongs to R̈ for all i ∈ N ∪ {0}. Since V ϖni → V u,
in the view of proposition 1.3, we get

p(SV ϖni , SV u) ≤ p(V V ϖni , V V u)λ for all i ∈ N ∪ {0}



I. Alshammari et al. / Eur. J. Pure Appl. Math, 16 (4) (2023), 2405-2418 2415

we choose Vu = z. By the triangle inequality , we get

p(V z, Sz) ≤ [p(V z, V (Sϖni)) · p(V (Sϖni), Sz)]
k

≤ p(V z, V (Sϖni))
k · [p(V (Sϖni), S(V ϖni) · p(S(V ϖni), Sz)]

k2

≤ p(V z, V (Sϖni))
k · p(V (Sϖni), S(V ϖni)

k2 · p(S(V ϖni), Sz).
λk2

Making i → +∞, we get p(Vz,Sz) = 1, which implies Vz = Sz, that is, z = V(u) is a
coincidence point of S and V.

Now we can give examples in support of theorem 1.

Example 1. Let Ḧ = R+ and p = |ϖρ |, then (Ḧ,p) is a complete multiplicative metric

space. Define binary relation R̈ = {(ϖ, ρ) ∈ R2
+:

ϖ
ρ ≥ 1, ϖ, ρ ∈ R+} on Ḧ. consider

mapping F̈:Ḧ → Ḧ defined by

F̈(ϖ) = ϖ
2
3

obviously, R̈ is F̈ closed and F̈ is continuous. Now, for ϖ, ρ ∈ Ḧ with (ϖ, ρ) ∈ R+. We
have

p(F̈ϖ, F̈ρ) =

∣∣∣∣ϖ 2
3

ρ
2
3

∣∣∣∣ = ∣∣∣∣ϖρ
∣∣∣∣ 23 = p(ϖ, ρ)

2
3 < p(ϖ, ρ)

3
4

i.e., F̈ satisfies assumption (iv) of Theorem (2.1) for λ = 3
4 . Consequently, every condi-

tions (i)-(iv) of Theorem (2.1) also holds and therefore, F̈ has a unique fixed point (for
ϖ = 1).

Example 2. Let Ḧ = [0.1, 1] and p = |ϖρ |, then (Ḧ,p) is complete B-MMS. Define binary

relation R̈ = {(ϖ, ρ) ∈ [0.1, 1]2: ϖ
ρ ≥ 1, ϖ, ρ ∈ R+} on Ḧ. consider mapping F̈ : Ḧ → Ḧ

defined by

F̈(ϖ) = eϖ−1−ϖ3

10

obviously, R̈ is F̈-closed and F̈ is continuous. Now, for ϖ, ρ ∈ [0.1, 1]. We have

p(F̈ϖ, F̈ρ) =

∣∣∣∣ F̈ϖF̈ρ
∣∣∣∣ ≤ ∣∣∣∣ϖρ

∣∣∣∣λ = p(ϖ, ρ)λ for all ϖ, ρ ∈ X

where, λ = 0.997, finally , we can say that F̈ has a unique fixed point 0.7411317711 ∈ X.
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Example 3. Let Ḧ = [1, 3] and p = |ϖρ |, then (Ḧ, p) is complete b-MMS. Define binary

relation R̈={(1,1),(2,1),(2,2),(3,1),(3,2)} on Ḧ and a mapping F̈:Ḧ → Ḧ defined by

F̈(ϖ) =

{
1, if 1 ≤ ϖ ≤ 2

2 if 2 < ϖ ≤ 3,

Obviously, R̈ is F̈ - closed but F̈ is not continuous. Take an R̈-preserving sequence {ϖn}
such that

ϖn
p−→ ϖ

so that (ϖn, ϖn+1) ∈ R̈ for all n ∈ N. Here, one can observe that

(ϖn, ϖn+1) /∈ {(3, 1), (3, 2)}

So that

(ϖn, ϖn+1) ∈ {(1, 1), (2, 1), (2, 2)}

which gives rise to {ϖn} ⊂ {1, 2}.{1, 2} is closed, we have [ϖn, ϖ] ∈ R̈. Therefore, R̈
is p-closed. Assumption can be verified (iv) of Theorem 2.1 with λ = 1

2 . Thus, all the

condition (i)- (iv) of Theorem 2.1 are satisfies and F̈ has a fixed point in Ḧ (for ϖ=1).
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