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On a parameter-controlled method for multiple zeros
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Abstract. For a parameter-controlled Newton-secant method, we investigate the complex dynam-
ics with the stability surfaces and parameter spaces using Möbious conjugacy map applied to the
form ((z − A)(z − B))m. The basins of attraction of test functions is illustrated according to the
color palette. The nonlinear equation related to blood rheology model has been employed to show
the basins of attraction.
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1. Introduction

The root-finding problem[10, 11] in diverse field of science, engineering and artificial
intelligence is an important task to handle. Researchers are developing new iterative
methods to solve the nonlinear equations. With the advent of high-accuracy computer,
the numerical methods are improved efficiently and accurately in [3, 7, 8, 12, 14]. A root α
of f(x) = 0 is called a multiple root with multiplicitym if f (i)(α) = 0, i = 0, 1, 2, · · · ,m−1
and g(m)(α) ̸= 0.

Let f : C → C be an analytic function[1, 13] with an integer multiplicity m ≥ 1. Geum
et al. [5] investigated the third order of parameter-controlled Newton-secant scheme given
by

xn+1 = xn −
m(1− tm)f(xn)

2

f ′(xn){f(xn)− f(yn)}
, (1)

where yn = xn −m(1− t) f(xn)f ′(xn)
.

The iteration method (1) is expressed as a discrete formula

xn+1 = Of (xn), (2)

where Of is the iterative method. We have a complex discrete dynamical system[6].
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zn+1 = Of (zn) = zn − λ
f(zn)

2

f ′(zn){f(zn)− f(yn)}
, (3)

where yn = zn − µ f(zn)
f ′(zn)

, µ = m(1− t) and λ = m(1− tm).

2. Analysis

Applying Möbius conjugacy map M(z) to f(z) = ((z −A)(z −B))m, we have

J(z, t) =M ◦Of ◦M−1(z) =
z((1 + z)r1r2 − r3δ1)

(1 + z)r1r2 − r3δ2
, (4)

where M(z) = (z −A)/(z −B), A, B ∈ C ∪ {∞}, A ̸= B, r1 = (t + z)m, r2 = (1 +
tz)m, r3 = (1 + z)2m, δ1 = (tm + z) and δ2 = (1 + tmz). Then Of (z, t) is conjugate [2] to
J(z, t).

In case of m = 1, 2, we have

J(z, t) =

{
z2(t+z)
1+tz , m=1,
z(1+t3z+z(1+z)(2+z)+t2(2+z+2z2)+t(−1+z(2+z+z2)))

1+t+(3+t+2t2)z+(1+t)(2+t2)z2+(1+t(−1+2t))z3
, m=2.

(5)

We locate the fixed points of the iterative method J(z, t). Let J(z, t)−z whose roots are
the desired fixed point of J(z, t). z = 0 and z = 1 are the zeros of J(z, t)− z. Since M(z)
is a fixed point of J(z, t) for a fixed point z of Of , the explicit form of ϕ(z, t) = J(z, t)− z
is given by

ϕ(z, t) =
(−1 + z)zr3δ3

(1 + z)r1r2 − r3δ2
, (6)

and

ϕ(z, t) =

{
z(z−1)ψ1(t)

q1(t)
, if m=1,

z(z−1)ψ2(t)
q2(t)

, if m=2,
(7)

where

ψ1(z) = z + 1, q1(z) = 1 + tz,
ψ2(z) = (1 + t)(1 + z)3, q2(z) = 2(1 + z)4 + t2z(1 + z)4 − z(t+ z)2(1 + tz)2.

By aid of Mathematica [15], we compute the derivative of J(z, t) :

J ′(z, t) =
T1r3 + T2r1 + (1 + z)2r1

2r2
2

((1 + z)r1r2 − r3δ2)2
, (8)
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where T1 = (2z + tm(1 + z2))r3 − mz(t + z)−1+m(−1 + z2)r2δ3 T2 = (−mtz(1 +
tz)−1+m(−1 + z2)r3δ3 + r2(−((1 + z(4 + z) + tm(1 + z2))r3) + 2m(−1 + z)z(1 + z)2mδ3)),
For m = 1 and m = 2, we have

J ′(z, t) =

{
z(3z+t2z+2t(1+z2))

(1+tz)2
, m=1

z((1+z6)δ0+z((1+z4)δ1+z(δ2+z2δ2+zδ3)))

δ4
2 , m=2.

(9)

δ0 =2(1 + t2 + 2t3), δ1 = (9 + t(10 + t(16 + t(6 + 7t)))),

δ2 =2(1 + t)(4 + t2)(3 + t+ 2t2),

δ3 =(35 + t(38 + t(47 + t(24 + t(13 + t(2 + t)))))),

δ4 =1 + t+ (3 + t+ 2t2)z + (1 + t)(2 + t2)z2 + (1 + t(−1 + 2t))z3.

The critical point of the parameter-controlled method refers to a point where the
derivative of a function is zero, that is J ′(z, t) = 0. The points z = ∞ and z = 0 are
critical points associated with (z − A)(z − B). The critical points that are not any roots
of the polynomial (z − A)(z − B) are called to be free critical points. As the result of
following Algorithm 1, the stability surfaces are displayed in Figure 1 and 2.

Algorithm 1
(1) Set i = 1
(2) Choose a region B ∈ C and select a point v = (Re(v), Im(v)) in B
(3) For the v, solve qi(k) = 0 using Mathematica [15].
(4) Compute mi = |J ′(k, t)|.
(5) Save (Re(v), Im(v),mi) and choose the next value in B
(6) Repeat steps (2)-(5) until desired result is done.
(7) Set i = i+ 1 and if i ≤ w, then repeat steps (2)-(6)
(8) If i = w, then stop the process.

3. Experiment

According to Algorithm 2, the numerical parameter spaces for m = 1 and m = 2 are
constructed in Figure 3 and 4. The systematic color palette in Table 1 is utilized to paint
a value according to the orbital period of the point z of J(z, t). The tolerance of 10−4

after up to 1000 iterations is assigned.

Algorithm 2
(1) Set i = 1
(2) Choose a region B ∈ C and select a point v = (Re(v), Im(v)) in B
(3) For the v, find the free critical point.
(4) Compute the orbit of J(z, t) within the maximal iterative number.
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(a) |ℜ(t)| ≤ 50, |ℑ(t)| ≤ 50 (b) −3 ≤ ℜ(t) ≤ 1, |ℑ(t)| ≤ 1

(c) −7 ≤ ℜ(t) ≤ −2, − 3 ≤ ℑ(t) ≤ 3 (d) |ℜ(t)| ≤ 500, |ℑ(t)| ≤ 500

Figure 1: Stability surfaces for m = 1.

(5) If the orbit converges to one cycle within the given error, then color the point v ac-
cording to the color palette in Table 1.
(6) Choose the next value in B
(7) Repeat steps (2)-(6) until desired result is obtained.
(8) Set i = i+ 1 and if i ≤ w, then repeat steps (2)-(8)
(9) If i = w, then stop the process.

In Figure 5, the basins of attraction associated with m = 1, 2 are appeared. As the
last example, we choose the equation in blood rheology model[4]

z =

(
x8

441
+

8x5

63
− 2857144357x4

50000000000
+

16x2

9
− 906122449x

250000000
+

3

10

)4

,

to carry out the experiments. In Figure 6, the basins of attraction for this equation are
shown.
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(a) |ℜ(t)| ≤ 5000, |ℑ(t)| ≤ 5000 (b) |ℜ(t)| ≤ 5, |ℑ(t)| ≤ 5

(c) 1 ≤ ℜ(t) ≤ 3, − 3 ≤ ℑ(t) ≤ −1 (d) |ℜ(t)| ≤ 5000, |ℑ(t)| ≤ 50001

(e) |ℜ(t)| ≤ 5000, |ℑ(t)| ≤ 5000 (f) 0 ≤ ℜ(t) ≤ 500, − 500 ≤ ℑ(t) ≤ 0

Figure 2: Stability surfaces for m = 2.

Table 1: Color palette for a n-periodic orbit with n ∈ N ∪ {0}
n Cn

n = 1 C1 =


magenta, for fixed point ∞
cyan, for fixed point 0

yellow, for fixed point 1

red, for other strange fixed point ,

2 ≤ n ≤ 68 C2 = orange, C3 = light green, C4 = dark red, C5 = dark blue, C6 = dark green, C7 = dark yellow,
C8 = floral white, C9 = light pink, C10 = khaki, C11 = dark orange, C12 = turquoise, C13 = lavender,
C14 = thistle, C15 = plum, C16 = orchid, C17 = medium orchid, C18 = blue violet, C19 = dark orchid,

C20 = purple, C21 = power blue, C22 = sky blue, C23 = deep sky blue, C24 = dodger blue, C25 = royal blue,
C26 = medium spring green, C27 = spring green, C28 = medium sea green, C29 = sea green, C30 = forest green,

C31 = olive drab, C32 = bisque, C33 = moccasin, C34 = light salmon, C35 = salmon, C36 = light coral,
C37 = Indian red, C38 = brown, C39 = fire brick, C40 = peach puff, C41 = wheat, C42 = sandy brown,
C43 = tomato, C44 = orange red, C45 = chocolate, C46 = pink, C47 = pale violet red, C48 = deep pink,
C49 = violet red, C50 = gainsboro, C51 = light gray, C52 = dark gray, C53 = gray, C54 = charteruse,
C55 = electric indigo, C56 = electric lime, C57 = lime, C58 = silver, C59 = teal, C60 = pale turquoise,
C61 = sandy brown, C62 = honeydew, C63 = misty rose, C64 = lemon chiffon, C65 = lavender blush,

C66 = gold, C67 = crimson, C68 = tan.

n = 0∗ or n > 69 Cn = black.

∗: n = 0 : the orbit is non-periodic but bounded.
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(a) 2.6 ≤ ℜ(t) ≤ 4.6, |ℑ(t)| ≤ 1 (b) 2.95 ≤ ℜ(t) ≤ 2.98, |ℑ(t)| ≤ 0.015

-1.5 -1.4 -1.3 -1.2 -1.1 -1. -0.9 -0.8

-0.4

-0.3

-0.2

-0.1

0.

0.1

0.2

4.2 4.22 4.24 4.26 4.28 4.3 4.32 4.34 4.36 4.38 4.4

-0.1

-0.08

-0.06

-0.04

-0.02

0.

0.02

0.04

0.06

0.08

(c) − 1.5 ≤ ℜ(t) ≤ −0.8, |ℑ(t)| ≤ 0.4 (d) 4.2 ≤ ℜ(t) ≤ 4.4, |ℑ(t)| ≤ 0.1

Figure 3: Parameter spaces for m = 1 .
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Figure 4: Parameter spaces for m = 2 .
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Figure 5: Basins of attraction of test functions
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Figure 6: Basins of attraction of Blood Rheology model

4. Conclusion

We have studied the complex dynamics using Möbius conjugacy map applied to f(z) =
((z − A)(z − B))m with the known multiplicity m. To obtain the useful information
on better initial values of any numerical method, we need to experiment the basins of
attractions.

As a next work, we focus on developing the higher order methods and illustrating
the dynamical behavior to find out the chaotic geometry of their dynamics [6]. For test
functions, Euler-Cauchy method is best in the sense that the boundaries of the basins
have no lobes in Neta B. [9]. Frow this viewpoint, I will improve the efficient and accurate
method for nonlinear equations.
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