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Abstract. In this paper, we prove that all the eigenvalues of arbitrarily complex matrix are located
in one closed disk, which is a refinement of some existing inequalities.
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1. Introduction

We denote by Mn the vector space of all complex n× n matrices. The notation A ≥ 0
is used to mean that A is positive semidefinite. For A ∈ Mn, the conjugate transpose of
A is denoted by A∗. Denote by λj (A) (1 ≤ j ≤ n) the class of all eigenvalues of A ∈ Mn

and ∥A∥F =
√
tr (AA∗), [A,B] = AB − BA. The singular values of A are enumerated

as s1 (A) ≥ s2 (A) ≥ · · · ≥ sn (A). These are the eigenvalues of the positive semidefinite

matrix |A| = (A∗A)
1
2 .

The estimation and location of eigenvalues are always hot topics of matrix analysis [1],
[2]. It plays an important role in many fields of applied science. Let M ∈ Mn be an n×n
complex matrix partitioned as

M =

[
Ak Bk,n−k

Cn−k,k Dn−k

]
,

where 1 ≤ k ≤ n− 1. The following estimation

n∑
i=1

|λi|2 ≤ ∥M∥2F − max
1≤k≤n−1

(
∥Bk,n−k∥F − ∥Cn−k,k∥F

)2
is an elegant result on eigenvalues due to Tu [3].
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In [4], Gu proposed a new idea which uses only one single closed disk to locate eigen-
values of a given n×n complex matrix. He proved that all the eigenvalues of any complex
matrix A are located in the following disk:∣∣∣∣λj −

trA

n

∣∣∣∣ ≤
(
n− 1

n

(
∥A∥2F − |trA|2

n

)) 1
2

(1)

for j = 1, 2, · · · , n.
Zou et al. [5] showed that all eigenvalues of M are located in the following disk:{
z ∈ C :

∣∣∣∣z − trM

n

∣∣∣∣ ≤
√

∥M∥2F − |trM |2
n

− max
1≤k≤n−1

(
∥Bk,n−k∥F − ∥Cn−k,k∥F

)2}
. (2)

Let M (x) =

[
Ak xBk,n−k

x−1Cn−k,k Dn−k

]
, where Ak is a k × k principal submatrix of M

(1 ≤ k ≤ n− 1) and x is any non-zero real number.
For convenience, we write, respectively.

△M (k, x) = ∥M∥2F −
[(
1− x2

)
∥Bk,n−k∥2F +

(
1− x−2

)
∥Cn−k,k∥2F

]
− |trM |2

n

and

fM (k, x) =

(
(△M (k, x))2 − 1

2
∥[M (x) ,M (x)∗]∥2F

) 1
2

+
|trM |2

n
.

In [6], Wu et al. proved that∣∣∣∣λj(M)− trM

n

∣∣∣∣ ≤ min
x̸=0

min
1≤k≤n−1

√
n− 1

n

(
fM (k, x)− |trM |2

n

) 1
2

, (3)

which is a refinement of inequality (2).
It is natural to ask whether stronger inequality of (2) might be proved. This is a part

of the motivation for our study.

2. Main result

We let the symbol Sl denote the set {1, · · ·n}\{l} for l = 1, 2, · · · , n. In this section, a
sharper estimation of the eigenvalues is presented. In order to obtain our result, we need
the following lemmas.

Lemma 1. [7] Let A ∈ Mn with n ≥ 3, then∣∣∣∣λl(A)− trA

n

∣∣∣∣2 ≤ n− 1

n

 n∑
j=1

|λj(A)|2 − |trA|2

n
− 1

2
s2(A)


for l = 1, 2, · · · , n and s(A) = min

1≤l≤n
max
j,k∈Sl

|λj(A)− λk(A)|.
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Lemma 2. [7] Let A ∈ Mn, then

n∑
j=1

|λj(A)|2 ≤

√√√√(∥A∥2F − |trA|2

n

)2

−
∥[A,A∗]∥2F

2
+

|trA|2

n
.

Next we give a new proof of Lemma 2.2 in [6], which plays a key role in their discussion.

Lemma 3. Let M =

[
Ak Bk,n−k

Cn−k,k Dn−k

]
with eigenvalues λ1, λ2, · · · , λn, then

n∑
j=1

|λj |2 ≤ min
x ̸=0

min
1≤k≤n−1

fM (k, x)

is valid for any non-zero number x.

Proof. Let X =

[
xIk 0
0 In−k

]
, then M(x) = XMX−1, where Ik is a k × k unit

matrix. Obviously, M(x) is similar to M . By Lemma [2], we have

n∑
j=1

|λj(M)|2 =
n∑

j=1

|λj(M(x))|2 (4)

≤

√√√√(∥M(x)∥2F − |trM(x)|2

n

)2

−
∥[M(x),M(x)∗]∥2F

2
+

|trM(x)|2

n

=

√√√√(∥M(x)∥2F − |trM |2

n

)2

−
∥[M(x),M(x)∗]∥2F

2
+

|trM |2

n
,

where

∥M(x)∥F =
(
∥M∥2F −

[(
1− x2

)
∥Bk,n−k∥2F +

(
1− x−2

)
∥Cn−k,k∥2F

]) 1
2
. (5)

Combing inequality (4) and equality (5), we conclude Lemma 3.

We now focus on the location of the eigenvalues of complex matrices.

Theorem 1. Let M =

[
Ak Bk,n−k

Cn−k,k Dn−k

]
with eigenvalues λ1, λ2, · · · , λn ( n ≥ 3), then

all of eigenvalues of M are included by the following disk:

∣∣∣∣λl(M)− trM

n

∣∣∣∣ ≤ min
x ̸=0

min
1≤k≤n−1

√
n− 1

n

(
fM (k, x)− |trM |2

n
− 1

2
s2(M)

) 1
2

for l = 1, 2, · · · , n and s(M) = min
1≤l≤n

max
j,k∈Sl

|λj(M)− λk(M)|.
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Proof. Combining Lemmas 2.1 and 2.3, we deduce that∣∣∣∣λl(M)− trM

n

∣∣∣∣2 ≤ n− 1

n

 n∑
j=1

|λj(M)|2 − |trM |2

n
− 1

2
s2(M)


≤ n− 1

n

(
min
x ̸=0

min
1≤k≤n−1

fM (k, x)− |trM |2

n
− 1

2
s2(M)

)

≤ min
x̸=0

min
1≤k≤n−1

n− 1

n

(
fM (k, x)− |trM |2

n
− 1

2
s2(M)

)
.

Therefore,∣∣∣∣λl(M)− trM

n

∣∣∣∣ ≤ min
x ̸=0

min
1≤k≤n−1

√
n− 1

n

(
fM (k, x)− |trM |2

n
− 1

2
s2(M)

) 1
2

for s(M) = min
1≤l≤n

max
j,k∈Sl

|λj(M)− λk(M)|.
This completed the proof.

For complex matrix with order n(n > 2), then the computation of Theorem 2.4 requires

approximately n3

2 additional calculations compared to the computation of inequality(3).
This indicates that its computational complexity is greater than the computational com-
plexity in (3). But, in theory, Theorem 2.4 is a refinement of (3).
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