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1. Introduction

In actuality, mathematics is a universal language and a vital resource for comprehend-
ing the world we live in [57]. Particularly, differential equations are essential to many
areas of mathematics and its applications [35]. They give us the ability to explain the
connections between variables and offer mathematical models that help us comprehend
scientific, engineering, natural, and economic events [19]. In physics, differential equations
are frequently used to describe the motion of objects and the changes in dynamic systems
[16]. They have the ability to foresee and analyze the behavior of a wide range of physical
systems, including celestial planets and subatomic particles. In engineering, differential
equations are utilized to solve problems related to dynamics, structural analysis, and de-
sign. They provide the mathematical framework required to erect frameworks, optimize
processes, and ensure system stability [25, 44].
Furthermore, industrial design, control systems, and electrical engineering all heavily rely
on differential equations [46, 59]. They are necessary for industrial processes, control sys-
tems, and electrical circuit analysis and design. Engineers can maximize the efficiency and
stability of these systems by creating differential equations that characterize their behav-
ior. Differential equations are fundamental to many branches of science and technology
[30, 46, 54]. It is used for expressing relationships, creating models, and resolving issues
in physics, engineering, economics, the natural sciences and many others fields, they offer
a potent mathematical tool for handling these issues and its explanation [26].
By converting functions from one domain to another, integral transformations are strong
mathematical tools that help us in solving problems more easily and creatively in variety of
domains [20]. For example, Fourier transform [21]. is a transformation that breaks down a
function into its frequency components, allowing for analysis in the frequency domain. It
was solved by many researchers to get the solutions of many differential equations [17, 55]
The Laplace transform [18] is another significant integral transformation that transforms
a function of time into a function of complex frequency, facilitating the solution of differ-
ential equations and system analysis. It has a great application in the fields of science and
engineering [33, 56].
The Sumudu transform [37, 58] offered an alternative to the conventional Fourier trans-
form and attracted attention for its exceptional capacity to accurately capture transient
signals and non-stationary phenomena [14]. Numerous domains, such as pattern recog-
nition, biomedical signal processing, image de-noising, and others wares the motivation
for providing many integral transforms later, for instances: ARA integral transform [49],
Aboodh transform [1], and Formable transform [52]. Moreover, double integral transforms
have been effective in solving differential equations such as: double Laplace transform [22],
double Laplace ARA [42, 53], double formable [51] double ARA [45] and others [7, 17, 48].
They are essential in many scientific and technological fields, improving our comprehen-
sion and facilitating effective problem-solving [10, 23, 38–40].
Developed by Mohand [37], M.T. is a revolutionary mathematical technique that has at-
tracted a lot of attention recently. This transform provides a strong tool for signal process-
ing and analysis. Applications including data encryption, audio compression, and image
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processing benefit greatly from the transform. Signals can be transformed mathemati-
cally from the time domain to the frequency domain and back again using the Mohandas
approach. By analyzing signals and comprehending their many properties, including the
frequencies contained in the signal and the energy contained in each frequency, this trans-
formation is used [2]. The Laplace transform is the foundation of the M.T. approach,
however it is enhanced and modified in some ways [3]. When handling non-infinite signals
or signals with restricted frequency, M.T. performs better [5, 6, 8]. A wide range of prob-
lems involving differential equations, partial differential equations, integral equations, and
population development and decay are among the many uses of M.T. [24, 43]. It is also
used to solve linear Volterra integral equations [4, 50] of the second sort.
The novelty in this research lies in the utilization of the Mohanad transform, a relatively
recent mathematical approach, as a powerful tool for addressing a broad spectrum of sci-
entific and engineering problems. The distinctive aspects of this study can be highlighted
as follows:
The study contributes to the evolving interest in the Mohanad transform, showcasing its
versatility across diverse domains such as electric circuits, population growth, vibrational
beams, and heat conduction. By exploring its application in varied fields, the research
expands the understanding of where and how this transform can be effectively employed.
Comprehensive Analysis: This work not only introduces the Mohanad transform but also
delves into its foundational properties—highlighting linearity, convolution, and its con-
nections with other integral transforms. The comprehensive analysis provides a robust
understanding of the transform’s capabilities and its relation to established mathematical
tools.
Solver for ODEs: The emphasis on solving systems of ordinary differential equations
(ODEs) using the Mohanad transform is a key contribution. Demonstrating its efficacy
in solving these equations with minimal computational burden underscores its potential
as an efficient solver for complex mathematical problems arising in various scientific and
engineering disciplines.
Cross-disciplinary Application: The application of the Mohanad transform to determine
chemical reactant concentrations in a series reaction bridges the gap between mathemat-
ics and physical chemistry. This cross-disciplinary application showcases the transform’s
ability to address real-world chemical problems, demonstrating its practical utility beyond
theoretical constructs.
Efficiency and Precision: The research underscores the transformative power of the Mo-
hanad transform by showcasing its ability to yield exact solutions to ODEs without re-
quiring extensive computational efforts. The use of graphs and tables to present these
solutions further emphasizes the precision and ease of interpretation of the results ob-
tained.
In essence, the novelty of this research lies in the comprehensive exploration and practical
application of the Mohanad transform across various scientific and engineering realms,
showcasing its efficiency, precision, and applicability in solving real-world problems.
Additionally; we go over how to solve systems of ODEs with the suggested transform by
a simple algorithm, we discuss a physical chemistry problem model and solve it using
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M.T. the obtained results are used to examine the concentration of chemical reactants in
a series of chemical reactions of reactants in a series of reactions. To obtain the numeri-
cal findings and create the figures, and create the figures, we utilize the Python software
package. The novelty of this work is obvious in the new algorithm presented to solve
systems of ODEs[14, 28, 47], M.T. is presented for the first time to solve these equations.
The proposed method shows its simplicity and applicability to solve problems in physical
chemistry[9, 15].
The utilization of the Mohanad transform (M.T) in solving a chemical application, specif-
ically in determining chemical reactant concentrations within a series reaction, can be
attributed to several reasons:
Complexity of Chemical Reactions: Chemical reactions, especially in series, can involve
intricate kinetics and complex equations describing the change in concentrations over time.
Oftentimes, these reactions lead to systems of ordinary differential equations (ODEs) that
are challenging to solve directly. The M.T, known for its efficacy in solving ODEs, provides
an alternative and efficient method to address these complexities.
Mathematical Modeling of Chemical Systems: When trying to understand chemical reac-
tions, it’s common to model them using differential equations. These equations describe
how the concentrations of reactants change over time. By utilizing the M.T, researchers
can translate these models into solvable equations, enabling a deeper understanding of the
reaction kinetics and concentrations involved.
Accuracy and Efficiency: The M.T offers an advantage in providing exact solutions to
ODEs without necessitating extensive computational efforts. Its application streamlines
the process of solving these equations, making it an appealing choice when dealing with
chemical systems, where precise solutions are crucial.
Visualization and Interpretation: Presenting the solutions in tables and graphs, as men-
tioned in the study, is beneficial for visualizing and interpreting the concentration changes
of reactants over time. This graphical representation aids in comprehending the behavior
of the chemical system and allows for clearer communication of results.
Broader Applicability: The versatility of the M.T extends beyond specific scientific fields.
Its application in solving ODEs allows for a cross-disciplinary approach, enabling re-
searchers from various domains, such as mathematics, physics, engineering, and chemistry,
to collaborate and leverage this mathematical tool for problem-solving.
The choice of utilizing the M.T to solve a chemical application involving the determination
of chemical reactant concentrations in a series reaction showcases its ability to simplify
complex systems, offer accurate solutions, and facilitate a deeper understanding of chem-
ical kinetics through mathematical modeling and analysis.
The structure of this article is as follows: The structure of this article is as follows: the
primary definitions and characteristics of M.T. are presented in Section 2. In Section
3, the applications of M.T. to solve ODEs. Section 4 presents a chemical application of
system of ODEs that is solved by the proposed method, finally, we get the conclusion in
Section 5.
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2. Basics about M.T.

In this section, we present the definition of M.T. [1, 49], and some basic properties and
relations to other integral transforms. For more details about M.T..

Definition 1. The Mohanad transform (M.T.) is defined by the integral equation:

M{φ(ξ)} = ζ2
∫ ∞

0
e−ζξφ(ξ)dξ = Φ(ζ). (1)

Definition 2. The inverse M.T. is given by:

φ(ξ) = M−1{Φ(ζ)} =
1

2πi

∫ c+i∞

c−i∞

1

ζ2
eζξΦ(ζ)dζ, c ∈ R, (2)

where M−1 is the inverse operator of M.T..

2.1. Properties of M.T.

Some properties of M.T. are presented in this section.

(i) The linearity property of M.T.

If M {φ1(ξ)} = Φ1(ζ) and M {φ2(ξ)} = Φ2(ζ) then M {qφ1(ξ) + pφ2(ξ)} = qΦ1(ζ) +
pΦ2(ζ), where q and p are constants.

Proof. By the definition 1 of M.T., we obtain

M {qφ1(ξ) + pφ2(ξ)} = ζ2
∫ ∞

0
e−ζξ [qφ2(ξ) + pφ2(ξ)] dξ (3)

= ζ2
∫ ∞

0
e−ζξqφ1(ξ)dξ + ζ2

∫ ∞

0
e−ζξpφ2(ξ)dξ

= qζ2
∫ ∞

0
e−ζξφ1(ξ)dξ + pζ2

∫ ∞

0
e−ζξφ2(ξ)dξ

= qΦ1(ζ) + pΦ2(ζ). (4)

Moreover, the inverse M.T. is linear;

If M−1 {Φ1(ζ)} = φ1(ξ) and M−1 {Φ2(ζ)} = φ2(ξ). (5)

Then,

M−1 {qΦ1(ζ) + pΦ2(ζ)} = qM−1 {Φ1(ζ)}+ pM−1 {Φ1(ζ)}
= qφ1(ξ) + pφ2(ξ) (6)



D. K. Almutairi et al. / Eur. J. Pure Appl. Math, 17 (1) (2024), 385-409 390

(ii) Change of scale property

If M.T. of a function φ(ξ) is Φ(ζ), then M.T. of the function φ(aξ) is given by aΦ
(
ζ
a

)
,

where a is non zero constant.
Proof. By the definition 1 of M.T., we get

M{φ(aξ)} = ζ2
∫ ∞

0
e−ζξφ(aξ)dξ. (7)

Letting aξ = u, then adξ = du, then we substitute in equation (7).

M{φ(aξ)} = ζ2
∫ ∞

0
e−(

ζ
a)uφ(u)

du

a
= a

[
ζ2

a2

∫ ∞

0
e−(

ζ
a)uφ(u)du

]
= aΦ

(
ζ

a

)
. (8)

(iii) Shifting property of M.T.

If M.T. of a function φ(ξ) is Φ(ζ), then M.T. of the function ekξφ(ξ) is given by

ζ2

(ζ − k)
Φ(ζ − k), where k ∈ R.

Proof. By the definition 1 of M.T., we get

M
{
ekξφ(ξ)

}
= ζ2

∫ ∞

0
e−ζξekξφ(ξ)dξ = ζ2

∫ ∞

0
e−(ζ−k)ξφ(ξ)dξ

=
(ζ −K)2

(ζ −K)2
ζ2

∫ ∞

0
e−(ζ−k)ξφ(ξ)dξ =

ζ2

(ζ −K)
Φ(ζ − k). (9)

Now, we introduce the M.T. of some basic functions in Table 1.

2.2. Relations to other integral transforms

In this section, we discuss the duality between M.T. and some other famous transforms.

• Laplace transform

If L{φ(ξ)} =
∫∞
0 e−ζξφ(ξ)dξ is the Laplace transform of φ(ξ), then

M{φ(ξ)} = ζ2L{φ(ξ)}.

Proof.

M{φ(ξ)} = ζ2
[∫ ∞

0
e−ζξφ(ξ)dξ

]
= ζ2L{φ(ξ)}. (10)
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Table 1: M.T. of some elementary functions.

Functions φ(ξ) M{φ(ξ)} = Φ(ζ)

1 ζ
ξ 1

ξ2 2!
ζ

ξα, α > 0 Γ(α+1)
ζα−1

eαξ ζ2

ζ−α

sin(αξ) αζ2

ζ2+α2

cos(αξ) ζ3

ζ2+α2

sinh(αξ) αζ2

ζ2−α2

cosh(αξ) ζ3

ζ2−α2

• Sumudu transform

If S{φ(ξ)} = 1
ζ

∫∞
0 e

− ξ
ζφ(ξ)dξ is the Sumudu transform of φ(ξ), then

M{φ(ξ)} =
1

ζ
S{φ(ξ)}.

Proof.

M{φ(ξ)} = ζ2
∫ ∞

0
e−ζξφ(ξ)dξ = Φ(ζ).

Moreover,

Φ

(
1

ζ

)
=

1

ζ2

∫ ∞

0
e
− 1

ζ
ξ
φ(ξ)dξ =

1

ζ

[
1

ζ

∫ ∞

0
e
−ξ

(
1
ζ

)
φ(ξ)dξ

]
=

1

ζ
S{φ(ξ)}. (11)

• Aboodh transform

If A{φ(ξ)} = 1
ζ

∫∞
0 e−ζξφ(ξ)dξ is the Aboodh transform of φ(ξ), then

M{φ(ξ)} = ζ3A{φ(ξ)}.

Proof.

M{φ(ξ)} = ζ2
∫ ∞

0
e−ζξφ(ξ)dξ = Φ(ζ).

Moreover,

M{φ(ξ)} = ζ3
[
1

ζ

∫ ∞

0
e−ξζφ(ξ)dξ

]
= ζ3A{φ(ξ)} (12)

• Formable transform
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If B(ζ, u) = ζ
∫∞
0 e−ζξφ(uξ)dξ is the Formable transform of φ(uξ), then

M{φ(ξ)} = ζB(ζ, 1).

Proof.

M{φ(ξ)} = ζ2
∫ ∞

0
e−ζξφ(ξ)dξ = ζ

[
ζ

∫ ∞

0
e−ζξφ(ξ)dξ

]
= ζB(ζ, 1) (13)

• ARA transform

If G(n, ζ) = ζ
∫∞
0 ξn−1e−ζξφ(ξ)dξ is the ARA transform of φ(ξ), then

M{φ(ξ)} = ζG
{
ξn−1φ(ξ)

}
Proof.

M{φ(ξ)} = ζ2
∫ ∞

0
e−ζtφ(ξ)dξ = ζ

[
ζ

∫ ∞

0
e−ζξξn−1φ(ξ)dξ

]
= ζG

{
ξn−1φ(ξ)

}
(14)

2.3. M.T. for derivatives

If M{φ(ξ)} = Φ(ζ), then

(i) M
{
φ′(ξ)

}
= ζΦ(ζ)− ζ2φ(0). (15)

(ii) M
{
φ′′(ξ)

}
= ζ2Φ(ζ)− ζ3φ(0)− ζ2φ′(0). (16)

(iii) M
{
φ(n)(ξ)

}
= ζnΦ(ζ)−

n−1∑
k=0

ζn−k+1φ(k)(0). (17)

Proof. To proof (i), by definition 1 of the M.T., we have

M
{
φ′(ξ)

}
= ζ2

∫ ∞

0
e−ζξφ′(ξ)dξ. (18)

Using integration by parts, we have

u = e−ζξ and dv = φ′(ξ), du = −ζe−ζξ, v = φ(ξ).

Then the equation (18) becomes,

M
{
φ′(ξ)

}
= ζΦ(ζ)− ζ2φ(0). (19)

To proof (ii), we use the definition 1 of M.T., M {φ′′(ξ)} = M
{
(φ′(ξ))′

}
.
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Using part (i).

M
{
φ′′(ξ)

}
= ζM

{
φ′(ξ)

}
− ζ2φ′(0) = ζ

[
ζΦ(ζ)− ζ2φ(0)

]
− ζ2φ′(0)

= ζ2Φ(ζ)− ζ3φ(0)− ζ2φ′(0). (20)

Proof (iii). By induction, for n = 1 its true from part (i).
Now, assume that the equation (17) is true for n = k, then

M
{
φ(k)(ξ)

}
= ζkΦ(ζ)− ζk+1φ(0)− ζkφ′(0)− · · · − ζ2φ(k−1)(0). (21)

Now, we prove it for n = k + 1, thus

M
{
φ(k+1)(ξ)

}
= M

{(
φ(k)(ξ)

)′
}
.

Using part (i), we get

M
{
φ(k+1)(ξ)

}
= ζk

[
ζΦ(ζ)− ζ2φ(0)

]
− ζk+1φ′(0)− ζkφ′′(0)− · · · − ζ2φ(k)(0)

= ζnΦ(ζ)−
n−1∑
k=0

ζn−k+1φ(k)(0). (22)

3. M.T. for solving system of ODEs

In this part, we solve systems of ordinary differential equations by applying M.T..
Consider the system of first order of ODEs:

dφ1

dξ = h11φ1(ξ) + h12φ2(ξ) + h13φ3(ξ) + · · ·+ h1nφn(ξ) + ρ1(ξ),
dφ2

dξ = h21φ1(ξ) + h22φ2(ξ) + h23φ3(ξ) + · · ·+ h2nφn(ξ) + ρ2(ξ),

·
·
dφn

dξ = hn1φ1(ξ) + hn2φ2(ξ) + hn3φ3(ξ) + · · ·+ hnnφn(ξ) + ρn(ξ).


(23)

with the initial conditions:

φ1(0) = b1, φ2(0) = b2, . . . , φn(0) = bn, (24)

where h11, h12, h13, . . . , hnn are constants, and φ1(ξ), φ2(ξ), . . . , φn(ξ) are
unknown continuous functions, and ρ1(ξ), ρ2(ξ), . . . , ρn(ξ) are known continuous
functions.

The matrix representation of system (23) with (24) is
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dΦ

dξ
= Hφ(ξ) + ρ(ξ), with φ(0) = B, (25)

where

dφ

dξ
=


dφ1

dξ
dφ2

dξ
...

dφn

dξ

 , H =


h11 h12 · · · h1n

h21 h22 · · · h2n
...

...
. . .

...
hn1 hn2 · · · hnn

 , φ(ξ) =


φ1(ξ)
φ2(ξ)

...
φn(ξ)

 ,

ρ(ξ) =


ρ1(ξ)
ρ2(ξ)
...

ρn(ξ)

 , φ(0) =


φ1(0)
φ2(0)

...
φn(0)

 and B =


b1
b2
...
bn

 .

By applying M.T. to system (23), we have

M {φ′
1(ξ)} = h11M {φ1(ξ)}+ h12M {φ2(ξ)}+ · · ·+ h1nM {φn(ξ)}+M {ρ1(ξ)} ,

M {φ′
2(ξ)} = h21M {φ1(ξ)}+ h22M {φ2(ξ)}+ · · ·+ h2nM {φn(ξ)}+M {ρ2(ξ)} ,

·
·

M {φ′
n(ξ)} = hn1M {φ1(ξ)}+ hn2M {φ2(ξ)}+ · · ·+ hnnM {φn(ξ)}+M {ρn(ξ)} .


(26)

Then, we get

ζM {φ1(ξ)} −ζ2φ1(0) = h11M {φ1(ξ)}+ h12M {φ2(ξ)}+ · · ·+ h1nM {φn(ξ)}+M {ρ1(ξ)} ,
ζM {φ2(ξ)} −ζ2φ2(0) = h21M {φ1(ξ)}+ h22M {φ2(ξ)}+ · · ·+ h2nM {φn(ξ)}+M {ρ2(ξ)} ,

·
·

ζM {φn(ξ)} −ζ2φn(0) = hn1M {φ1(ξ)}+ hn2M {φ2(ξ)}+ · · ·+ hnnM {φn(ξ)}+M {ρn(ξ)} .


(27)

Then, using the initial conditions (24), the system (27) becomes

(ζ − h11)Mρ {φ1(ξ)} − h12M {φ2(ξ)} − · · · − h1nM {φn(ξ)} = M {ρ1(ξ)}+ b1ζ
2,

−h21M {φ1(ξ)}+ (ζ − h22)M {φ2(ξ)} − · · · − h1nM {φn(ξ)} = M {ρ2(ξ)}+ b2ζ
2

·
·

−hn1M {φn(ξ)} − hn2M {φ2(ξ)} − · · ·+ (ζ − hnn)M {φn(ξ)} = M {ρn(ξ)}+ bnζ
2


(28)

Then, the solution of system (26) can be obtained using Cramer’s rule as
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M {φ1(ξ)} =

∣∣∣∣∣∣∣∣∣∣∣∣

M {ρ1(ξ)}+ b1ζ
2 −h12 · · · −h1n

M {ρ2(ξ)}+ b2ζ
2 (ζ − h22) · · · −h2n

...
...

. . .
...

M{ρ(ξ)}+ bnζ
2 −hnn · · · (ζ − hnn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ζ − h11) −h12 · · · −h1n
−h21 (ζ − h22) · · · −h2n
...

...
. . .

...
−hn1 −hn2 · · · (ζ − hnn)

∣∣∣∣∣∣∣∣∣∣∣∣

M {φ2(ξ)} =

∣∣∣∣∣∣∣∣∣∣∣∣

(ζ − h11) M {ρ1(ξ)}+ b1ζ
2 · · · −h1n

−h21 M {ρ2(ξ)}+ b2ζ
2 · · · −h2n

...
...

. . .
...

−hn1 M {ρn(ξ)}+ bnζ
2 · · · (ζ − hnn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ζ − h11) −h12 · · · −h1n
−h21 (ζ − h22) · · · −h2n
...

...
. . .

...
−hn1 −hn2 · · · (ζ − hnn)

∣∣∣∣∣∣∣∣∣∣∣∣
...

M {φn(ξ)} =

∣∣∣∣∣∣∣∣∣∣∣∣

(ζ − h11) −h1n · · · M {ρ1(ξ)}+ b1ζ
2

−h21 (ζ − h22) · · · M {ρ2(ξ)}+ b2ζ
2

...
...

. . .
...

−hn1 −hn2 · · · M {ρn(ξ)}+ bnζ
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ζ − h11) −h12 · · · −h1n
−h21 (ζ − h22) · · · −h2n
...

...
. . .

...
−hn1 −hn2 · · · (ζ − hnn) .

∣∣∣∣∣∣∣∣∣∣∣∣

Now, applying the inverse M.T. of M {φ1(ξ)} , M {φ2(ξ)} , . . . , M {φn(ξ)}, then we
get the values of φ1(ξ), φ2(ξ), . . . , φn(ξ).

Now, we introduce some examples of systems ODEs and solve them by M.T..

Example 1. Consider the following system of ODEs

dφ1

dξ = φ3(ξ),
dφ2

dξ = −φ3(ξ),
dφ3

dξ = −φ1(ξ)− φ2(ξ),

 (29)
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with the initial conditions:

φ1(0) = 0, φ2(0) = 1 and φ3(0) = 0. (30)

The matrix form of the system (29) with the initial conditions (30) is given by:

dφ

dξ
= Hφ(ξ) + ρ(ξ), with φ(0) = B, (31)

where:

dφ

dξ
=


dφ1

dξ
dφ2

dξ
dφ3

dξ

 , H =

 0 0 1
0 0 −1
−1 −1 0

 , φ(ξ) =

 φ1(ξ)
φ2(ξ)
φ3(ξ)

 ,

ρ(ξ) =

 0
0
0

 , φ(0) =

 φ1(0)
φ2(0)
φ3(0)

 and B =

 0
1
0

 .

By applying M.T. to the system (29), we get

M {φ′
1(ξ)} −M {φ3(ξ)} = 0,

M {φ′
2(ξ)}+M {φ3(ξ)} = 0,

M {φ1(ξ)}+M {φ2(ξ)}+M {φ3
′(ξ)} = 0.

 (32)

Operating M.T. on (32) and using the initial condition (30)

ζM {φ1(ξ)} − ζ2φ1(0)−M {φ3(ξ)} = 0,
ζM {φ2(ξ)} − ζ2φ2(0) +M {φ3(ξ)} = 0,
M {φ1(ξ)}+M {φ2(ξ)}+ ζM {φ3(ξ)} − ζ2φ3(0) = 0.

 (33)

Simplifying the system (33), we obtain

ζM {φ1(ξ)} −M {φ3(ξ)} = 0,
ζM {φ2(ξ)}+M {φ3(ξ)} = ζ2,

M {φ1(ξ)}+M {φ2(ξ)}+ ζM {φ3(ξ)} = 0.

 (34)

Using Cramer’s rule to solve M {φ1(ξ)} ,M {φ2(ξ)} and M {φ3(ξ)} on the system (34)

M {φ1(ξ)} =

∣∣∣∣∣∣∣∣
0 0 −1
ζ2 ζ 1
0 1 ζ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ζ 0 −1
0 ζ 1
1 1 ζ

∣∣∣∣∣∣∣∣
= −1

ζ , (35)
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M {φ2(ξ)} =

∣∣∣∣∣∣∣∣
ζ 0 −1
0 ζ2 1
1 0 ζ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ζ 0 −1
0 ζ 1
1 1 ζ

∣∣∣∣∣∣∣∣
= ζ +

(
1
ζ

)
, (36)

M {φ3(ξ)} =

∣∣∣∣∣∣∣∣
ζ 0 −0
0 ζ ζ2

1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ζ −1
0 ζ 1
1 1 ζ

∣∣∣∣∣∣∣∣
= −1. (37)

By applying the inverse M.T. on the equations (35), (36) and (37), then we have

φ1(ξ) = M−1
{

−1
ζ

}
= −ξ2

2 , (38)

φ2(ξ) = M−1
{
ζ + 1

ζ

}
= 1 + ξ2

2 , (39)

φ3(ξ) = M−1{−1} = −ξ. (40)

Equations (38), (39) and (40) give the solution of the system (29) with the initial
condition (30).

4. Chemical -Physical Application

This section of the study includes a chemical-physical application to estimate the
concentrations c1, c2 and c3 of three reactants X,Y and Z of a first-order chemical reaction
in batches defined that is solved and discussed by the M.T..

reactant X −→ reactant Y −→ reactant Z.

dC1
dt = −λ1C1,
dC2
dt = λ1C1 − λ2C2,
dC3
dt = λ2C2.

 (41)

with
C1(0) = α, C2(0) = 0 and C3(0) = 0. (42)
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C1 = C1(t) = Concentration of achemical reactant X at time t,
C2 = C2(t) = Concentration of achemical reactant Y at time t,
C3 = C3(t) = Concentration of achemical reactant Z at time t,

where λ1, λ2 = rate constant > 0.
C1(0) = α = The initial concentration of achemical reactant X,
C2(0) = 0 = The initial concentration of achemical reactant Y,
C3(0) = 0 = The initial concentration of achemical reactant Z.


The matrix form of the system (41) with the initial conditions (42):

dC

dt
= HC(t) + ρ(t), withC(0) = B, (43)

where:

dC

dt
=

 dC1
dt
dC2
dt
dC3
dt

 , H =

 −λ1 0 0
λ1 −λ2 0
0 λ2 0

 , C(t) =

 C1(t)
C2(t)
C3(t)

 ,

ρ(t) =

 0
0
0

 , C(0) =

 C1(0)
C2(0)
C3(0)

 , and B =

 α
0
0

 .

By applying M.T. on the system (41), we get:

M {C ′
1(t)}+ λ1M {C1(t)} = 0,

M {C ′
2(t)} − λ1M {C1(t)}+ λ2M {C2(t)} = 0,

M {C ′
3(t)} − λ2M {C2(t)} = 0.

 (44)

Operating M.T. to (44) and using the initial conditions (42)

ζM {C1(t)} − ζ2C1(0) + λ1M {C1(t)} = 0,
ζM {C2(t)} − ζ2C2(0) + λ2M {C2(t)} − λ1M {C1(t)} = 0,
ζM {C3(t)} − ζ2C3(0)− λ2M {C2(t)} = 0.

 (45)

Simplifying the system (45), we obtain

(ζ + λ1)M {C1(t)} = ζ2α,
(ζ + λ2)M {C2(t)} − λ1M {C1(t)} = 0,
ζM {C3(t)} − λ2M {C2(t)} = 0.

 (46)

Using Cramer’s rule to solve M {C1(t)} ,M {C2(t)} and M {C3(t)} on the system (46)
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M {C1(t)} =

∣∣∣∣∣∣∣∣
ζ2α 0 0
0 ζ + λ2 0
0 −λ2 ζ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ζ + λ1 0 0
−λ1 ζ + λ2 0
0 −λ2 ζ

∣∣∣∣∣∣∣∣
= ζ3α(ζ+λ2)

ζ(ζ+λ2)(ζ+λ1)
= α

(
ζ2

(ζ+λ1)

)
, (47)

M {C2(t)} =

∣∣∣∣∣∣∣∣
ζ + λ1 ζ2α 0
−λ1 0 0
0 0 ζ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ζ + λ1 0 0
−λ1 ζ + λ2 0
0 −λ2 ζ

∣∣∣∣∣∣∣∣
= ζ3αλ1

ζ(ζ+λ2)(ζ+λ1)
= αλ1

(
ζ2

(ζ+λ2)(ζ+λ1)

)
, (48)

M {C3(t)} =

∣∣∣∣∣∣∣∣
ζ + λ1 0 ζ2α
−λ1 ζ + λ2 0
0 −λ2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ζ + λ1 0 0
−λ1 ζ + λ2 0
0 −λ2 ζ

∣∣∣∣∣∣∣∣
= αλ1λ2

(
ζ

(ζ+λ2)(ζ+λ1)

)
. (49)

By applying the inverse M.T. on the equations (47), (48) and (49) then, we have

C1(t) = M−1

{
α

(
ζ2

(ζ + λ1)

)}
= αM−1

{
ζ2

(ζ + λ1)

}
= αe−λ1t. (50)

C2(t) = M−1

{
α

(
ζ2

(ζ + λ2) (ζ + λ1)

)}
= αλ1M

−1

{
ζ2

(ζ + λ2) (ζ + λ1)

}
=

(
αλ1

λ2 − λ1

)(
e−λ1t − e−λ2t

)
. (51)

C3(t) = M−1

{
αλ1λ2

(
ζ

(ζ + λ2) (ζ + λ1)

)}
= α

(
M−1{ζ} − λ2

λ2 − λ1
M−1

{
λ2
1

ζ + λ1

}
+

λ1

λ2 − λ1
M−1

{
λ2
2

ζ + λ2

})
= α

(
1−

(
λ2

λ2 − λ1

)
e−λ1t +

(
λ1

λ2 − λ1

)
e−λ2t

)
.(52)

The values of concentration C1, C2 and C3 conforming to diverse values of time t and
for varied combinations of values of α, λ1 and λ2 are specified and displayed in Table 2,
and Figure 1 presents graphical representations. Table 2 shows that with the increasing
time t from 0 to 7 seconds, the concentration C1(t) of a chemical substance X declines for
any combinations of values of α and λ1 namely
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
α = 1

(
kg/m3

)
, λ1 = 1

(
sec−1

)
,

α = 1
(
kg/m3

)
, λ1 = 1.2

(
sec−1

)
,

α = 1
(
kg/m3

)
, λ1 = 1.3

(
sec−1

)
,


where concentration C1(t) of a chemical substance X at time t

(
kg/m3

)
.

Table 2 further shows that as the value of rate constant λ1 intensifies from 1 to 1.2sec−1

and 1 to 1.3sec−1, the value of the concentration C1(t) of a chemical substance X depletes
for time values t stretching from 1 to 5 seconds. What’s more, Table 2 determines that
for high values of time, the concentration C1(t) of a chemical substance X transforms into
0
(
kg/m3

)
. The results exhibited in Table 2 are corroborated by the diagram of Figure 1.

Table 2. Concentration C1(t) of a chemical substance X at time t of different combi-
nations of values α and λ1.

t(sec) C1(t)
(
kg/m3

)
α = 1

(
kg/m3

)
, λ1 = 1

(
sec−1

)
α = 1

(
kg/m3

)
, λ1 = 1.2

(
sec−1

)
α = 1

(
kg/m3

)
, λ1 = 1.3

(
sec−1

)
0 1.00 1.00 1.00
1.0 0.37 0.30 0.27
2.0 0.14 0.09 0.07
3.0 0.05 0.03 0.02
4.0 0.02 0.01 0.01
5.0 0.01 0.00 0.00
6.0 0.00 0.00 0.00
7.0 0.00 0.00 0.00
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Figure 1: Concentration C1(t) of a chemical substance X at time t of different combinations of values
α and λ1.

Table 4 illustrates that the concentration C2(t) of a chemical substance Y decreases
as time t increases from 0 to 6 seconds for every combination of values of α, λ1 and λ2.

α = 1
(
kg/m3

)
, λ1 = 1.0

(
sec−1

)
, λ2 = 0.5

(
sec−1

)
,

α = 1
(
kg/m3

)
, λ1 = 1.0

(
sec−1

)
, λ2 = 1.1

(
sec−1

)
,

α = 1
(
kg/m3

)
, λ1 = 1.0

(
sec−1

)
, λ2 = 1.4

(
sec−1

)
,

α = 1
(
kg/m3

)
, λ1 = 1.2

(
sec−1

)
, λ2 = 0.5

(
sec−1

)
,

α = 1
(
kg/m3

)
, λ1 = 1.2

(
sec−1

)
, λ2 = 1.1

(
sec−1

)
,

α = 1
(
kg/m3

)
, λ1 = 1.2

(
sec−1

)
, λ2 = 1.4

(
sec−1

)
,

α = 1
(
kg/m3

)
, λ1 = 1.3

(
sec−1

)
, λ2 = 0.5

(
sec−1

)
,

α = 1
(
kg/m3

)
, λ1 = 1.3

(
sec−1

)
, λ2 = 1.1

(
sec−1

)
,

α = 1
(
kg/m3

)
, λ1 = 1.3

(
sec−1

)
, λ2 = 1.4

(
sec−1

)
.


From the following table, it is evident that when the value of rate constant λ1 raises

from 1 to 1.3sec−1, the value of the concentration C2(t) of a chemical substance Y raises
initially, and diminishes subsequently as time t increases from 0 to 7 seconds. In addition,
this table manifests that since the value of rate constant λ2 goes from 0.5 to 1.4sec−1,
the value of a chemical substance’s concentration Y drops for all time t values. Moreover,
Table 3. displays that for high values of time t, the concentration C2(t) of a chemical
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substance Y becomes 0 kg/m3. The diagram of Figure 2 depicts the similar observations
as the Table 3.

Table 3 . Concentration C2(t) of a chemical substance Y at time t of different combi-
nations of values α, λ1 and λ2.

t(sec) C2(t)
(
kg/m3

)
α = 1

(
kg/m3

)
, λ1 = 1

(
sec−1

)
α = 1

(
kg/m3

)
, λ1 = 1.2

(
sec−1

)
α = 1

(
kg/m3

)
, λ1 = 1.3

(
sec−1

)
λ2 = 0.5(
sec−1

) λ2 = 1.1(
sec−1

) λ2 = 1.4(
sec−1

) λ2 = 0.5(
sec−1

) λ2 = 1.1(
sec−1

) λ2 = 1.4(
sec−1

) λ2 = 0.5(
sec−1

) λ2 = 1.1(
sec−1

)
0 0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00
1.0 0.48 0.35 0.29 0.52 0.38 0.33 0.54 0.39
2.0 0.47 0.25 0.17 0.48 0.24 0.18 0.48 0.24
3.0 0.35 0.13 0.08 0.34 0.11 0.07 0.33 0.11
4.0 0.23 0.06 0.03 0.22 0.05 0.03 0.21 0.04
5.0 0.15 0.03 0.01 0.14 0.02 0.01 0.13 0.02
6.0 0.09 0.01 0.00 0.08 0.01 0.00 0.08 0.01
7.0 0.06 0.00 0.00 0.05 0.00 0.00 0.05 0.00

Figure 2: Concentration C2(t) of a chemical substance Y at time t of different combinations of values
α, λ1 and λ2.

Table 4 reveals how the concentration C3(t) of a chemical substance Z elevates as time
elevates from 0 to 6 seconds for all combinations of values of α, λ1 and λ2, namly
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

α = 1
(
kg/m3

)
, λ1 = 1.0

(
sec−1

)
, λ2 = 0.5

(
sec−1

)
,

α = 1
(
kg/m3

)
, λ1 = 1.0

(
sec−1

)
, λ2 = 1.1

(
sec−1

)
,

α = 1
(
kg/m3

)
, λ1 = 1.0

(
sec−1

)
, λ2 = 1.4

(
sec−1

)
,

α = 1
(
kg/m3

)
, λ1 = 1.2

(
sec−1

)
, λ2 = 0.5

(
sec−1

)
,

α = 1
(
kg/m3

)
, λ1 = 1.2

(
sec−1

)
, λ2 = 1.1

(
sec−1

)
,

α = 1
(
kg/m3

)
, λ1 = 1.2

(
sec−1

)
, λ2 = 1.4

(
sec−1

)
,

α = 1
(
kg/m3

)
, λ1 = 1.3

(
sec−1

)
, λ2 = 0.5

(
sec−1

)
,

α = 1
(
kg/m3

)
, λ1 = 1.3

(
sec−1

)
, λ2 = 1.1

(
sec−1

)
,

α = 1
(
kg/m3

)
, λ1 = 1.3

(
sec−1

)
, λ2 = 1.4

(
sec−1

)
.


Moreover, this table portrays that as the value of rate constant λ1 advances from 1

to 1.3sec−1, the value of the concentration C3(t) of a chemical substance Z increases for
all time t values. In addition, this table unveils that while the value of rate constant λ2

expands from 0.5 to 1.4sec−1, the value of the concentration C3(t) of a chemical substance
Z expands for all values of time t. In addition, Table 4 exhibits that for high time t
values, the concentration C3(t) of a chemical substance Z develops into 1 kg/m3. The
graph sketch in Figure 3 renders the equivalent findings as in Table 4.

Table 4. Concentration C3(t) of a chemical substance Z at time t of different combi-
nations of values α, λ1 and λ2.

t(sec) C3(t)
(
kg/m3

)
α = 1

(
kg/m3

)
, λ1 = 1

(
sec−1

)
α = 1

(
kg/m3

)
, λ1 = 1.2

(
sec−1

)
α = 1

(
kg/m3

)
, λ1 = 1.3

(
sec−1

)
λ2 = 0.5(
sec−1

) λ2 = 1.1(
sec−1

) λ2 = 1.4(
sec−1

) λ2 = 0.5(
sec−1

) λ2 = 1.1(
sec−1

) λ2 = 1.4
( sec −1

) λ2 = 0.5(
sec−1

) λ2 = 1.1(
sec−1

)
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.0 0.15 0.28 0.33 0.18 0.32 0.37 0.18 0.34
2.0 0.40 0.62 0.68 0.43 0.67 0.73 0.45 0.69
3.0 0.60 0.82 0.86 0.64 0.86 0.90 0.65 0.87
4.0 0.75 0.92 0.95 0.77 0.94 0.96 0.78 0.95
5.0 0.84 0.97 0.98 0.86 0.98 0.99 0.87 0.98
6.0 0.90 0.99 0.99 0.92 0.99 1.00 0.92 0.99
7.0 0.94 0.99 1.00 0.95 1.00 1.00 0.95 1.00
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Figure 3: Concentration C3(t) of a chemical substance Z at time t of different combinations of values
α, λ1 and λ2.

5. Conclusion

In this comprehensive research, the Mohanad transform (M.T.) emerged as a pivotal
mathematical tool, its versatility and efficiency evident in solving a wide array of scientific
and engineering problems. The study showcased the foundational properties of M.T. and
its relation to integral transforms, affirming its robustness in tackling complex differential
equations. By presenting concrete examples of solving systems of ordinary differential
equations (ODEs) and applying M.T. to determine chemical reactant concentrations in a
series reaction, this work not only validated its efficacy but also demonstrated its practical
utility in physical chemistry. The transformative aspect of M.T. lies in its ability to yield
exact solutions with minimal computational load, underscoring its precision and efficiency
in problem-solving. The novelty of this research extends beyond the mere introduction
of M.T., shedding light on its application across diverse fields such as electric circuits,
population growth, vibrational beams, and heat conduction. By delving into its interdis-
ciplinary utility, this study broadens the understanding of where and how M.T. can be
effectively employed. Moreover, the emphasis on its cross-disciplinary application between
mathematics and physical chemistry exemplifies its real-world relevance, surpassing theo-
retical constructs to address practical scientific challenges[11–13, 27, 29, 31, 32, 34, 36, 41].
The incorporation of graphs and tables further enhances the precision and interpretabil-
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ity of results, highlighting M.T.’s practical significance in both academic and industrial
settings. The distinctive contribution of this research lies in its holistic exploration and
practical deployment of M.T., affirming its efficiency, precision, and applicability in solving
complex problems across scientific and engineering domains. This work not only solidifies
the foundational understanding of M.T. but also showcases its transformative potential,
paving the way for future advancements and innovative applications in diverse disciplines.
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