EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 17, No. 1, 2024, 300-309 ISSN 1307-5543 — ejpam.com Published by New York Business Global

Almost strong $\theta(\Lambda, p)$ -continuity for functions

Chawalit Boonpok¹, Jeeranunt Khampakdee^{1,*}

¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

Abstract. Our main purpose is to introduce the concept of almost strongly $\theta(\Lambda, p)$ -continuous functions. Moreover, some characterizations of almost strongly $\theta(\Lambda, p)$ -continuous functions are considered.

2020 Mathematics Subject Classifications: 54A05, 54C08

Key Words and Phrases: $\theta(\Lambda, p)$ -open set, almost strongly $\theta(\Lambda, p)$ -continuous function

1. Introduction

The notion of θ -continuous functions was introduced by Fomin [10]. Noiri [20] studied some properties of θ -continuous functions. Arya and Bhamini [1] introduced the notion of θ -semi-continuous functions. Noiri [22] investigated several characterizations of θ -semicontinuous functions. Moreover, Jafari and Noiri [15] obtained some properties of θ -semicontinuous functions. Di Maio and Noiri [18] introduced the concept of quasi-irresolute functions. It is shown in [8] that a function is quasi-irresolute if and only if it is θ -irresolute. Noiri [24] introduced and investigated the notion of θ -preirresolute functions. The notion of weakly β -irresolute functions has been defined and studied in [25]. These four classes of functions have properties similar to the class of θ -continuous functions. In 1980, Noiri [21] introduced the notion of strongly θ -continuous functions. Long et al. [17] studied some properties of strongly θ -continuous functions. In 1998, Jafari and Noiri [12] introduced and studied the concept of strongly θ -semi-continuous functions. Moreover, Jafari and Noiri [14] studied the notion of strongly sober θ -continuous functions. Noiri [23] introduced the concept of θ -precontinuous functions. In 2002, Noiri and Popa [27] introduced and investigated the notion of strongly θ - β -continuous functions. In 2005, Noiri and Popa [29] defined a new notion of strongly θ -M-continuous functions as functions from a set satisfying some minimal conditions into a set satisfying some minimal conditions. Noiri and Kang [26] introduced and studied the notion of almost strongly θ -continuous functions. Jafari and Noiri [16] investigated some properties of almost strongly θ -continuous functions. Beceren

DOI: https://doi.org/10.29020/nybg.ejpam.v17i1.4975

Email addresses: chawalit.b@msu.ac.th (C. Boonpok), jeeranunt.k@msu.ac.th (J. Khampakdee)

^{*}Corresponding author.

et al. [2] introduced and studied the concept of almost strongly θ -semi-continuous functions. Furthermore, Jafari and Noiri [13] investigated several characterizations of almost strongly θ -semi-continuous functions. Dube and Chauhan [9] introduced the notion of strongly closure semi-continuous functions which are equivalent to almost strongly θ -semi-continuous functions. These classes of functions have properties similar to the class of θ -continuous functions. Noiri and Popa [28] introduced and studied the notion of almost strongly θ -m-continuous functions as functions from a set satisfying some minimal conditions into a topological space. In [7], the present authors introduced and investigated the concept of almost (Λ, s) -continuous functions. The notions of (Λ, sp) -open sets, $s(\Lambda, sp)$ -open sets, $s(\Lambda, sp)$ -open sets, $s(\Lambda, sp)$ -open sets and $s(\Lambda, sp)$ -open sets were studied in [4]. Viriyapong and Boonpok [31] investigated some characterizations of $s(\Lambda, sp)$ -continuous functions. Furthermore, several characterizations of pairwise almost $s(\Lambda, sp)$ -continuous functions were established in [3]. In this paper, we introduce the concept of almost strongly $s(\Lambda, sp)$ -continuous functions. In particular, several characterizations of almost strongly $s(\Lambda, sp)$ -continuous functions are discussed.

2. Preliminaries

Throughout the present paper, spaces (X,τ) and (Y,σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of a topological space (X,τ) , $\mathrm{Cl}(A)$ and $\mathrm{Int}(A)$, represent the closure and the interior of A, respectively. A subset A of a topological space (X, τ) is said to be preopen [19] if $A \subseteq \text{Int}(Cl(A))$. The complement of a preopen set is called preclosed. The family of all preopen sets of a topological space (X,τ) is denoted by $PO(X,\tau)$. A subset $\Lambda_p(A)$ [11] is defined as follows: $\Lambda_p(A) = \bigcap \{U \mid A \subseteq U, U \in PO(X, \tau)\}$. A subset A of a topological space (X,τ) is called a Λ_p -set [6] $(pre-\Lambda-set [11])$ if $A=\Lambda_p(A)$. A subset A of a topological space (X, τ) is called (Λ, p) -closed [6] if $A = T \cap C$, where T is a Λ_p -set and C is a preclosed set. The complement of a (Λ, p) -closed set is called (Λ, p) -open. The family of all (Λ, p) -open (resp. (Λ, p) -closed) sets in a topological space (X, τ) is denoted by $\Lambda_n O(X,\tau)$ (resp. $\Lambda_n C(X,\tau)$). Let A be a subset of a topological space (X,τ) . A point $x \in X$ is called a (Λ, p) -cluster point [6] of A if $A \cap U \neq \emptyset$ for every (Λ, p) -open set U of X containing x. The set of all (Λ, p) -cluster points of A is called the (Λ, p) -closure [6] of A and is denoted by $A^{(\Lambda,p)}$. The union of all (Λ,p) -open sets of X contained in A is called the (Λ, p) -interior [6] of A and is denoted by $A_{(\Lambda, p)}$. The $\theta(\Lambda, p)$ -closure [6] of A, $A^{\theta(\Lambda, p)}$, is defined as follows:

$$A^{\theta(\Lambda,p)} = \{x \in X \mid A \cap U^{(\Lambda,p)} \neq \emptyset \text{ for each } (\Lambda,p) \text{-open set } U \text{ containing } x\}.$$

A subset A of a topological space (X,τ) is called $\theta(\Lambda,p)$ -closed [6] if $A=A^{\theta(\Lambda,p)}$. The complement of a $\theta(\Lambda,p)$ -closed set is said to be $\theta(\Lambda,p)$ -open. Let A be a subset of a topological space (X,τ) . A point $x \in X$ is called a $\theta(\Lambda,p)$ -interior point [30] of A if $x \in U \subseteq U^{(\Lambda,p)} \subseteq A$ for some $U \in \Lambda_p O(X,\tau)$. The set of all $\theta(\Lambda,p)$ -interior points of A is called the $\theta(\Lambda,p)$ -interior [30] of A and is denoted by $A_{\theta(\Lambda,p)}$.

Lemma 1. [30] For subsets A and B of a topological space (X, τ) , the following properties hold:

(1)
$$X - A^{\theta(\Lambda,p)} = [X - A]_{\theta(\Lambda,p)}$$
 and $X - A_{\theta(\Lambda,p)} = [X - A]^{\theta(\Lambda,p)}$.

- (2) A is $\theta(\Lambda, p)$ -open if and only if $A = A_{\theta(\Lambda, p)}$.
- (3) $A \subseteq A^{(\Lambda,p)} \subseteq A^{\theta(\Lambda,p)}$ and $A_{\theta(\Lambda,p)} \subseteq A_{(\Lambda,p)} \subseteq A$.
- (4) If $A \subseteq B$, then $A^{\theta(\Lambda,p)} \subseteq B^{\theta(\Lambda,p)}$ and $A_{\theta(\Lambda,p)} \subseteq B_{\theta(\Lambda,p)}$.
- (5) If A is (Λ, p) -open, then $A^{(\Lambda,p)} = A^{\theta(\Lambda,p)}$.

A subset A of a topological space (X,τ) is said to be $s(\Lambda,p)$ -open [6] (resp. $p(\Lambda,p)$ open [6], $\beta(\Lambda, p)$ -open [6], $\alpha(\Lambda, p)$ -open [32], $r(\Lambda, p)$ -open [6]) if $A \subseteq [A_{(\Lambda, p)}]^{(\Lambda, p)}$ (resp. $A \subseteq [A^{(\Lambda,p)}]_{(\Lambda,p)}, A \subseteq [[A^{(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)}, A \subseteq [[A_{(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)}, A = [A^{(\Lambda,p)}]_{(\Lambda,p)}.$ The family of all $s(\Lambda, p)$ -open (resp. $p(\Lambda, p)$ -open, $\beta(\Lambda, p)$ -open, $\alpha(\Lambda, p)$ -open, $r(\Lambda, p)$ -open sets in a topological space (X,τ) is denoted by $s(\Lambda,p)O(X,\tau)$ (resp. $p(\Lambda,p)O(X,\tau)$, $\beta(\Lambda, p)O(X, \tau), \ \alpha(\Lambda, p)O(X, \tau), \ r(\Lambda, p)O(X, \tau)).$ The union of all $s(\Lambda, p)$ -open (resp. $p(\Lambda, p)$ -open, $\alpha(\Lambda, p)$ -open) sets of X contained in A is called the $s(\Lambda, p)$ -interior (resp. $p(\Lambda, p)$ -interior, $\alpha(\Lambda, p)$ -interior) of A and is denoted by $A_{s(\Lambda, p)}$ (resp. $A_{p(\Lambda, p)}$, $A_{\alpha(\Lambda, p)}$). The complement of a $s(\Lambda, p)$ -open (resp. $p(\Lambda, p)$ -open, $\beta(\Lambda, p)$ -open, $\alpha(\Lambda, p)$ -open, $r(\Lambda, p)$ open) set is called $s(\Lambda, p)$ -closed (resp. $p(\Lambda, p)$ -closed, $\beta(\Lambda, p)$ -closed, $\alpha(\Lambda, p)$ -closed, $\gamma(\Lambda, p)$ -closed, $\gamma($ closed). The family of all $s(\Lambda, p)$ -closed (resp. $p(\Lambda, p)$ -closed, $\beta(\Lambda, p)$ -closed, $\alpha(\Lambda, p)$ closed, $r(\Lambda, p)$ -closed) sets in a topological space (X, τ) is denoted by $s(\Lambda, p)C(X, \tau)$ (resp. $p(\Lambda, p)C(X, \tau)$, $\beta(\Lambda, p)C(X, \tau)$, $\alpha(\Lambda, p)C(X, \tau)$, $r(\Lambda, p)C(X, \tau)$). The intersection of all $s(\Lambda, p)$ -closed (resp. $p(\Lambda, p)$ -closed, $\alpha(\Lambda, p)$ -closed) sets of X containing A is called the $s(\Lambda, p)$ -closure (resp. $p(\Lambda, p)$ -closure, $\alpha(\Lambda, p)$ -closure) of A and is denoted by $A^{s(\Lambda, p)}$ (resp. $A^{p(\Lambda,p)}$, $A^{\alpha(\Lambda,p)}$). Let A be a subset of a topological space (X,τ) . A point x of X is called a $\delta(\Lambda, p)$ -cluster point [5] of A if $A \cap [V^{(\Lambda, p)}]_{(\Lambda, p)} \neq \emptyset$ for every (Λ, p) -open set V of X containing x. The set of all $\delta(\Lambda, p)$ -cluster points of A is called the $\delta(\Lambda, p)$ -closure [5] of A and is denoted by $A^{\delta(\Lambda,p)}$. If $A=A^{\delta(\Lambda,p)}$, then A is said to be $\delta(\Lambda,p)$ -closed [5]. The complement of a $\delta(\Lambda, p)$ -closed set is said to be $\delta(\Lambda, p)$ -open. The union of all $\delta(\Lambda, p)$ -open sets of X contained in A is called the $\delta(\Lambda, p)$ -interior [5] of A and is denoted by $A_{\delta(\Lambda, p)}$.

3. On almost strongly $\theta(\Lambda, p)$ -continuous functions

We begin this section by introducing the concept of almost strongly $\theta(\Lambda, p)$ -continuous functions.

Definition 1. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be almost strongly $\theta(\Lambda,p)$ -continuous functions at $x\in X$ if for each (Λ,p) -open set V of Y containing f(x), there exists a (Λ,p) -open set U of X containing x such that $f(U^{(\Lambda,p)})\subseteq V^{s(\Lambda,p)}$. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be almost strongly $\theta(\Lambda,p)$ -continuous if f has the property at each point $x\in X$.

Theorem 1. For a function $f:(X,\tau)\to (Y,\sigma)$, the following properties are equivalent:

- (1) f is almost strongly $\theta(\Lambda, p)$ -continuous;
- (2) $f^{-1}(V)$ is $\theta(\Lambda, p)$ -open in X for every $r(\Lambda, p)$ -open set V of Y;
- (3) $f^{-1}(K)$ is $\theta(\Lambda, p)$ -closed in X for every $r(\Lambda, p)$ -closed set K of Y;
- (4) for each $x \in X$ and each $r(\Lambda, p)$ -open set V of Y containing f(x), there exists a (Λ, p) -open set U of X containing x such that $f(U^{(\Lambda, p)}) \subseteq V$;
- (5) $f^{-1}(V)$ is $\theta(\Lambda, p)$ -open in X for every $\delta(\Lambda, p)$ -open set V of Y;
- (6) $f^{-1}(K)$ is $\theta(\Lambda, p)$ -closed in X for every $\delta(\Lambda, p)$ -closed set K of Y;
- (7) $f(A^{\theta(\Lambda,p)}) \subseteq [f(A)]^{\delta(\Lambda,p)}$ for every subset A of X;
- (8) $[f^{-1}(B)]^{\theta(\Lambda,p)} \subseteq f^{-1}(B^{\delta(\Lambda,p)})$ for every subset B of Y;
- (9) $f^{-1}(B_{\delta(\Lambda,p)}) \subseteq [f^{-1}(B)]_{\theta(\Lambda,p)}$ for every subset B of Y;
- (10) $f^{-1}(V) \subseteq [f^{-1}(V^{s(\Lambda,p)})]_{\theta(\Lambda,p)}$ for every (Λ,p) -open set V of Y.
- Proof. (1) \Rightarrow (2): Let V be any $r(\Lambda, p)$ -open set of Y and $x \in f^{-1}(V)$. Since f is almost strongly $\theta(\Lambda, p)$ -continuous, there exists a (Λ, p) -open set U of X containing x such that $f(U^{(\Lambda,p)}) \subseteq V^{s(\Lambda,p)} = V$. Thus, $x \in U \subseteq U^{(\Lambda,p)} \subseteq f^{-1}(V)$ which implies that $x \in [f^{-1}(V)]_{\theta(\Lambda,p)}$. This shows that $f^{-1}(V) \subseteq [f^{-1}(V)]_{\theta(\Lambda,p)}$. By Lemma 1, $f^{-1}(V) = [f^{-1}(V)]_{\theta(\Lambda,p)}$ and hence $f^{-1}(V)$ is $\theta(\Lambda,p)$ -open.
 - $(2) \Rightarrow (3)$: Let K be any $r(\Lambda, p)$ -closed set of Y. By (2), we have

$$\begin{split} f^{-1}(K) &= X - f^{-1}(Y - K) \\ &= X - [f^{-1}(Y - K)]_{\theta(\Lambda, p)} \\ &= X - [X - f^{-1}(K)]_{\theta(\Lambda, p)} \\ &= [f^{-1}(K)]^{\theta(\Lambda, p)}. \end{split}$$

Thus, $f^{-1}(K)$ is $\theta(\Lambda, p)$ -closed in X.

- $(3) \Rightarrow (4)$: Let $x \in X$ and V be any $r(\Lambda, p)$ -open set of Y containing f(x). By (3), $X f^{-1}(V) = f^{-1}(Y V) = [f^{-1}(Y V)]^{\theta(\Lambda, p)} = X [f^{-1}(V)]_{\theta(\Lambda, p)}$. This implies that $f^{-1}(V) = [f^{-1}(V)]_{\theta(\Lambda, p)}$. Then, there exists a (Λ, p) -open set U of X containing x such that $U^{(\Lambda, p)} \subset f^{-1}(V)$; hence $f(U^{(\Lambda, p)}) \subset V$.
- $(4) \Rightarrow (5)$: Let V be any $\delta(\Lambda, p)$ -open set of Y and $x \in f^{-1}(V)$. There exists a $r(\Lambda, p)$ -open set G of Y such that $f(x) \in G \subseteq V$. By (4), there exists a (Λ, p) -open set U of X containing x such that $f(U^{(\Lambda,p)}) \subseteq G$. Thus, $x \in U \subseteq U^{(\Lambda,p)} \subseteq f^{-1}(V)$ which implies that $x \in [f^{-1}(V)]_{\theta(\Lambda,p)}$. Therefore, $f^{-1}(V) \subseteq [f^{-1}(V)]_{\theta(\Lambda,p)}$ and hence $f^{-1}(V) = [f^{-1}(V)]_{\theta(\Lambda,p)}$, by Lemma 1, $f^{-1}(V)$ is $\theta(\Lambda, p)$ -open.

 $(5) \Rightarrow (6)$: Let K be any $\delta(\Lambda, p)$ -closed set of Y. By (5), we have

$$f^{-1}(K) = X - f^{-1}(Y - K)$$

= $X - [f^{-1}(Y - K)]_{\theta(\Lambda,p)}$
= $[f^{-1}(K)]^{\theta(\Lambda,p)}$.

Thus, $f^{-1}(K) = [f^{-1}(K)]^{\theta(\Lambda,p)}$ and hence $f^{-1}(K)$ is $\theta(\Lambda,p)$ -closed.

- (6) \Rightarrow (7): Let A be any subset of X. Since $[f(A)]^{\delta(\Lambda,p)}$ is $\delta(\Lambda,p)$ -closed in Y, by (6) we have $f^{-1}([f(A)]^{\delta(\Lambda,p)}) = [f^{-1}([f(A)]^{\delta(\Lambda,p)})]^{\theta(\Lambda,p)}$. Let $x \notin f^{-1}([f(A)]^{\delta(\Lambda,p)})$. Then, there exists a (Λ,p) -open set U of X containing x such that $U^{(\Lambda,p)} \cap f^{-1}([f(A)]^{\delta(\Lambda,p)}) = \emptyset$. This implies that $U^{(\Lambda,p)} \cap A = \emptyset$. Thus, $x \notin A^{\theta(\Lambda,p)}$ and hence $f(A^{\theta(\Lambda,p)}) \subseteq [f(A)]^{\delta(\Lambda,p)}$.
- $(7) \Rightarrow (8)$: Let B be any subset of Y. Then, by (7) we have $f([f^{-1}(B)]^{\theta(\Lambda,p)}) \subseteq B^{\delta(\Lambda,p)}$ and hence $[f^{-1}(B)]^{\theta(\Lambda,p)} \subset f^{-1}(B^{\delta(\Lambda,p)})$.
- (8) \Rightarrow (9): Let B be any subset of Y. Let $x \in f^{-1}(B_{\delta(\Lambda,p)})$. Then, $f(x) \in B_{\delta(\Lambda,p)}$ and $f(x) \notin Y B_{\delta(\Lambda,p)} = [Y B]^{\delta(\Lambda,p)}$. Therefore, $x \notin f^{-1}([Y B]^{\delta(\Lambda,p)})$. By (8), $x \notin [f^{-1}(Y B)]^{\theta(\Lambda,p)}$. There exists a (Λ, p) -open set U of X containing x such that

$$x \in U \subset U^{(\Lambda,p)} \subset f^{-1}(B)$$
.

Thus, $x \in [f^{-1}(B)]_{\theta(\Lambda,p)}$ and hence $f^{-1}(B_{\delta(\Lambda,p)}) \subseteq [f^{-1}(B)]_{\theta(\Lambda,p)}$. (9) \Rightarrow (10): Let V be any (Λ,p) -open set of Y. Then, we have

$$V \subseteq [V^{(\Lambda,p)}]_{(\Lambda,p)} \subseteq [V^{s(\Lambda,p)}]_{\delta(\Lambda,p)}$$

and by (9), $f^{-1}(V) \subseteq f^{-1}([V^{s(\Lambda,p)}]_{\delta(\Lambda,p)}) \subseteq [f^{-1}(V^{s(\Lambda,p)})]_{\theta(\Lambda,p)}$.

 $(10)\Rightarrow (1)$: Let $x\in X$ and V be any (Λ,p) -open set of Y containing f(x). Then, $x\in f^{-1}(V)\subseteq [f^{-1}(V^{s(\Lambda,p)})]_{\theta(\Lambda,p)}$. Then, there exists a (Λ,p) -open set U of X containing x such that $x\in U\subseteq U^{(\Lambda,p)}\subseteq f^{-1}(V^{s(\Lambda,p)})$ which implies that $f(U^{(\Lambda,p)})\subseteq V^{s(\Lambda,p)}$. Thus, f is almost strongly $\theta(\Lambda,p)$ -continuous.

Theorem 2. For a function $f:(X,\tau)\to (Y,\sigma)$, the following properties are equivalent:

- (1) f is almost strongly $\theta(\Lambda, p)$ -continuous;
- (2) $[f^{-1}([K_{(\Lambda,p)}]^{(\Lambda,p)})]^{\theta(\Lambda,p)} \subseteq f^{-1}(K)$ for every (Λ,p) -closed set K of Y;
- (3) $[f^{-1}([[B^{(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)})]^{\theta(\Lambda,p)} \subseteq f^{-1}(B^{(\Lambda,p)})$ for every subset B of Y;
- $(4) \ f^{-1}(B_{(\Lambda,p)}) \subseteq [f^{-1}([[B_{(\Lambda,p)}]^{(\Lambda,p)}]_{(\Lambda,p)})]_{\theta(\Lambda,p)} \ \textit{for every subset B of Y}.$

Proof. (1) \Rightarrow (2): Let K be any (Λ, p) -closed set of Y. Then, Y - K is (Λ, p) -open in Y. Thus, by Theorem 1 and Lemma 1, we have

$$X - f^{-1}(K) = f^{-1}(Y - K)$$

$$\subseteq [f^{-1}([[Y - K]^{(\Lambda, p)}]_{(\Lambda, p)})]_{\theta(\Lambda, p)}$$

$$\begin{split} &= [X - f^{-1}([K_{(\Lambda,p)}]^{(\Lambda,p)})]_{\theta(\Lambda,p)} \\ &= X - [f^{-1}([K_{(\Lambda,p)}]^{(\Lambda,p)})]^{\theta(\Lambda,p)} \end{split}$$

and hence $[f^{-1}([K_{(\Lambda,p)}]^{(\Lambda,p)})]^{\theta(\Lambda,p)} \subseteq f^{-1}(K)$.

 $(2) \Rightarrow (3)$: Let B be any subset of Y. Then, $B^{(\Lambda,p)}$ is (Λ,p) -closed in Y and by (2), $[f^{-1}([B^{(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)}]^{\theta(\Lambda,p)} \subseteq f^{-1}(B^{(\Lambda,p)}).$

 $(3) \Rightarrow (4)$: Let B be any subset of Y. Then, we have

$$f^{-1}(B_{(\Lambda,p)}) = X - f^{-1}([Y - B]^{(\Lambda,p)})$$

$$\subseteq X - [f^{-1}([[[Y - B]^{(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)})]^{\theta(\Lambda,p)}$$

$$= [f^{-1}([[B_{(\Lambda,p)}]^{(\Lambda,p)}]_{(\Lambda,p)})]_{\theta(\Lambda,p)}$$

and hence $f^{-1}(B_{(\Lambda,p)}) \subseteq [f^{-1}([[B_{(\Lambda,p)}]^{(\Lambda,p)}]_{(\Lambda,p)})]_{\theta(\Lambda,p)}$. $(4) \Rightarrow (1)$: Let V be any $r(\Lambda,p)$ -open set of Y. By (4), $f^{-1}(V) \subseteq [f^{-1}(V)]_{\theta(\Lambda,p)}$ and hence $f^{-1}(V) = [f^{-1}(V)]_{\theta(\Lambda,p)}$. Thus, $f^{-1}(V)$ is $\theta(\Lambda,p)$ -open and by Theorem 1, f is almost strongly $\theta(\Lambda, p)$ -continuous.

Theorem 3. For a function $f:(X,\tau)\to (Y,\sigma)$, the following properties are equivalent:

- (1) f is almost strongly $\theta(\Lambda, p)$ -continuous;
- (2) $[f^{-1}(V)]^{\theta(\Lambda,p)} \subseteq f^{-1}(V^{(\Lambda,p)})$ for every $\beta(\Lambda,p)$ -open set V of Y;
- (3) $[f^{-1}(V)]^{\theta(\Lambda,p)} \subseteq f^{-1}(V^{(\Lambda,p)})$ for every $s(\Lambda,p)$ -open set V of Y;
- (4) $f^{-1}(V) \subseteq [f^{-1}([V^{(\Lambda,p)}]_{(\Lambda,p)})]_{\theta(\Lambda,p)}$ for every $p(\Lambda,p)$ -open set V of Y.

Proof. (1) \Rightarrow (2): Let V be any $\beta(\Lambda, p)$ -open set of Y. Then, $V^{(\Lambda, p)}$ is $r(\Lambda, p)$ -closed. Since f is almost strongly $\theta(\Lambda, p)$ -continuous, by Theorem 2 we have

$$[f^{-1}(V)]^{\theta(\Lambda,p)} \subseteq [f^{-1}([[V^{(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)})]^{\theta(\Lambda,p)} \subseteq f^{-1}(V^{(\Lambda,p)})$$

and hence $[f^{-1}(V)]^{\theta(\Lambda,p)} \subseteq f^{-1}(V^{(\Lambda,p)}).$

- $(2) \Rightarrow (3)$: This is obvious since $s(\Lambda, p)O(X, \tau) \subseteq \beta(\Lambda, p)O(X, \tau)$.
- (3) \Rightarrow (4): Let V be any $p(\Lambda, p)$ -open set of Y. Then, Y V is $p(\Lambda, p)$ -closed in Y and hence $[[Y-V]_{(\Lambda,p)}]^{(\Lambda,p)} \subseteq Y-V$. Since $[[Y-V]_{(\Lambda,p)}]^{(\Lambda,p)}$ is $r(\Lambda,p)$ -closed, we have $[[Y-V]_{(\Lambda,p)}]^{(\Lambda,p)}$ is $s(\Lambda,p)$ -open in Y. Then by (3),

$$[f^{-1}([[Y-V]_{(\Lambda,p)}]^{(\Lambda,p)})]^{\theta(\Lambda,p)} \subseteq f^{-1}([[Y-V]_{(\Lambda,p)}]^{(\Lambda,p)}) \subseteq f^{-1}(Y-V).$$

Thus,

$$\begin{split} f^{-1}(V) &\subseteq X - [f^{-1}([[Y-V]_{(\Lambda,p)}]^{(\Lambda,p)})]^{\theta(\Lambda,p)} \\ &= X - [X-f^{-1}([V^{(\Lambda,p)}]_{(\Lambda,p)})]^{\theta(\Lambda,p)} \end{split}$$

$$= [f^{-1}([V^{(\Lambda,p)}]_{(\Lambda,p)})]_{\theta(\Lambda,p)}.$$

 $(4)\Rightarrow (1)$: Let V be any $r(\Lambda,p)$ -open set of Y. Then, V is $p(\Lambda,p)$ -open and

$$f^{-1}(V) \subseteq [f^{-1}([V^{(\Lambda,p)}]_{(\Lambda,p)})]_{\theta(\Lambda,p)} = [f^{-1}(V)]_{\theta(\Lambda,p)}.$$

Thus, $f^{-1}(V) = [f^{-1}(V)]_{\theta(\Lambda,p)}$ and by Lemma 1, $f^{-1}(V)$ is $\theta(\Lambda,p)$ -open in X. It follows from Theorem 1 that f is almost strongly $\theta(\Lambda,p)$ -continuous.

Lemma 2. For a topological space (X, τ) , the following properties hold:

- (1) $V^{\alpha(\Lambda,p)} = V^{(\Lambda,p)}$ for every $V \in \beta(\Lambda,p)O(X,\tau)$;
- (2) $V^{p(\Lambda,p)} = V^{(\Lambda,p)}$ for every $V \in s(\Lambda,p)O(X,\tau)$;
- (3) $V^{s(\Lambda,p)} = [V^{(\Lambda,p)}]_{(\Lambda,p)}$ for every $V \in p(\Lambda,p)O(X,\tau)$.

Corollary 1. For a function $f:(X,\tau)\to (Y,\sigma)$, the following properties are equivalent:

- (1) f is almost strongly $\theta(\Lambda, p)$ -continuous;
- (2) $[f^{-1}(V)]^{\theta(\Lambda,p)} \subseteq f^{-1}(V^{\alpha(\Lambda,p)})$ for every $\beta(\Lambda,p)$ -open set V of Y;
- (3) $[f^{-1}(V)]^{\theta(\Lambda,p)} \subseteq f^{-1}(V^{p(\Lambda,p)})$ for every $s(\Lambda,p)$ -open set V of Y;
- (4) $f^{-1}(V) \subseteq [f^{-1}(V^{s(\Lambda,p)})]_{\theta(\Lambda,p)}$ for every $p(\Lambda,p)$ -open set V of Y.

Theorem 4. For a function $f:(X,\tau)\to (Y,\sigma)$, the following properties are equivalent:

- (1) f is almost strongly $\theta(\Lambda, p)$ -continuous;
- $(2) \ [f^{-1}([[B^{\delta(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)})]^{\theta(\Lambda,p)} \subseteq f^{-1}(B^{\delta(\Lambda,p)}) \ for \ every \ subset \ B \ of \ Y;$
- (3) $[f^{-1}([[B^{(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)})]^{\theta(\Lambda,p)} \subseteq f^{-1}(B^{\delta(\Lambda,p)})$ for every subset B of Y;
- $(4) \ [f^{-1}([[V^{(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)})]^{\theta(\Lambda,p)} \subseteq f^{-1}(V^{(\Lambda,p)}) \ \textit{for every} \ (\Lambda,p) \textit{-open set} \ V \ \textit{of} \ Y;$
- $(5) \ [f^{-1}([[V^{(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)})]^{\theta(\Lambda,p)} \subseteq f^{-1}(V^{(\Lambda,p)}) \ \textit{for every } p(\Lambda,p) \textit{-open set } V \ \textit{of } Y.$

Proof. (1) \Rightarrow (2): Let B be any subset of Y. Then, $B^{\delta(\Lambda,p)}$ is (Λ,p) -closed in Y. By Theorem 2, $[f^{-1}([[B^{\delta(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)})]^{\theta(\Lambda,p)} \subseteq f^{-1}(B^{\delta(\Lambda,p)})$.

- $(2) \Rightarrow (3)$: This is obvious since $B^{(\Lambda,p)} \subseteq B^{\delta(\Lambda,p)}$ for every subset B of Y.
- $(3) \Rightarrow (4)$: This is obvious since $V^{(\Lambda,p)} = V^{\delta(\Lambda,p)}$ for every (Λ,p) -open set V of Y.
- (4) \Rightarrow (5): Let V be any $p(\Lambda, p)$ -open set of Y. Then, we have $V \subseteq [V^{(\Lambda,p)}]_{(\Lambda,p)}$ and $V^{(\Lambda,p)} = [[V^{(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)}$. Thus, by (4), $[f^{-1}([[V^{(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)})]^{\theta(\Lambda,p)} \subseteq f^{-1}(V^{(\Lambda,p)})$.
- $(5) \Rightarrow (1)$: Let K be any $r(\Lambda, p)$ -closed set of Y. Then, we have $K_{(\Lambda, p)}$ is $p(\Lambda, p)$ -open in Y and by (5),

$$[f^{-1}(K)]^{\theta(\Lambda,p)} = [f^{-1}([K_{(\Lambda,p)}]^{(\Lambda,p)})]^{\theta(\Lambda,p)}$$

REFERENCES 307

$$\begin{split} &= [f^{-1}([[[K_{(\Lambda,p)}]^{(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)})]^{\theta(\Lambda,p)} \\ &\subseteq f^{-1}([K_{(\Lambda,p)}]^{(\Lambda,p)}) \\ &= f^{-1}(K). \end{split}$$

Thus, $[f^{-1}(K)]^{\theta(\Lambda,p)} = f^{-1}(K)$ and by Lemma 1, $f^{-1}(K)$ is $\theta(\Lambda,p)$ -closed in X. By Theorem 1, f is almost strongly $\theta(\Lambda,p)$ -continuous.

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- [1] S. P. Arya and M. P. Bhamini. Some weaker forms of semi-continuous functions. *Ganita*, 33:124–134, 1982.
- [2] Y. Beceren, S. Yuksel, and E. Hatir. On almost strongly θ -semi-continuous functions. Bulletin of the Calcutta Mathematical Society, 87:329–334, 1995.
- [3] C. Boonpok. M-continuous functions on biminimal structure spaces. Far East Journal of Mathematical Sciences, 43(1):41–58, 2010.
- [4] C. Boonpok and J. Khampakdee. (Λ, sp) -open sets in topological spaces. European Journal of Pure and Applied Mathematics, 15(2):572–588, 2022.
- [5] C. Boonpok and M. Thongmoon. $\delta p(\Lambda, p)$ -open sets in topological spaces. European Journal of Pure and Applied Mathematics, 16(3):1533–1542, 2023.
- [6] C. Boonpok and C. Viriyapong. On (Λ, p) -closed sets and the related notions in topological spaces. European Journal of Pure and Applied Mathematics, 15(2):415–436, 2022.
- [7] C. Boonpok and C. Viriyapong. On some forms of closed sets and related topics. European Journal of Pure and Applied Mathematics, 16(1):336–362, 2023.
- [8] F. Cammaroto and T. Noiri. Almost irresolute functions. *Indian Journal of Pure and Applied Mathematics*, 20:472–482, 1989.
- [9] K. K. Dube and S. S. Chauhan. Strongly closure semi-continuous mappings. *The Journal of the Indian Academy of Mathematics*, 19:139–147, 1997.
- [10] S. Fomin. Extensions of topological spaces. Doklady Akademii Nauk SSSR, 32:114–116, 1941.
- [11] M. Ganster, S. Jafari, and T. Noiri. On pre-Λ-sets and pre-V-sets. Acta Mathematica Hungarica, 95:337–343, 2002.

REFERENCES 308

[12] S. Jafari and T. Noiri. Strongly θ -semi-continuous functions. *Indian Journal of Pure and Applied Mathematics*, 29:1195–1201, 1998.

- [13] S. Jafari and T. Noiri. On almost strongly θ -semi-continuous functions. Acta Mathematica Hungarica, 85:167–173, 1999.
- [14] S. Jafari and T. Noiri. Strongly sober θ -continuous functions. Journal of Pure Mathematics, 16:9–17, 1999.
- [15] S. Jafari and T. Noiri. Properties of θ -semi-continuous functions. Journal of Institute of Mathematics and Computer Sciences. Mathematics Series, 13:123–128, 2000.
- [16] S. Jafari and T. Noiri. Some properties of almost strongly θ -continuous functions. Memoirs of the Faculty of Science Kochi University Series A Mathematics, 25:71–76, 2004.
- [17] P. E. Long and L. L. Herrington. Strongly θ -continuous functions. Journal of the Korean Mathematical Society, 18:21–28, 1981.
- [18] G. Di Maio and T. Noiri. Weak and strong forms of irresolute functions. *Rendiconti del Circolo Matematico di Palermo (2) Supplemento*, 18:255–273, 1988.
- [19] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deeb. On precontinuous and weak precontinuous mappings. *Proceedings of the Mathematical and Physical Society of Egypt*, 53:47–53, 1982.
- [20] T. Noiri. Properties of θ-continuous functions. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Series (8), 58:887–891, 1975.
- [21] T. Noiri. On δ -continuous functions. Journal of the Korean Mathematical Society, 16:161–166, 1980.
- [22] T. Noiri. On θ -semi-continuous functions. Indian Journal of Pure and Applied Mathematics, 21:410–415, 1990.
- [23] T. Noiri. Strongly θ -precontinuous functions. Acta Mathematica Hungarica, 90:307–316, 2001.
- [24] T. Noiri. On θ -preirresolute functions. Acta Mathematica Hungarica, 95:287–298, 2002.
- [25] T. Noiri. Weak and strong forms of β -irresolute functions. Acta Mathematica Hungarica, 99:305–318, 2003.
- [26] T. Noiri and S. M. Kang. On almost strongly θ-continuous functions. Indian Journal of Pure and Applied Mathematics, 15:1–8, 1984.

REFERENCES 309

[27] T. Noiri and V. Popa. Strongly θ - β -precontinuous functions. Journal of Pure Mathematics, 19:31–39, 2002.

- [28] T. Noiri and V. Popa. On almost strongly θ -m-continuous functions. Istanbul Üniversitesi Fen Fakültesi Matematik, Fizik Astronomi Dergisi, 1:69–92, 2004-2005.
- [29] T. Noiri and V. Popa. A unified theory for strongly θ -continuity for functions. *Acta Mathematica Hungarica*, 106(3):167–186, 2005.
- [30] M. Thongmoon and C. Boonpok. $\theta(\Lambda, p)$ -continuous functions. International Journal of Mathematics and Computer Science, 19(2):475–479, 2024.
- [31] C. Viriyapong and C. Boonpok. (Λ, sp) -continuous functions. WSEAS Transactions on Mathematics, 21:380–385, 2022.
- [32] N. Viriyapong and C. Boonpok. On (Λ, p) -extremally disconnected spaces. *International Journal of Mathematics and Computer Science*, 18(2):289–293, 2023.