EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 17, No. 1, 2024, 116-123 ISSN 1307-5543 – ejpam.com Published by New York Business Global

On Filter of Cyclic *B*-Algebras

Maliwan Phattarachaleekul

Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand

Abstract. This paper introduces the notion of a *B*-filter in a *B*-algebra (X, *, 0) and presents characteristics of its properties : for any $a \in X$, the set $\langle a \rangle_B = \{a^k : k \in \mathbb{Z}\}$ forms a *B*-ideal and *B*-filter of X. Moreover, this paper showns some properties of exponents on *B*-algebra.

2020 Mathematics Subject Classifications: 06F35, 03G25

Key Words and Phrases: B-algebras; cyclic B-algebras; B-ideal; B-filter

1. Introduction

J. Neggers and H. S. Kim introduced in [1] the notion of B-algebras and some properties of exponents on its. Furthermore, they investigated the relationship between B-algebras and groups and asked whether a group determines a B-algebra, and conversely. In [5], D. Al-Kadi introduced the notion of B-ideal and then K. E. Belleza and J. P. Vilela in [7] presents the characterizations and properties of B-ideals in a topological B-algebra and introduces the uniform topology on a *B*-algebra in terms of its *B*-ideals. Moreover, they have shown that a uniform B-topological space is a topological B-algebra. K. E. Belleza and J. R. Albaracin introduces and characterized the notion of a dual *B*-algebra. in [6]. Moreover in the year 2022, K. E. Belleza introduces the dual B-topological space, dual B-ideals and dual B-subalgebras. Also, some properties of a filterbase on a dual B-topological space are provided. In [2], N. C. Gonzaga, Jr and J. P. Vilela introduced the notion of cyclic *B*-algebras and some of its properties. Moreover the authors had investigated the relationship between the class of cyclic *B*-algebras and the class of cyclic groups coincide. In [8], K. E. Belleza and J. R. Albaracin introduced the notion of tdBalgebra, presents characteristics and properties of dual B-filters and dual B-subalgebras in a tdB-algebra, and introduces the uniform topology on a dual B-algebra in terms of its dual *B*-subalgebras.

Specifically, this paper introduces the notion of the *B*-filter in a *B*-algebra and we have show that for any $a \in X$, the set $\langle a \rangle_B = \{a^k : k \in \mathbb{Z}\}$ form a *B*-ideal and *B*-filter of *X*.

https://www.ejpam.com

© 2024 EJPAM All rights reserved.

DOI: https://doi.org/10.29020/nybg.ejpam.v17i1.4977

Email address: maliwan.t@msu.ac.th (M. Phattarachaleekul)

2. Preliminaries

First, we will review some essential notations and definitions of *B*-algebras and ordinary senses that are needed for this study in this section. Throughout this paper, X will denote the *B*-algebra (X, *, 0) unless otherwise specified.

Definition 1. [4] A B-algebra is a non-empty set X with a constant 0 and a binary operation * satisfying the following axioms :

- (B1) x * x = 0,
- (B2) x * 0 = x,
- (B3) (x * y) * z = x * (z * (0 * y)) for all $x, y, z \in X$.

A *B*-algebra (X, *, 0) is said to be commutative if x * (0 * y) = y * (0 * x) for any $x, y \in X$ and a nonempty subset *S* of a *X* is called a sub-algebra of *X* if $x * y \in S$ for any $x, y \in S$. Also, the authors of [1] have proved that a *B*-algebra *X* is commutative if and only if the equality x * (x * y) = y holds for all $x, y \in X$.

Example 1. ([4], [5]): Let $X = \{0, 1, 2, 3\}$ and $Y = \{0, 1, 2, 3, 4, 5\}$. Define binary operations * on X and \odot on Y defined by the following two tables respectively :

						\odot	0	1	2	3	4	5
*	0	1	2	3		0	0	2	1	3	4	5
0	0	3	2	1	-	1	1	0	2	4	5	3
1	1	0	3	2		2	2	1	0	5	3	4
2	2	1	0	3		3	3	4	5	0	2	1
3	3	2	1	0		4	4	5	3	1	0	2
						5	5	3	4	2	1	0

Then (X, *, 0) is a commutative B-algebra, but $(Y, \odot, 0)$ is a non commutative B-algebra, since $2 * (0 * 5) = 2 * 5 = 4 \neq 3 = 5 * 1 = 5 * (0 * 2)$.

We recall the following axioms for the laws of Exponents for *B*-algebras.

Theorem 1. [1] Let (X, *, 0) be a *B*-algebra. Then the following conditions hold for any $x, y, z \in X$:

- (i) x = (x * y) * (0 * y),
- (*ii*) y * x = 0 * (x * y),
- (*iii*) 0 * (0 * x) = x,
- $(iv) \ x * (y * z) = (x * (0 * z)) * y,$

- (v) x * y = x * (0 * (0 * y)),
- (vi) x * y = 0 implies x = y,
- (vii) x * z = y * z implies x = y and
- (viii) 0 * x = 0 * y, implies x = y.

Definition 2. [5] Let (X, *, 0) be a *B*-algebra. A nonempty subset *I* of *X* is called a *B*-ideal of *X* if it satisfies the following conditions for any $x, y, z \in X$:

- (i) $0 \in I$,
- (ii) If $x * y \in I$ and $y \in I$, then $x \in I$.

Definition 3. [6] Let X be a non-empty set with a binary operation * and a constant 0. Then the triple (X, *, 0) is a dual B-algebra if its satisfies the following axioms for all $x, y, z \in X$:

- (*i*) x * x = 0,
- (*ii*) 0 * x = x,
- (*iii*) x * (y * z) = ((y * 0) * x) * z.

Definition 4. [8] Let (X, *, 0) be a dual B-algebra. A nonempty subset F of X is called a dual B-filter of X if it satisfies the following axioms for all $x, y, z \in X$:

- (i) $0 \in F$,
- (ii) If $x * y \in F$ and $x \in F$, then $y \in F$.

There is a *B*-algebra that is also a dual *B*-algebra in the following example.

Example 2. [6] Let $X = \{0, a, b, c\}$ and a binary operations * on X satisfying the following table :

*	0	a	b	c
0	0	$a \\ 0$	b	c
$a \\ b$	$a \\ b$	0	c	b
	b	c	0	a
c	c	b	a	0

Example 3. [8] Let $X = \{0, a, b, c, d, e\}$ and a binary operations * on X satisfies the following table :

*	0	a	b	c	d	e
0	0	a	b	c	d	e
a	b	0	a	d	e	c
b	d	b	0	e	c	d
c	c	d	e	0	a	b
d	d	e	c	$egin{array}{c} c \\ d \\ e \\ 0 \\ b \\ a \end{array}$	0	a
e	e	c	d	a	b	0

Then (X, *, 0) is a dual B-algebra. The sets $F_0 = \{0\}$, $F_2 = \{0, c\}$, $F_3 = \{0, d\}$, $F_4 = \{0, e\}$ and $F_5 = \{0, a, b\}$ are dual B-filters of X while $A = \{0, a, e\}$ is not a dual B-filter since $e * c = a \in A$ where $e \in A$ but $c \notin A$.

3. Some Axioms of Exponents for B-algebras

In this section, we recall the axioms for a *B*-algebra (X, *, 0). The paper [1] and [2] introduced the notions of exponents of *B*-algebra and some of its properties. For any $x, y \in X$ and $n \in \mathbb{Z}^+$, defined the relation:

$$x^n = x^{n-1} * (0 * x)$$
 and $-x = 0 * x$

where $x^0 = 0$ and $x^1 = x^0 * (0 * x) = 0 * (0 * x) = x$ and denote that expression

$$x * \prod_{0}^{n} y = (...((x * y) * y) * ...) * y$$

where y occurs n times. By convention, $x * \prod y$ means x * 0 = x, so that $x^n = x * (0 * \prod x)$ and $x^{-n} = (-x)^n = -(x)^n = 0 * x^n$ implies that $(x^{-1})^{-n} = (x^{-n})^{-1} = x^n$.

Theorem 2. [1] Let (X, *, 0) be a B-algebra, $g \in X$ and $m, n \in \mathbb{Z}^+$. Then

$$g^m * g^n = \begin{cases} g^{m-n} & \text{if } m \ge n \\ 0 * g^{n-m} & \text{if } m < n \end{cases}$$

Corollary 1. [1] Let (X, *, 0) be a *B*-algebra. Then the following equalities hold for all $g \in X$ and $m, n \in \mathbb{Z}^+$:

- (i) $g^m * g^n = g^{m-n}$
- (ii) $g * g^{-n} = g^{n+1}$ and $g^{-n} * g = g^{-(n+1)}$,

- (*iii*) $-g * g^n = g^{-(n+1)}$,
- $(iv) g^m * (-g) = g^{(n+1)},$
- (v) $g^m * g^{-n} = g^{(m+n)}$ and $g^{-m} * g^n = g^{-(m+n)}$.

Corollary 2. [2] Let (X, *, 0) be a B-algebra, $g \in X$ and $m, n \in \mathbb{Z}$. Then $g^m * g^n = g^{m-n}$.

4. On Exponents and cyclic *B*-Algebras

We shall give some elementary properties of cyclic *B*-algebras. Recall that for a *B*-algebra (X, *, 0) (see [2]) if there is an $a \in X$ such that

$$\langle a \rangle_B = \{ a^k : k \in \mathbb{Z} \} = X,$$

then X is called a cyclic B-algebra generated by a. Also, the authors of [2] have proved that every cyclic B-algebra is commutative.

Theorem 3. Let (X, *, 0) be a *B*-algebra and $x, y \in X$ with $n \in \mathbb{Z}^+$, then

$$0 * (x * y)^n = (y * x)^n$$

Proof. Cleary 0 * (x * y) = (0 * (0 * y) * x) = y * x. Thus, the equality holds for n = 1Next, suppose that $0 * (x * y)^n = (y * x)^n$ for any n > 1. So $0 * (x * y)^{n+1} = 0 * \{(x * y) * (0 * \prod^n (x * y))\}$

$$= 0 * \{(x * y) * [[...[[0 * (x * y)] * (x * y)] * ...] * (x * y)]\}$$

$$= 0 * \{[(x * y) * [0 * (x * y)]] * [[...[[0 * (x * y)] * (x * y)] * ...] * (x * y)]\}$$

$$= 0 * \{[(x * y) * (y * x) * [[...[[0 * (x * y)] * (x * y)] * ...] * (x * y)]\}$$

$$= 0 * \{[[...[(x * y) * (y * x)] * ...] * (y * x)] * (y * x)] * [0 * (x * y)]\}$$

$$= 0 * \{[[...[[0 * (y * x)] * ...] * (y * x)] * (y * x)] * [0 * (x * y)]\}$$

$$= 0 * \{[[...[[0 * (y * x)] * ...] * (y * x)] * (y * x)] * [0 * (x * y)] * 0]\}$$

$$= (y * x) * [[...[[0 * (y * x)] * (y * x)]] * ...] * (y * x)] * (y * x)$$

$$(y * x) occurs n times$$

$$= (y * x) * (0 * \prod^{n}(y * x))$$

$$= (y * x)^{n+1}$$

Therefore, $0 * (x * y)^n = (y * x)^n$ for any $n \in \mathbb{Z}^+$.

Theorem 4. Let (X, *, 0) be a *B*-algebra and $x, y \in X$ with $n \in \mathbb{Z}^+$, then

$$0 * (0 * x)^n = 0 * (0 * x^n)$$

Proof. Since $0 * x^n = x^{-n}$ in [2],

$$0 * (0 * x)^{n} = (0 * x)^{-n}$$

= $(x^{-1})^{-n}$
= $(x^{-n})^{-1}$
= $0 * (x^{-n})$
= $0 * (0 * x^{n})$.

Theorem 5. Let (X, *, 0) be a *B*-algebra and $a \in X$, then $\langle a \rangle_B$ is a *B*-ideal of *X*.

Proof. Clearly, $0 = a^0 \in \langle a \rangle_B$. Next, let $x * y \in \langle a \rangle_B$ and $y \in \langle a \rangle_B$, then $x * y = a^k$ and $y = a^r$ for some $k, r \in Z$. So, $y * x = 0 * (x * y) = 0 * a^k = a^0 * a^k = a^{0-k} = a^{-k} \in \langle a \rangle_B$ and hance by [1], $x = y * (y * x) = a^r * a^{-k} = a^{r-(-k)} = a^{r+k} \in \langle a \rangle_B$. Therefore, $\langle a \rangle_B$ is an ideal of X.

In 2023, K. E. Belleza, J. R. Albaracin [8] introduced the concept of dual B-filters of dual *B*-algebra. Thus, we can have the following definition:

Definition 5. Let (X, *, 0) be a B-algebra. A nonempty subset F of X is called a B-filter of X if it satisfies the following axioms for all $x, y \in X$:

- (i) $0 \in F$,
- (ii) If $x * y \in F$ and $x \in F$, then $y \in F$.

Example 4. Consider the B-algebra $X = \{0, 1, 2, 3\}$ from Example 1. The sets $F_1 = \{0\}$, $F_2 = \{0, 2\}$ are B-filters of X while $F_3 = \{0, 3\}$ is not a B-filter of X, since $0 * 1 = 3 \in F_3$ where $0 \in F_3$ but $1 \notin F_3$.

Consider $(Y, \odot, 0)$, the sets $F_4 = \{0\}$, $F_5 = \{0, 3\}$, $F_6 = \{0, 4\}$, $F_7 = \{0, 5\}$, are B-filters of Y.

Theorem 6. Let (X, *, 0) be a *B*-algebra and $a \in X$, then $\langle a \rangle_B$ is a *B*-filter of *X*.

Proof. Clearly $0 = a^0 \in \langle a \rangle_B$. Next, let $x * y \in \langle a \rangle_B$ and $x \in \langle a \rangle_B$, then $x * y = a^k$ and $x = a^r$ for some $k, r \in \mathbb{Z}$ and hence by theory 3.2 in [1],

$$y = x * (x * y) = a^r * a^k = a^{r-k} \in \langle a \rangle_B$$

Therefore, $\langle a \rangle_B$ is a filter of X.

121

Theorem 7. Let (X, *, 0) be a *B*-algebra and $a \in X$ with 0 * a = a, then $\langle a \rangle_B = \{0, a\}$ form a *B*-filter of X.

Proof. Let $a \in X$ with 0 * a = a. Consider $a^0 = 0$, $a^1 = a$, $a^2 = a * a = 0$, $a^3 = a^2 * a = 0 * a = a$, $a^4 = a^3 * a = a * 0 = 0$, .

This implies that $\langle a \rangle_B = \{0, a\}.$

Next, Let $x, y \in X$, $F = \{0, a\}$ with 0 * a = a, $x * y \in F$ and $x \in F$.

- Case 1: If x * y = 0 and x = 0, then x * y = 0 * y = 0 = y * y by theorem 1 (vii), $y = 0 \in F$.
- Case 2: If x * y = 0 and x = a, then x * y = a * y = 0 = y * y by theorem 1 (vi), $y = a \in F$.
- Case 3: If x * y = a and x = 0, then x * y = 0 * y = a by assumption a = 0 * a and theorem 1 (viii), $y = a \in F$.
- Case 4: If x * y = a and x = a, then x * y = a * y = a by theorem 1, a = a * y = 0 * (y * a) = 0 * (0 * a) = a implies that (y * a) = (0 * a) and hence $y = 0 \in F$.

Therefore, $\langle a \rangle_B = F = \{0, a\}$ is a *B*-filter of *X*.

5. Conclusion

In this paper shown some properties of exponents on *B*-algebra and we introduces the notion of *B*-filter on a *B*-algebra and presented together with some of its properties on a cyclic *B*-algebra, that is for any an element *a* in a *B*-algebra (X, *, 0), we show that the set $\langle a \rangle_B = \{a^k : k \in \mathbb{Z}\}$ form a *B*-ideal and *B*-filter of *X*. Moreover, if 0 * a = a, we obtain $\langle a \rangle_B = \{0, a\}$ form a *B*-filter of *X*.

Acknowledgements

This research project was financially supported by Thailand Science Research and Innovation (TSRI).

122

References

- [1] J. Neggers, and H. S. Kim. On B-algebras. Matematički Vesnik, 54:21–29, 2002.
- [2] N. C. Gonzaga and J P. Vilela. On Cyclic B-algebras. Applied Mathematical Sciences, 9:5507–5522, 2015.
- [3] Y. B. Jun, E. H. Roh, Chinju and H. S. Kim. On Fuzzy B-algebras. Czechoslovak Mathematical Journal, 52(127):375–384, 2002.
- [4] J. Neggers and H. S. Kim. A fundamental theorem of B-homomorphism for Balgebras. International Mathematics Journal, 2:207–214, 2002.
- [5] D. Al-Kadi. Anti Fuzzy Ideals of B-algebra. International Journal of Pure and Applied Mathematics, 117(3):437–445, 2017.
- [6] K. E. Belleza and J. P. Vilela. The Dual B-Algebra. European Journal of Pure and Applied Mathematics, 12(4):1497–1507, 2019.
- [7] K. E. Belleza and J. P. Vilela. On B-ideals in a Topological B-algebra and the Uniform B-topological Space. European Journal of Pure and Applied Mathematics, 13(4):830– 839, 2020.
- [8] K. E. Belleza and J. R. Albaracin. On dual B-filters and dual B-subalgebras in a topological dual B-algebra. Journal of Mathematics and Computer Science, 28:1–10, 2023.