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Abstract. Our main purpose is to introduce the concept of almost strongly θ(Λ, p)-continuous
functions. Moreover, some characterizations of almost strongly θ(Λ, p)-continuous functions are
considered.
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1. Introduction

The notion of θ-continuous functions was introduced by Fomin [10]. Noiri [20] studied
some properties of θ-continuous functions. Arya and Bhamini [1] introduced the notion
of θ-semi-continuous functions. Noiri [22] investigated several characterizations of θ-semi-
continuous functions. Moreover, Jafari and Noiri [15] obtained some properties of θ-semi-
continuous functions. Di Maio and Noiri [18] introduced the concept of quasi-irresolute
functions. It is shown in [8] that a function is quasi-irresolute if and only if it is θ-irresolute.
Noiri [24] introduced and investigated the notion of θ-preirresolute functions. The notion
of weakly β-irresolute functions has been defined and studied in [25]. These four classes of
functions have properties similar to the class of θ-continuous functions. In 1980, Noiri [21]
introduced the notion of strongly θ-continuous functions. Long et al. [17] studied some
properties of strongly θ-continuous functions. In 1998, Jafari and Noiri [12] introduced and
studied the concept of strongly θ-semi-continuous functions. Moreover, Jafari and Noiri
[14] studied the notion of strongly sober θ-continuous functions. Noiri [23] introduced the
concept of θ-precontinuous functions. In 2002, Noiri and Popa [27] introduced and investi-
gated the notion of strongly θ-β-continuous functions. In 2005, Noiri and Popa [29] defined
a new notion of strongly θ-M -continuous functions as functions from a set satisfying some
minimal conditions into a set satisfying some minimal conditions. Noiri and Kang [26]
introduced and studied the notion of almost strongly θ-continuous functions. Jafari and
Noiri [16] investigated some properties of almost strongly θ-continuous functions. Beceren
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et al. [2] introduced and studied the concept of almost strongly θ-semi-continuous func-
tions. Furthermore, Jafari and Noiri [13] investigated several characterizations of almost
strongly θ-semi-continuous functions. Dube and Chauhan [9] introduced the notion of
strongly closure semi-continuous functions which are equivalent to almost strongly θ-semi-
continuous functions. These classes of functions have properties similar to the class of
θ-continuous functions. Noiri and Popa [28] introduced and studied the notion of almost
strongly θ-m-continuous functions as functions from a set satisfying some minimal condi-
tions into a topological space. In [7], the present authors introduced and investigated the
concept of almost (Λ, s)-continuous functions. The notions of (Λ, sp)-open sets, s(Λ, sp)-
open sets, p(Λ, sp)-open sets, α(Λ, sp)-open sets, β(Λ, sp)-open sets and b(Λ, sp)-open sets
were studied in [4]. Viriyapong and Boonpok [31] investigated some characterizations of
(Λ, sp)-continuous functions. Furthermore, several characterizations of pairwise almost
M -continuous functions were established in [3]. In this paper, we introduce the concept
of almost strongly θ(Λ, p)-continuous functions. In particular, several characterizations of
almost strongly θ(Λ, p)-continuous functions are discussed.

2. Preliminaries

Throughout the present paper, spaces (X, τ) and (Y, σ) (or simply X and Y ) always
mean topological spaces on which no separation axioms are assumed unless explicitly
stated. For a subset A of a topological space (X, τ), Cl(A) and Int(A), represent the
closure and the interior of A, respectively. A subset A of a topological space (X, τ) is said
to be preopen [19] if A ⊆ Int(Cl(A)). The complement of a preopen set is called preclosed.
The family of all preopen sets of a topological space (X, τ) is denoted by PO(X, τ). A
subset Λp(A) [11] is defined as follows: Λp(A) = ∩{U | A ⊆ U,U ∈ PO(X, τ)}. A subset A
of a topological space (X, τ) is called a Λp-set [6] (pre-Λ-set [11]) if A = Λp(A). A subset
A of a topological space (X, τ) is called (Λ, p)-closed [6] if A = T ∩C, where T is a Λp-set
and C is a preclosed set. The complement of a (Λ, p)-closed set is called (Λ, p)-open. The
family of all (Λ, p)-open (resp. (Λ, p)-closed) sets in a topological space (X, τ) is denoted
by ΛpO(X, τ) (resp. ΛpC(X, τ)). Let A be a subset of a topological space (X, τ). A point
x ∈ X is called a (Λ, p)-cluster point [6] of A if A∩U ̸= ∅ for every (Λ, p)-open set U of X
containing x. The set of all (Λ, p)-cluster points of A is called the (Λ, p)-closure [6] of A
and is denoted by A(Λ,p). The union of all (Λ, p)-open sets of X contained in A is called
the (Λ, p)-interior [6] of A and is denoted by A(Λ,p). The θ(Λ, p)-closure [6] of A, Aθ(Λ,p),
is defined as follows:

Aθ(Λ,p) = {x ∈ X | A ∩ U (Λ,p) ̸= ∅ for each (Λ, p)-open set U containing x}.

A subset A of a topological space (X, τ) is called θ(Λ, p)-closed [6] if A = Aθ(Λ,p). The
complement of a θ(Λ, p)-closed set is said to be θ(Λ, p)-open. Let A be a subset of a
topological space (X, τ). A point x ∈ X is called a θ(Λ, p)-interior point [30] of A if
x ∈ U ⊆ U (Λ,p) ⊆ A for some U ∈ ΛpO(X, τ). The set of all θ(Λ, p)-interior points of A is
called the θ(Λ, p)-interior [30] of A and is denoted by Aθ(Λ,p).
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Lemma 1. [30] For subsets A and B of a topological space (X, τ), the following properties
hold:

(1) X −Aθ(Λ,p) = [X −A]θ(Λ,p) and X −Aθ(Λ,p) = [X −A]θ(Λ,p).

(2) A is θ(Λ, p)-open if and only if A = Aθ(Λ,p).

(3) A ⊆ A(Λ,p) ⊆ Aθ(Λ,p) and Aθ(Λ,p) ⊆ A(Λ,p) ⊆ A.

(4) If A ⊆ B, then Aθ(Λ,p) ⊆ Bθ(Λ,p) and Aθ(Λ,p) ⊆ Bθ(Λ,p).

(5) If A is (Λ, p)-open, then A(Λ,p) = Aθ(Λ,p).

A subset A of a topological space (X, τ) is said to be s(Λ, p)-open [6] (resp. p(Λ, p)-
open [6], β(Λ, p)-open [6], α(Λ, p)-open [32], r(Λ, p)-open [6]) if A ⊆ [A(Λ,p)]

(Λ,p) (resp.

A ⊆ [A(Λ,p)](Λ,p), A ⊆ [[A(Λ,p)](Λ,p)]
(Λ,p), A ⊆ [[A(Λ,p)]

(Λ,p)](Λ,p), A = [A(Λ,p)](Λ,p)). The
family of all s(Λ, p)-open (resp. p(Λ, p)-open, β(Λ, p)-open, α(Λ, p)-open, r(Λ, p)-open)
sets in a topological space (X, τ) is denoted by s(Λ, p)O(X, τ) (resp. p(Λ, p)O(X, τ),
β(Λ, p)O(X, τ), α(Λ, p)O(X, τ), r(Λ, p)O(X, τ)). The union of all s(Λ, p)-open (resp.
p(Λ, p)-open, α(Λ, p)-open) sets of X contained in A is called the s(Λ, p)-interior (resp.
p(Λ, p)-interior, α(Λ, p)-interior) of A and is denoted by As(Λ,p) (resp. Ap(Λ,p), Aα(Λ,p)).
The complement of a s(Λ, p)-open (resp. p(Λ, p)-open, β(Λ, p)-open, α(Λ, p)-open, r(Λ, p)-
open) set is called s(Λ, p)-closed (resp. p(Λ, p)-closed, β(Λ, p)-closed, α(Λ, p)-closed, r(Λ, p)-
closed). The family of all s(Λ, p)-closed (resp. p(Λ, p)-closed, β(Λ, p)-closed, α(Λ, p)-
closed, r(Λ, p)-closed) sets in a topological space (X, τ) is denoted by s(Λ, p)C(X, τ)
(resp. p(Λ, p)C(X, τ), β(Λ, p)C(X, τ), α(Λ, p)C(X, τ), r(Λ, p)C(X, τ)). The intersection
of all s(Λ, p)-closed (resp. p(Λ, p)-closed, α(Λ, p)-closed) sets of X containing A is called
the s(Λ, p)-closure (resp. p(Λ, p)-closure, α(Λ, p)-closure) of A and is denoted by As(Λ,p)

(resp. Ap(Λ,p), Aα(Λ,p)). Let A be a subset of a topological space (X, τ). A point x of X is
called a δ(Λ, p)-cluster point [5] of A if A ∩ [V (Λ,p)](Λ,p) ̸= ∅ for every (Λ, p)-open set V of
X containing x. The set of all δ(Λ, p)-cluster points of A is called the δ(Λ, p)-closure [5]
of A and is denoted by Aδ(Λ,p). If A = Aδ(Λ,p), then A is said to be δ(Λ, p)-closed [5]. The
complement of a δ(Λ, p)-closed set is said to be δ(Λ, p)-open. The union of all δ(Λ, p)-open
sets of X contained in A is called the δ(Λ, p)-interior [5] of A and is denoted by Aδ(Λ,p).

3. On almost strongly θ(Λ, p)-continuous functions

We begin this section by introducing the concept of almost strongly θ(Λ, p)-continuous
functions.

Definition 1. A function f : (X, τ) → (Y, σ) is said to be almost strongly θ(Λ, p)-
continuous functions at x ∈ X if for each (Λ, p)-open set V of Y containing f(x), there
exists a (Λ, p)-open set U of X containing x such that f(U (Λ,p)) ⊆ V s(Λ,p). A function
f : (X, τ) → (Y, σ) is said to be almost strongly θ(Λ, p)-continuous if f has the property
at each point x ∈ X.
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Theorem 1. For a function f : (X, τ) → (Y, σ), the following properties are equivalent:

(1) f is almost strongly θ(Λ, p)-continuous;

(2) f−1(V ) is θ(Λ, p)-open in X for every r(Λ, p)-open set V of Y ;

(3) f−1(K) is θ(Λ, p)-closed in X for every r(Λ, p)-closed set K of Y ;

(4) for each x ∈ X and each r(Λ, p)-open set V of Y containing f(x),
there exists a (Λ, p)-open set U of X containing x such that f(U (Λ,p)) ⊆ V ;

(5) f−1(V ) is θ(Λ, p)-open in X for every δ(Λ, p)-open set V of Y ;

(6) f−1(K) is θ(Λ, p)-closed in X for every δ(Λ, p)-closed set K of Y ;

(7) f(Aθ(Λ,p)) ⊆ [f(A)]δ(Λ,p) for every subset A of X;

(8) [f−1(B)]θ(Λ,p) ⊆ f−1(Bδ(Λ,p)) for every subset B of Y ;

(9) f−1(Bδ(Λ,p)) ⊆ [f−1(B)]θ(Λ,p) for every subset B of Y ;

(10) f−1(V ) ⊆ [f−1(V s(Λ,p))]θ(Λ,p) for every (Λ, p)-open set V of Y .

Proof. (1) ⇒ (2): Let V be any r(Λ, p)-open set of Y and x ∈ f−1(V ). Since f
is almost strongly θ(Λ, p)-continuous, there exists a (Λ, p)-open set U of X containing x
such that f(U (Λ,p)) ⊆ V s(Λ,p) = V . Thus, x ∈ U ⊆ U (Λ,p) ⊆ f−1(V ) which implies that
x ∈ [f−1(V )]θ(Λ,p). This shows that f−1(V ) ⊆ [f−1(V )]θ(Λ,p). By Lemma 1, f−1(V ) =
[f−1(V )]θ(Λ,p) and hence f−1(V ) is θ(Λ, p)-open.

(2) ⇒ (3): Let K be any r(Λ, p)-closed set of Y . By (2), we have

f−1(K) = X − f−1(Y −K)

= X − [f−1(Y −K)]θ(Λ,p)

= X − [X − f−1(K)]θ(Λ,p)

= [f−1(K)]θ(Λ,p).

Thus, f−1(K) is θ(Λ, p)-closed in X.
(3) ⇒ (4): Let x ∈ X and V be any r(Λ, p)-open set of Y containing f(x). By (3),

X − f−1(V ) = f−1(Y − V ) = [f−1(Y − V )]θ(Λ,p) = X − [f−1(V )]θ(Λ,p). This implies that
f−1(V ) = [f−1(V )]θ(Λ,p). Then, there exists a (Λ, p)-open set U of X containing x such

that U (Λ,p) ⊆ f−1(V ); hence f(U (Λ,p)) ⊆ V .
(4) ⇒ (5): Let V be any δ(Λ, p)-open set of Y and x ∈ f−1(V ). There exists a

r(Λ, p)-open set G of Y such that f(x) ∈ G ⊆ V . By (4), there exists a (Λ, p)-open
set U of X containing x such that f(U (Λ,p)) ⊆ G. Thus, x ∈ U ⊆ U (Λ,p) ⊆ f−1(V )
which implies that x ∈ [f−1(V )]θ(Λ,p). Therefore, f−1(V ) ⊆ [f−1(V )]θ(Λ,p) and hence
f−1(V ) = [f−1(V )]θ(Λ,p), by Lemma 1, f−1(V ) is θ(Λ, p)-open.



C. Boonpok, J. Khampakdee / Eur. J. Pure Appl. Math, 17 (1) (2024), 300-309 304

(5) ⇒ (6): Let K be any δ(Λ, p)-closed set of Y . By (5), we have

f−1(K) = X − f−1(Y −K)

= X − [f−1(Y −K)]θ(Λ,p)

= [f−1(K)]θ(Λ,p).

Thus, f−1(K) = [f−1(K)]θ(Λ,p) and hence f−1(K) is θ(Λ, p)-closed.
(6) ⇒ (7): Let A be any subset of X. Since [f(A)]δ(Λ,p) is δ(Λ, p)-closed in Y , by

(6) we have f−1([f(A)]δ(Λ,p)) = [f−1([f(A)]δ(Λ,p))]θ(Λ,p). Let x ̸∈ f−1([f(A)]δ(Λ,p)). Then,
there exists a (Λ, p)-open set U of X containing x such that U (Λ,p)∩f−1([f(A)]δ(Λ,p)) = ∅.
This implies that U (Λ,p) ∩A = ∅. Thus, x ̸∈ Aθ(Λ,p) and hence f(Aθ(Λ,p)) ⊆ [f(A)]δ(Λ,p).

(7) ⇒ (8): Let B be any subset of Y . Then, by (7) we have f([f−1(B)]θ(Λ,p)) ⊆ Bδ(Λ,p)

and hence [f−1(B)]θ(Λ,p) ⊆ f−1(Bδ(Λ,p)).
(8) ⇒ (9): Let B be any subset of Y . Let x ∈ f−1(Bδ(Λ,p)). Then, f(x) ∈ Bδ(Λ,p)

and f(x) ̸∈ Y − Bδ(Λ,p) = [Y − B]δ(Λ,p). Therefore, x ̸∈ f−1([Y − B]δ(Λ,p)). By (8),

x ̸∈ [f−1(Y −B)]θ(Λ,p). There exists a (Λ, p)-open set U of X containing x such that

x ∈ U ⊆ U (Λ,p) ⊆ f−1(B).

Thus, x ∈ [f−1(B)]θ(Λ,p) and hence f−1(Bδ(Λ,p)) ⊆ [f−1(B)]θ(Λ,p).
(9) ⇒ (10): Let V be any (Λ, p)-open set of Y . Then, we have

V ⊆ [V (Λ,p)](Λ,p) ⊆ [V s(Λ,p)]δ(Λ,p)

and by (9), f−1(V ) ⊆ f−1([V s(Λ,p)]δ(Λ,p)) ⊆ [f−1(V s(Λ,p))]θ(Λ,p).
(10) ⇒ (1): Let x ∈ X and V be any (Λ, p)-open set of Y containing f(x). Then,

x ∈ f−1(V ) ⊆ [f−1(V s(Λ,p))]θ(Λ,p). Then, there exists a (Λ, p)-open set U of X containing

x such that x ∈ U ⊆ U (Λ,p) ⊆ f−1(V s(Λ,p)) which implies that f(U (Λ,p)) ⊆ V s(Λ,p). Thus,
f is almost strongly θ(Λ, p)-continuous.

Theorem 2. For a function f : (X, τ) → (Y, σ), the following properties are equivalent:

(1) f is almost strongly θ(Λ, p)-continuous;

(2) [f−1([K(Λ,p)]
(Λ,p))]θ(Λ,p) ⊆ f−1(K) for every (Λ, p)-closed set K of Y ;

(3) [f−1([[B(Λ,p)](Λ,p)]
(Λ,p))]θ(Λ,p) ⊆ f−1(B(Λ,p)) for every subset B of Y ;

(4) f−1(B(Λ,p)) ⊆ [f−1([[B(Λ,p)]
(Λ,p)](Λ,p))]θ(Λ,p) for every subset B of Y .

Proof. (1) ⇒ (2): Let K be any (Λ, p)-closed set of Y . Then, Y −K is (Λ, p)-open in
Y . Thus, by Theorem 1 and Lemma 1, we have

X − f−1(K) = f−1(Y −K)

⊆ [f−1([[Y −K](Λ,p)](Λ,p))]θ(Λ,p)
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= [X − f−1([K(Λ,p)]
(Λ,p))]θ(Λ,p)

= X − [f−1([K(Λ,p)]
(Λ,p))]θ(Λ,p)

and hence [f−1([K(Λ,p)]
(Λ,p))]θ(Λ,p) ⊆ f−1(K).

(2) ⇒ (3): Let B be any subset of Y . Then, B(Λ,p) is (Λ, p)-closed in Y and by (2),
[f−1([[B(Λ,p)](Λ,p)]

(Λ,p))]θ(Λ,p) ⊆ f−1(B(Λ,p)).
(3) ⇒ (4): Let B be any subset of Y . Then, we have

f−1(B(Λ,p)) = X − f−1([Y −B](Λ,p))

⊆ X − [f−1([[[Y −B](Λ,p)](Λ,p)]
(Λ,p))]θ(Λ,p)

= [f−1([[B(Λ,p)]
(Λ,p)](Λ,p))]θ(Λ,p)

and hence f−1(B(Λ,p)) ⊆ [f−1([[B(Λ,p)]
(Λ,p)](Λ,p))]θ(Λ,p).

(4) ⇒ (1): Let V be any r(Λ, p)-open set of Y . By (4), f−1(V ) ⊆ [f−1(V )]θ(Λ,p) and
hence f−1(V ) = [f−1(V )]θ(Λ,p). Thus, f−1(V ) is θ(Λ, p)-open and by Theorem 1, f is
almost strongly θ(Λ, p)-continuous.

Theorem 3. For a function f : (X, τ) → (Y, σ), the following properties are equivalent:

(1) f is almost strongly θ(Λ, p)-continuous;

(2) [f−1(V )]θ(Λ,p) ⊆ f−1(V (Λ,p)) for every β(Λ, p)-open set V of Y ;

(3) [f−1(V )]θ(Λ,p) ⊆ f−1(V (Λ,p)) for every s(Λ, p)-open set V of Y ;

(4) f−1(V ) ⊆ [f−1([V (Λ,p)](Λ,p))]θ(Λ,p) for every p(Λ, p)-open set V of Y .

Proof. (1) ⇒ (2): Let V be any β(Λ, p)-open set of Y . Then, V (Λ,p) is r(Λ, p)-closed.
Since f is almost strongly θ(Λ, p)-continuous, by Theorem 2 we have

[f−1(V )]θ(Λ,p) ⊆ [f−1([[V (Λ,p)](Λ,p)]
(Λ,p))]θ(Λ,p) ⊆ f−1(V (Λ,p))

and hence [f−1(V )]θ(Λ,p) ⊆ f−1(V (Λ,p)).
(2) ⇒ (3): This is obvious since s(Λ, p)O(X, τ) ⊆ β(Λ, p)O(X, τ).
(3) ⇒ (4): Let V be any p(Λ, p)-open set of Y . Then, Y − V is p(Λ, p)-closed in Y

and hence [[Y − V ](Λ,p)]
(Λ,p) ⊆ Y − V . Since [[Y − V ](Λ,p)]

(Λ,p) is r(Λ, p)-closed, we have

[[Y − V ](Λ,p)]
(Λ,p) is s(Λ, p)-open in Y . Then by (3),

[f−1([[Y − V ](Λ,p)]
(Λ,p))]θ(Λ,p) ⊆ f−1([[Y − V ](Λ,p)]

(Λ,p)) ⊆ f−1(Y − V ).

Thus,

f−1(V ) ⊆ X − [f−1([[Y − V ](Λ,p)]
(Λ,p))]θ(Λ,p)

= X − [X − f−1([V (Λ,p)](Λ,p))]
θ(Λ,p)
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= [f−1([V (Λ,p)](Λ,p))]θ(Λ,p).

(4) ⇒ (1): Let V be any r(Λ, p)-open set of Y . Then, V is p(Λ, p)-open and

f−1(V ) ⊆ [f−1([V (Λ,p)](Λ,p))]θ(Λ,p) = [f−1(V )]θ(Λ,p).

Thus, f−1(V ) = [f−1(V )]θ(Λ,p) and by Lemma 1, f−1(V ) is θ(Λ, p)-open in X. It follows
from Theorem 1 that f is almost strongly θ(Λ, p)-continuous.

Lemma 2. For a topological space (X, τ), the following properties hold:

(1) V α(Λ,p) = V (Λ,p) for every V ∈ β(Λ, p)O(X, τ);

(2) V p(Λ,p) = V (Λ,p) for every V ∈ s(Λ, p)O(X, τ);

(3) V s(Λ,p) = [V (Λ,p)](Λ,p) for every V ∈ p(Λ, p)O(X, τ).

Corollary 1. For a function f : (X, τ) → (Y, σ), the following properties are equivalent:

(1) f is almost strongly θ(Λ, p)-continuous;

(2) [f−1(V )]θ(Λ,p) ⊆ f−1(V α(Λ,p)) for every β(Λ, p)-open set V of Y ;

(3) [f−1(V )]θ(Λ,p) ⊆ f−1(V p(Λ,p)) for every s(Λ, p)-open set V of Y ;

(4) f−1(V ) ⊆ [f−1(V s(Λ,p))]θ(Λ,p) for every p(Λ, p)-open set V of Y .

Theorem 4. For a function f : (X, τ) → (Y, σ), the following properties are equivalent:

(1) f is almost strongly θ(Λ, p)-continuous;

(2) [f−1([[Bδ(Λ,p)](Λ,p)]
(Λ,p))]θ(Λ,p) ⊆ f−1(Bδ(Λ,p)) for every subset B of Y ;

(3) [f−1([[B(Λ,p)](Λ,p)]
(Λ,p))]θ(Λ,p) ⊆ f−1(Bδ(Λ,p)) for every subset B of Y ;

(4) [f−1([[V (Λ,p)](Λ,p)]
(Λ,p))]θ(Λ,p) ⊆ f−1(V (Λ,p)) for every (Λ, p)-open set V of Y ;

(5) [f−1([[V (Λ,p)](Λ,p)]
(Λ,p))]θ(Λ,p) ⊆ f−1(V (Λ,p)) for every p(Λ, p)-open set V of Y .

Proof. (1) ⇒ (2): Let B be any subset of Y . Then, Bδ(Λ,p) is (Λ, p)-closed in Y . By
Theorem 2, [f−1([[Bδ(Λ,p)](Λ,p)]

(Λ,p))]θ(Λ,p) ⊆ f−1(Bδ(Λ,p)).

(2) ⇒ (3): This is obvious since B(Λ,p) ⊆ Bδ(Λ,p) for every subset B of Y .
(3) ⇒ (4): This is obvious since V (Λ,p) = V δ(Λ,p) for every (Λ, p)-open set V of Y .
(4) ⇒ (5): Let V be any p(Λ, p)-open set of Y . Then, we have V ⊆ [V (Λ,p)](Λ,p) and

V (Λ,p) = [[V (Λ,p)](Λ,p)]
(Λ,p). Thus, by (4), [f−1([[V (Λ,p)](Λ,p)]

(Λ,p))]θ(Λ,p) ⊆ f−1(V (Λ,p)).
(5) ⇒ (1): Let K be any r(Λ, p)-closed set of Y . Then, we have K(Λ,p) is p(Λ, p)-open

in Y and by (5),

[f−1(K)]θ(Λ,p) = [f−1([K(Λ,p)]
(Λ,p))]θ(Λ,p)
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= [f−1([[[K(Λ,p)]
(Λ,p)](Λ,p)]

(Λ,p))]θ(Λ,p)

⊆ f−1([K(Λ,p)]
(Λ,p))

= f−1(K).

Thus, [f−1(K)]θ(Λ,p) = f−1(K) and by Lemma 1, f−1(K) is θ(Λ, p)-closed in X. By
Theorem 1, f is almost strongly θ(Λ, p)-continuous.
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