
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 17, No. 2, 2024, 969-978
ISSN 1307-5543 – ejpam.com
Published by New York Business Global

Perfect Equitable Isolate Dominations in Graphs
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Abstract. A subset S ⊆ V (G) is said to be a perfect equitable isolate dominating set of a
graph G if it is both perfect equitable dominating set of G and isolate dominating set of G. The
minimum cardinality of a perfect equitable isolate dominating set is called perfect equitable isolate
domination number of G and is denoted by γpe0(G). A perfect equitable isolate dominating set S
of G is called γpe0-set of G. In this paper, the authors give characterizations of a perfect equitable
isolate dominating set of some graphs and graphs obtained from the join and corona of two graphs.
Furthermore, the perfect equitable isolate domination numbers of these graphs is determined, and
the graphs with no perfect equitable isolate dominating sets are investigated.
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1. Introduction

Recently, there has been a growing interest in the applications of one of the widest re-
search topics in graph theory, the study of domination in graphs, which was developed
by Claude Berge in 1958 when he introduced the coefficient of external stability known
today as domination [2]. Due to the richness of the research and applications to graphs,
many variants of domination started to prosper and some of these variants are the isolate
domination and perfect equitable domination in graph.

The concept of perfect domination was first introduced by Livingston and Stout [16]
as an answer to the problem of the supplement study conducted by the same authors
in [15]. This notion has been celebrated for years, and many studies of this kind have
been introduced. Caay and Palahang [6] introduced the notion of perfect independent
domination of graphs where they joined the notion of perfect domination and independent
domination and investigate the existence of such variant and the corresponding number
to graph. There are also many variants of perfect dominations of graphs which are found
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in the paper of [16], [10] and [11]. Another variant of domination is the equitable domi-
nation graph. The concept of equitable domination was believed to have been introduced
by A. Anitha, et.al. in [8] and it was also discussed in the paper of G. Deepak, et.al.
in [9]. This concept has extended further and so Caay and Durog in [5] introduced the
notion of independent equitable domination in graphs. Furthermore, this concept has also
been developed by Caay and Arugay when they introduced the notion of perfect equitable
domination in [4] which studied about the domination that is perfect and equitable at the
same time. Furthermore, in 2024, Caay in [3] introduced the notion of equitable rings
domination in graphs.

In 2013, the concept of Isolate domination in graphs was studied by Hamid and Bala-
murugan [13]. Because this study gives a lot of opportunity to see many research topics, a
lot of mathematician studied many variants of this. Armada and Hamja in [1] studied the
perfect isolate domination in graphs where they defined a domination to be perfect and
isolate at the same time. Many authors also have made a lot of studies on this different
variants and can be found in [17].

In this paper, we study the perfect equitable isolate domination in graphs. A subset
S ⊆ V (G) is said to be a perfect equitable isolate dominating set if it is a isolate dominating
set and if it is perfect equitable dominating set. To give clarity, the flow of our paper is
as follows: in Section 2, we introduce the necessary notations and basic concepts that
are used in this study. We also introduce the isolate domination and perfect equitable
dominations, and some of their results from the references that are used in the discussion
of the study. We also established the case when these two dominations imply each other
and so we come up with our formal working definition. In Section 3, we show our results
of our study.

2. Preliminaries and the working definitions

Throughout this paper, the graph we consider here is a connected simple graph. That
means, there are no loops and multiple edges. A pair G = (V (G), E(G)) is called a graph
(on V ). The elements of V (G) are called the vertices of G and the elements of E(G) are
called the edges of G. If no confusion arises, we can use V and E to denote the set of
vertices and set of edges of G, respectively. Suppose v ∈ V , the neighborhood of v is the
set NG(v) = {u ∈ V : uv ∈ E.}. Given D ⊆ V , the set NG(D) = N(D) =

⋃
v∈D NG(v)

and the set NG[D] = N [D] = D
⋃
N(D) are the open neighborhood and the closed neigh-

borhood of D respectively. In this paper, we denote ∆(G) and δ(G) to be the minimum
and maximum degree of G, respectively. We denote Pn, Cn,Kn, Tn for the path graph,
cycle graph, complete graph and trees of order n, respectively.

Theorem 1. [7] A graph G is a cycle graph if and only if every vertex of G is adjacent
to two other vertices.
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Definition 1. [7] A spanning subgraph of a graph G is a subgraph obtained by deleting
some edges of G with the same vertex set.

Example 1. A cycle Cn is a spanning subgraph of a complete graph Kn.

The following are the definitions of the binary operations in graphs used in this study:
join, corona and cartesian product.

Definition 2. [14] The join G+H of the two graphs G and H is the graph with vertex
set

V (G+H) = V (G) + V (H)

and the edge set

E(G+H) = E(G) ∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)} .

Definition 3. [12] The corona G ◦H of two graphs G and H is the graph obtained by
taking one copy of G of order n and n copies of H, and then joining the ith vertex of G
to every vertex in the ith copy of H.

In [2], a subset S of V (G) is a dominating set of G if for every v ∈ V (G)\S, there
exists u ∈ S such that uv ∈ E(G). That is, N [S] = V (G). The minimum cardinality of
the dominating set S of G is called a domination number of G and is denoted by γ(G).
In this case, S is called γ-set of G.

In [16], a dominating set S of G is said to be a perfect dominating set of G if every
vertex v ∈ V (G) \ S is dominated by exactly one vertex u ∈ S. The minimum cardinality
of a perfect dominating set S of G is called a perfect domination number of G and is
denoted by γp(G). In this case, we say S a γp-set of G.

In [8] and [9], a dominating set S of G is said to be an equitable dominating set of G if
for every v ∈ V (G)\S, there exists u ∈ S with uv ∈ E(G) such that |deg(u)− deg(v)| ≤ 1.
The minimum cardinality of an equitable dominating set S of G is called an equitable dom-
ination number of G and is denoted by γe(G). In this case, we say S a γe-set of G.

Caay and Arugay in [4] introduced the notion of perfect equitable domination. A
dominating set S of G is said to be a perfect equitable dominating set of G if for it is both
perfect and equitable dominating set. The minimum cardinality of a perfect equitable
dominating set S of G is called a perfect equitable domination number of G and is denoted
by γpe(G). In this case, we say S a γpe-set of G.

Finally, in [13], a dominating set S ⊆ V (G) is said to be an isolate dominating set of
G if there exists u ∈ S such that uv /∈ E(G) for all v ∈ S. The minimum cardinality of
an equitable dominating set S of G is called an isolate domination number of G and is
denoted by γ0(G). In this case, we say S a γ0-set of G.
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Theorem 2. [13] A dominating set S of G is a minimal dominating set if and only if for
every u ∈ S, u is an isolate of ⟨S⟩. In particular, S = {u} is a γ-set of G if and only if
S is a γ0-set of G.

Theorem 3. [16] If ∆(G) = n− 1 for any graph G of order n, then γp(G) = 1. In other
words, S = {u} is a γ-set of G if and only if S is a γp-set of G.

Theorem 4. [4] Given a path Pn and cycle Cn, n ≥ 3, γpe(Pn) = γpe(Cn) =
⌈n
3

⌉
. More-

over, in path Pn and cycle Cn, consecutive vertices of γpe-sets are either adjacent or at a
distance 3 apart

It is natural to ask if what is the relationship of the perfect equitable domination and
the isolate domination in graphs in terms of cardinality. The result is negative in general.
There is no general way to determine which one is larger. However, the following results
will tell about the idea between the perfect equitable versus the perfect equitable isolate
and the isolate versus perfect equitable isolate. Following the above definitions, we have
the following results which are very obvious.

Theorem 5. If γpe(G) = k for some positive integer k and S is a γpe-set of G such that
⟨S⟩ has an isolated vertex, then γpe0(G) = k.

Theorem 6. If γ0(G) = k for some positive integer k and S is a γ0-set of G such that
every vertex v ∈ V (G) \S is dominated by exactly one vertex in S, and u ∈ S, there exists
v ∈ V (G) \ S with uv ∈ E(G) such that |deg(u)− deg(v)| ≤ 1, then γpe0(G) = k.

Theorems 5 and 6 give rise to the definition of the our working definition. They
simply tell that a dominating set that is a perfect equitable dominating set and an isolate
dominating set, then it is a perfect equitable isolate dominating set.

Definition 4. A dominating set S ⊆ V (G) is said to be a perfect equitable isolate
dominating set (PEID) of G if it is both perfect equitable isolate dominating set. The
minimum cardinality of a perfect equitable isolate dominating set S of G is called a perfect
equitable isolate domination number of G and is denoted by γpe0(G). In this case, we say
S a γpe0-set of G. Also, if u ∈ S such that uv ∈ E(G) for some v ∈ V (G) \ S, then either
u is said to PEIDly-dominate v, or v is PEIDly-dominated by u.

Example 2. Consider the graph in Figure 1. Note that the set {u1, u5} and {u1, u8} are
γ-sets. For {u4, u5}, note that NG(u4) = {u1, u2, u3, u5} and NG(u5) = {u4, u6, u7, u8}.
Thus, NG(u4) ∩NG(u5) = ∅. Thus, {u4, u5} is a γp-set. Also, observe that

|deg(u4)− deg(u1)| ≤ 1

|deg(u4)− deg(u2)| ≤ 1

|deg(u4)− deg(u3)| ≤ 1

|deg(u5)− deg(u6)| ≤ 1
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|deg(u5)− deg(u7)| ≤ 1

|deg(u5)− deg(u8)| ≤ 1.

Thus, {u4, u5} is γe-set implying that it is a γpe-set. However, u4u5 ∈ E(G). This means
that {u4, u5} is not a γ0, and so it is not a γpe0-set.

Now for the γ-set {u1, u8}, NG(u1) = {u2, u3, u4} and NG(u8) = {u5, u6, u7}. Thus,
NG(u1) ∩NG(U8) = ∅. This means that {u1, u8} is a γp-set. Also, observe that

|deg(u1)− deg(u2)| ≤ 1

|deg(u1)− deg(u3)| ≤ 1

|deg(u1)− deg(u4)| ≤ 1

|deg(u8)− deg(u5)| ≤ 1

|deg(u8)− deg(u6)| ≤ 1

|deg(u8)− deg(u7)| ≤ 1.

Thus, {u1, u8} is γe-set implying that it is a γpe-set. Also, u1u8 /∈ E(G) and so {u1, u8}
is γ0-set. Therefore, {u1, u8} is a γpe0-set. Consequently, γpe0(G) = 2.

Figure 1: Example of γpe0-set in a graph G.

The following propositions follow directly from Definition 4.

Proposition 1. Let S be a γ0-set of G. Then S is a γpe0-set if and only if for every
v ∈ V (G) \ S, NG(v) ∩ S = {u} for some u ∈ S and for every v ∈ V (G) \ S, there exists
u ∈ S with uv ∈ E(G) such that |deg(u)− deg(v)| ≤ 1

Proposition 2. If S is γ-set, or a γpe-set, or a γ0-set of G with |S| = 1, then S is γpe0-set
of G. In particular, γ(G) = γpe(G) = γ0(G) = 1 if and only if γpe0(G) = 1.

3. PEID in Some Graphs

In this section, we present the results for Equitable Isolate dominations in graphs. The
minimality of a perfect equitable isolate dominating set S follows from the paper of [8],
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[4] and [16], with the additional property that it acquires at least one vertex in S that is
not adjacent to the other vertices in S [13].

Proposition 3. Given a path Pn and cycle Cn, n ≥ 6, γpe0(Pn) = γpe0(Cn) =
⌈n
3

⌉
.

Proof. The proof follows from Theorem 4.

Corollary 1. There does not exist γpe0-set of C4 and C5.

Theorem 7. Let G be any connected graph of order n ≥ 2. If γpe0(G) = 1, then ∆(G) =
n− 1. Conversely, if ∆(G) = n− 1 and δ(G) ≥ n− 2, then γpe0(G) = 1.

Proof. Suppose that γpe0(G) = 1. Let S = {u} be the γpe0 − set of G. If G is trivial,
then we are done. Assume G is nontrivial. Then every vertex v ∈ V (G) \ S is adjacent
to u ∈ S. Hence, deg(u) = n − 1. This means that ∆(G) = n − 1. Conversely, suppose
∆(G) = n − 1 and δ(G) ≥ n − 2. Then the vertices of G are either of degree n − 1 or
n − 2. Without loss of generality, take a vertex of degree n − 1, say u ∈ V (G). Then u
dominates all other vertices of G. Since other vertices of G are either of degree n − 1 or
n− 2, it follows that for every v ∈ V (G){u}, | deg(v)− deg(u)| ≤ 1. Take S = {u} and so
it follows that {u} is γpe0-set of G. This proves the claim.

Corollary 2. Given a complete graph Kn, n ≥ 3, γpe0(Kn) = 1.

Proposition 4. Let Gn,m is a complete bipartite graph. If |n−m| ≤ 1. Then there exists
a γpe-set of G but there does not exist γpe0-set of G, or there does exists γe0-set of G, but
there does not exist γpe0-set of G. Moreover, γpe(Gn,m) = 2 or γpe0(Gn,m) = min{n,m}.

Proof. Let P1 and P2 be the vertex partitions of a complete bipartite graph G such
that |P1| = n and |P2| = m. Let u1 ∈ P1, i = 1, · · · , n and vj ∈ P2, j = 1, · · · ,m. Note
that ui dominates vj for all ui ∈ P1 and for all vj ∈ P2 with i = 1, · · · , n and j = 1, · · · ,m.
Since |n−m| ≤ 1, |deg(u1)− deg(vj)| ≤ 1, for all ui ∈ P1 and vj ∈ P2.

Note that uiuj /∈ E(G) for all i ̸= j and ui and uj are in P1. Thus, P1 is a γe0-set of
G. However, every vj ∈ P2, j = 1, · · · ,m is dominated by all vertices of P1, it follows that
P1 is not γp-set and so it is not a γpe0-set of G. Moreover, γe0(G) = min{n,m}.

Now suppose we pick one ui ∈ P1 and one vj ∈ P2. Then every vertices in P2 is
dominated by ui for some i and every vertices in P1 is dominated by vj for some j. Thus,
{ui, vj} is a γpe-set for some i and j. However, uivj ∈ E(G) and so {ui, vj} is not a γ0-set.
Hence, {ui, vj} is not a γpe0-set. Moreover, γpe(G) = 2.

This proves the claim.

Theorem 8. Let G = GP1,··· ,Pk
be a k-partite graph. Then G has a γpe0-set if there exists

a vertex partition Pj with |Pj | = 1 and |Pk| ≤ 2, for all i ̸= j. Moreover, γpe0(G) = 1.
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Proof. Without loss of generality, let P1 be such partition with |P1| = 1. Then for
partitions Pi with i ̸= 1, either |Pi| = 1 or |Pi| = 2. Let u ∈ P1. Then deg(u) ≤ 2k. Also,
deg(v) ≤ 2k+1 for all v ̸= u. Thus, |deg(v)− deg(u)| ≤ 1. This means that {u} is a γ-set.
Since u dominates all vertices of G, {u} is also a γp-set and so it is a γpe-set. By Theorem
2, {u} is a γ0-set of G. Therefore, {u} is a γpe0-set of G. Consequently, γpe0(G) = 1.

Theorem 9. There does not exist γpe0-set of GP1,···Pk
for any non-trivial partition Pi,

i = 1, · · · , k.

Proof. Suppose on the contrary that there exists a γpe0-set S of G = GP1,··· ,Pk
, and let

u ∈ S such that u ∈ Pk for some kth vertex-partition of G. Then u dominates vi for all
vi /∈ Pk. Since Pk is non-trivial, there exists uj ∈ Pk with uj ̸= u such that u does not
dominate uj . Thus, either uj ∈ S or uj /∈ S.

If uj ∈ S, then uj must dominate vj for all vj /∈ Pk. This is a contradiction to being
γpe0-set since vj is dominated by u, for all vj /∈ Pk. If uj /∈ S, then there must be vs /∈ Pk

such that ujvs ∈ E(G). But vs is adjacent to some vt /∈ Pk which are also dominated by
u. This is also a contradiction to being γpe0-set.

Therefore, there does not exist γpe0-set of GP1,···Pk
for any non-trivial partition Pi,

i = 1, · · · , k.

4. PEID in the Join of Graphs

The following proposition is an obvious result.

Proposition 5. There does not exist a γpe0-set of the following graphs below:

i. Wheel graph, Wn = K1 + Cn−1, n ≥ 6

ii. Star graph, Sn = K1 +Kn−1, n ≥ 4

iii. Fan graph, Fn = K1 + Pn−1, n ≥ 5

iv. Friendship graph, Frn = K1 + nP2, n ≥ 2

v. Windmill graph Wn
m = K1 + Cn−1, n ≥ 2,m ≥ 3

Theorem 10. Let G and H be any graphs of order n and m, respectively, with γpe(G) = 1
or γpe(H) = 1. Then γpe0(G + H) = 1 if and only if either S1 = {u} is a γpe0-set of G
and deg(v) ≥ m− 2 for all v ∈ V (H), or S2 = {x} is a γpe0-set of H and deg(y) ≥ n− 2
for all y ∈ V (G).

Proof. Let γpe0(G + H) = 1. By Theorem 7, ∆(G+H) = (n+m)− 1. Suppose
S = {u} ⊆ V (G) be a γpe0-set of G +H. This means that for every v ∈ V (G +H) with
v ̸= u, we have

1 ≥ |deg(u)− deg(v)|
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≥ |(n+m)− 1− deg(v)|
≥ |n+m− 1| − | deg(v)|.

Thus, deg(v) ≥ (m+ n)− 1− 1 = (m+ n)− 2. This means that deg(v) ≥ m−2 on H for
all v ∈ V (H). Similarly, if S = {x} ⊆ V (H) is a γpe0-set of G +H, then deg(y) ≥ n − 2
on G for all y ∈ V (G).

Conversely, suppose S1 = {u} is a γpe0-set of G and deg(v) ≥ m− 2 for all v ∈ V (H).
Since S1 = {u} is a γpe0-set of G, by Theorem 7, ∆(G) = n − 1. This means that
deg(u) = n − 1 + m in G + H. Also, deg(v) ≥ m − 2 for every v ∈ V (H) implies that
deg(v) ≥ m− 2 + n in G+H. Thus,

|deg(u)− deg(v)| ≤ |(n− 1 +m)− (m− 2− n)| = 1.

Hence, S = {u} is a γpe0-set of G + H implying γpe0(G + H) = 1. The same argument
with the other case.

The next corollary is a very obvious result as a consequence of Theorem 10.

Corollary 3. Let G and H be any graphs of degree n and m, respectively. If ∆(G) = n−1
and δ(G) ≥ n− 2, and deg(u) ≥ m− 2 for all u ∈ V (H). Then γpe0(G+H) = 1.

Theorem 11. Let S1 and S2 be the minimal nontrivial γpe0-sets of G and H, respectively.
That is, |S1| ≠ 1 and |S2| ̸= 1. Then S1 ∪ S2 is a not a γpe0-set of G+H but a γe-set of
G+H.

Proof. Let S1 and S2 be the minimal nontrivial γpe0-sets of G and H, respectively.
Then for every u ∈ V (G) \ S1, there exists exactly v ∈ S1 such that uv ∈ E(G) and
|deg(u)− deg(v)| ≤ 1, and there exists vi ∈ S1 such that viv /∈ E(G) for some v ∈ S1.
Similarly, for every x ∈ V (H) \ S2, there exists exactly y ∈ S2 such that xy ∈ E(G)
and |deg(x)− deg(y)| ≤ 1, and there exists yj ∈ S2 such that yjy /∈ E(G) for some
y ∈ S1. Then S1 ∪ S2 := {vi, yj , vi ∈ S1, yj ∈ S2, for some i, j} ⊆ V (G + H). Thus,
for all w ∈ V (G+H) \ (S1 ∪ S2), there exists z ∈ S1 ∪ S2 such that wz ∈ E(G+H) and
|deg(w)− deg(z)| ≤ 1. Hence, S1 ∪ S2 is a γe-set of G+H.

Now if vi ∈ S1 is an isolated vertex of S1, then viuj ∈ E(G +H) for all uj ∈ S2, and
vkuj ∈ E(G +H), for all vk ∈ S1 with vi ̸= vk. This means that vi is no longer isolated.
Since vi is arbitrary, this holds for all isolated dominating vertices. Hence, S1 ∪ S2 is not
γe0-set of G+H. Moreover, for every u ∈ V (G) \ S1, there exists exactly one v ∈ S1 such
that uv1 ∈ E(G) However, u is adjacent to vertices of H. This means that u is adjacent
to some wj ∈ S2. Hence, S1 ∪ S2 is not γp0-set of G+H.

This proves the claim.

Remark 1. S1 ∪ S2 is a γe-set of G+H of Theorem 11 is not necessarily minimal.
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5. PEID in the Corona of Graphs

Theorem 12. There does not exist a γpe0-set of G ◦H for any non-trivial graphs G and
H.

Proof. Suppose on the contrary that there exists a γpe0-set S of G ◦H. Then either
S ⊆ V (G) or S ⊆ V (H) or S ⊆ V (G + H). Suppose S ⊆ V (G) and let u ∈ S. Then
u ∈ V (G). This means that the degree of u in G + H is equal to the degree of u in G
plus the cardinality of H. Since G is nontrivial, deg(u) ≥ 1 in G. Thus, deg(u) ≥ 1 +m
in G +H. But every vertex v ∈ V (H) has at most m − 1 degree. Hence, it follows that
|deg(u)− deg(v)| ≥ 1, a contradiction. Similarly, assume S ⊆ V (H) and let w ∈ S. Then
w ∈ V (H). This means that the degree of w in G +H is equal to the degree of w in H
plus the cardinality of G. Since H is nontrivial, deg(w) ≥ 1 in H. Thus, deg(w) ≥ 1 + n
in G + H. But every vertex z ∈ V (G) has at most n − 1 degree. Hence, it follows that
|deg(w)− deg(z)| ≥ 1, a contradiction. Lastly, suppose S ⊆ V (G+H). Then there exist
u1, u2 ∈ S such that u1 ∈ V (G) and u2 ∈ V (H). Since every vertices in H are adjacent to
u1, this means that there are vertices in H adjacent to both u1 and u2, a contradiction.
Hence, all of the cases lead to contradiction. Therefore, there does not exist a γpe0-set of
G ◦H for any non-trivial graphs G and H.

Theorem 13. Let G and H be any graphs having γpe0-sets. Then G ◦ H does not have
γpe0-set, but G+H has a γe-set.

Proof. Suppose u ∈ S1 ⊆ V (G). Then uvi ∈ E(G ◦H) for all vi ∈ V (H) \ S2, where
S2 is a γpe0-set of H. But vivj ∈ E(G ◦ H) for some vj ∈ S2, i ̸= j. This means that
S1 ∪ S2 is no longer γp-set. Moreover, by Theorem 12, S1 and S2 are no longer γpe0-sets.
Consequently, S1, S2 and S1 ∪ S2 are no longer γ0-sets since the elements are adjacents.
Lastly, since every vertices in V (G ◦H) \ (S1 ∪ S2), it follows that S1 ∪ S2 is γe-set. This
proves the claim.

Remark 2. The γe-set of G ◦H of Theorem 13 is not necessarily minimal.

Proposition 6. Let G be a trivial graph. Then γpe0(G ◦Kn) = γpe0(Kn ◦G) = 1.
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