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Abstract. The main objective of this research is to study some types of generalized closed sets in
fuzzy bitopology including (i, j) —ga—cld, (i,7) —gs—cld, (i,j) —gp—cld, and (¢,5) —gB —cld. We
then present basic theorems for determining their relationships and explain their properties, such
as closure and interior. In addition, there are many interesting counterexamples. The last part
of the research focuses on compactness as an application of the types of fuzzy generalized closed
sets in fuzzy bitopological spaces and their types and explores the relationships between these
concepts, their important theories, and some relevant counterexamples. This approach provides a
better characterization of fuzzy compactness and allows for more precise characterization in fuzzy
bitopology. The results of this study are new to the domain of fuzzy bitopology.
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1. Introduction

In this project, we prioritized our study on fuzzy bitopology, which was derived from
a fuzzy topology first introduced in 1965 by Zadeh [23]. Following this, many researchers
have applied fundamental ideas on fuzzy settings from a general topology and improved the
concept of fuzzy topology. Chang (1968) introduced fuzzy concepts into fuzzy topology
[9]. Kandil (1989) introduced fuzzy bitopological spaces [11]. In addition, generalized
fuzzy closed sets were established in a fuzzy topology by Balasubramanian and Sundaram
in 1997 [7]. Some scholars have presented many important papers on the development
types of fuzzy sets; for example, Singal and Prakash presented a study of a fuzzy pre-open
set [20]. Balasubramanian developed a theory of fuzzy 8 open set [6]. Ahmad and Athar
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found important results on fuzzy semi open sets [2]. In addition, Hakeem and Latha
introduced new results for fuzzy o open set [15].

Furthermore, extensive research has been conducted on the concept of generalized
closed sets in fuzzy space [14, 24]. Subsequently, many studies have introduced the use
of generalized closed sets in fuzzy topologies, such as El-Shafei [10]. Some studies have
applied these to the concept of functions that contribute to enriching this research area
too [13, 18, 19]. On the other hand, earlier research on compactness informed our study of
this topic [1, 21]. A recent study discussed the properties of compactness, but in another
field, as G-metric spaces [12] and fuzzy soft space as [22]. In addition, Jamal et al. studied
several properties of compact space using regular open sets [16].

The study explores the concept of generalized closed sets in fuzzy bitopological spaces, a
flexible framework for studying topological properties and partial membership. It provides
a smooth transition between open and closed sets, offering a more flexible definition of
closure than traditional closed sets. Also, delves into their interrelationships and highlights
important theories and counterexamples. Moreover, because the generalized closed sets
have many applications in a range of topological concepts, such as neighborhoods, which
are discussed and explained in detail in reference [4], they were applied to connectedness
as in [3], also to functions as in [5], but we aim to apply them to another topological
topic, that is compactness. It provides better characterizations of fuzzy openness and
fuzzy compactness and allows for more precise characterizations, which are important
properties in fuzzy bitopology.

Finally, the research is organized as follows. The first section (Introduction) looks at
the subject’s background and related studies. In Section 2 (preliminaries), we briefly dis-
cuss several important concepts pertinent to our investigation. The concept of generalized
closed sets is presented in Section 3 (Types of Fuzzy Generalized Closed Groups in Fuzzy
Bitopology Space), important theorems and distinctive properties are discussed, and some
interesting counterexamples are introduced. Then, we provide crucial definitions of fuzzy
generalized compactness in Section 4 (Types of Fuzzy Generalized Compactness in Fuzzy
Bitopological Spaces). In Section 5 (Conclusion), we summarize our results.

2. Preliminaries

In the following part, we go over important antecedent notions that are essential to
the development of this paper.

Definition 1. [17] Suppose the set X is not empty and the I sign represents the unit
period [0, 1], then the following defined as:

(1) an operator with X domain and I range is known as a fuzzy set E, where E(z) € (0,1]
when x € E, and E(z) =0 in case ¢ € E.

(2) a set D is including E indicated via E C D if E(x) < D(x), whenever x € X

(3) E and D combination indicated by EN D if (EV D)(z) = max{E(x),D(z)} V= € X.
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(4) the intersection of E, D indicated by EAD if (EAD)(x) = min{E(z),D(z)} Vz € X.
(5) the completeness of E denoted via E€ such that (E(z))°=1— E(x),V x € X.

The following definitions explain the meaning of fuzzy topology and fuzzy bitopological
spaces.

Definition 2. [17] A fuzzy topology of X is a class of fuzzy groups 6 € I that holds the
coming three conditions:

1. 0 and 1 contained in 0, where 0(x) =0, 1(x) =1, whenever x € X.
2. Forany E,D €, END €.
3. For any (Eicr) € 0, VierE; € 6.

The term ”fuzzy topological space,” or "fts,” refers to the pair (X,0).
The components of § are named fuzzy open sets. If F¢ € 0, a fuzzy set F' is mean as fuzzy
closed. The collection including all fuzzy closed sets in fuzzy topology § denote by Fs.

Definition 3. [11] A fuzzy bitopological spaces, or fbts for short, (X,01,0d2) since X is
not empty, 61, and &2 are fuzzy topological spaces on X . QOver this dissertation X perform
fuzzy bitopology (X,01,02), and Y to (Y,01,02), where i # j,and i,j € {1,2}.

In the section that follows, the definitions of fuzzy set interiors and closings are covered.

Definition 4. [17] Closing and internal of any fuzzy set M of (X,9) are indicated also
defined as follows:

cd(M)=N{F:M < F,F° €}
int(M) =V {0:0 < M,O €}, respectively.

The closing, internal, and complements of M of X are indicated by d;—cl(M), 0;—int(M),
and M, respectively, with regard to fuzzy topology 0;. Additionally, we designate the class
of all fuzzy d;-closed by the mathematical symbol Fs;.

One of the work’s core tenets is the definition of the fuzzy generalized closed set, which
as following:

Definition 5. [7] Any fuzzy set N of X is termed fuzzy generalized closed when closure
N is subset of U, wherever N is subset of U and U is fuzzy open.
i.e., N is fuzzy generalized closed if cl(N) < U, wherever N < U, U is fuzzy open.

One of the fundamental ideas in this research is continuous and irresolute mapping, in
addition to compactness, they are defined as follows:

Definition 6. [17] Let (X,0) and (Y,0) be an fts and f a function from X toY. Then
f is fuzzy 6— continuous if and only if f~5(V) € 4,VV € 0.
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Definition 7. [8/ A mapping f : (X,0) — (Y,0) is said to be fuzzy § — a — irresolute
if f~Y(V) is fuzzy a—open set in X for each fuzzy a—open set V in'Y .

Definition 8. /9]

(1) Any fuzzy topology (X, T) is named fuzzy compact when every fuzzy open covering X
has a limited subcover.

(2) Any fuzzy set B of (X, 7) is named a fuzzy compact subset of X when every fuzzy
open covering B has a limited subcover.

An important property in the study of compactness is the finite intersection property,
which was define as:

Definition 9. [9] A class {A;} of fuzzy groups of X is entitled having finite intersection
characteristic (in sum, F.I.P) when all finite subclass {A;,, Ai,, ..., Ai, } has a non empty
intersection A;; NA;, N...NA;, # ¢

3. Types of Fuzzy Generalized Closed Classes in Fuzzy Bitopology
Space

In the following section, we discuss some types of fuzzy generalized closed groups,
theorems, and relationships, and examine their closure and interiors in an fbts.

Definition 10. Any fuzzy set H of fots (X, 1, 72), where i,j € {0,1},i # j is called:

(1) fuzzy (i,j)—generalized a—-closed (in sum, (i,j) — go — cld) if 7j — acl(H) < W,
wherever H < W, W € ;.

(2) fuzzy (i,7)—generalized semi—closed (in sum, (i,5) —gs —cld ) if T; — scl(H) < W,
wherever H < W, W € 1;.

(3) fuzzy (i,j)—generalized pre—closed (in sum, (i,j) —gp — cld ) if 7; — pcl(H) < W,
wherever H < W, W € 7;

(4) fuzzy (i,j)—generalized f—closed (in sum, (i,7) — gf — cld ) if 7j — Bel(H) < W,
wherever H < W, W € ;.

(5) the complement of the above sets are called fuzzy (i,j) — ga — open, (i,7) — gs —
open, (i,7) — gp — open, and (i,7) — g8 — open.

Remark 1. (1) We denote the class for every fuzzy (i,j) — ga—open, (i,7) — gs—open,
(i,7) — gp—open and (i,j) — gB—open (resp, fuzzy (i,7) — ga—cld, (i,j) — gs—cld,
(i,7) — gp—cld, and (i,7) — gB8—cld) sets in (X, 7;,7;) by (’)é‘% and .7-"(];‘:’;‘)7 resp. Also,
we gave the names (i, j)—gp—cld and (i, j)—gp—open to all fuzzy types of generalized
closed and open groups, respectively.

(2) In all sections of this research i,j € {0,1},1 # j
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From the above Definition10 we conclude the following:

Proposition 1. Any fuzzy subset E of (X, 71,72) considered fuzzy (i,7) — gp—open <
F <1j — ¢ —int(E), wherever F € F,,, and F < E, where i,j € {0,1},1 # j.

Proof. Assume F is fuzzy (i,j) — gp—open. Then E€ is (i,j) — gp—cld, thus the
condition relation is hold for E¢. Therefore, by using the complent we find
Tj — ¢ — cl(E°) = (17 — ¢ —int(F))¢ < F° which implies F' < 7; — ¢ —int(F).
Conversely, by using Definition 10 and taking the complement for both sides in condition
we find E€ is fuzzy (i,j) — gp—cld. For that F is fuzzy (i,j) — gp—open.

In the section that follows, we define the terms ”closure” and ”interior” of fuzzy gen-
eralized closed sets in fbts field, as well as the key theories, connections between these
notions, and their complement.

Definition 11. For all fbts (X, 11, 72), E € IX, (i,5) — gp — closure and (i,j) — gp —
interior in regard to E are indicated and defined as shown:

(1) (i,5) —gp —c(E) =N{F: E<F Fis (i,j) —gp—cld }

(i) (i,7) —gp—int(E) =V {O:0 < E,O is (i,j) — gp — open }.

Theorem 1. If E is a fuzzy subset of (X, 71,72). Then the coming conditions are met:
(1) ((%5) = 9p —int(E) ) = (i,7) — gp — cl(E)

(2) ((69) = g9 — cl(E) ) = (i, 7) — gp — int(E°).

Proof. 1t is clear from the complement low and De Morgan theorem.

Theorem 2. If (X, 11, 72) is fbts. Then the next statements are satisfied:

(1) Every fuzzy (i,7) — g — cld is fuzzy (i,7) — ga — cld.
(2) Every fuzzy (i,7) — ga — cld is fuzzy (i,7) — gp — cld and fuzzy (i,7) — gs — cld.
(3) Every fuzzy (i,j) — gp — cld or fuzzy (i,7) — gs — cld is fuzzy (i,7) — gf — cld.

Proof. Tt is clear from Definition 10 and the relations between types of fuzzy sets where

open — (a open) — (s open)

! |
(pre open) — (B open)

Remark 2. The following diagram explaining the relations between all types generalized
closed sets in (X,7;,75), 1,5 € {0,1},4 # j:
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Tj — Cld
l
(i,j) —g—cld
l
(1,7) — goe — cld — (i,7) — gp — cld
l |

(4,7) — gs —cld — (i,j) — gB —cld

Figure 1: Explain the relations between (i, j) — gp—cld sets.

The examples that follow demonstrate that the above diagram’s opposite is not typi-
cally true.

Example 1. Suppose E, H, R, and S fuzzy subsets of X = {a,b} as follows:

E(a,b) = {0.7,0.5}, H(a,b) = {0.7,0.6}, R(a,b) = {0.2,0.4}, S(a,b) = {0.6,0.6}.
Assume i = {0,1, E'}, and o = {0,1, H, R}. Then we can see that S is fuzzy (1,2)—g—cld
never fuzzy o — g—cld, since S < H € 7o and cla(S) £ H .

The coming example show that fuzzy (1,2) — ga — cld # fuzzy (1,2) — g — cld.

Example 2. Suppose E, H, R, and S fuzzy subsets of X = {a,b} as follows:

E(a,b) = {0.5,0.4}, H(a,b) = {0.7,0.5}, R(a,b) = {0.4,0.3}, S(a,b) = {0.3,0.4}.
Assume 11 = {0,1,E}, and 7o = {0,1, H, R}. Then we can see that S is fuzzy (1,2) —
ga—-cld never fuzzy (1,2) — g—cld, since S < E € 11, and cl2(S) = H° £ E.

In the following example we explain that fuzzy (1,2)—gs—-cld # fuzzy (1,2) —ga—cld.

Example 3. Suppose E, H, R, and S fuzzy subsets of X = {a,b} as follows:

E(a,b) ={0.7,0.5}, H(a,b) = {0.5,0.4}, R(a,b) ={0.4,0.3}, S(a,b) = {0.5,0.5}.
Assume 11 = {0,1,E}, and 7o = {0,1, H, R}. Then we can see that S is fuzzy (1,2) —
gs—cld never fuzzy (1,2) — ga—cld, since S < E € 11, and o — cl2(S) = H° £ E.

The next example shows that fuzzy (1,2) — gp — cld # fuzzy (1,2) — ga — cld.

Example 4. Suppose E, H, R, and S fuzzy subsets of X = {a,b} as follows:

E(a,b) ={0.7,0.5}, H(a,b) ={0.6,0.8}, R(a,b) ={0.4,0.3}, S(a,b) ={0.2,0.4}.
Assume 11 = {0,1,E}, and o = {0,1, H, R}. Then we can see that S is fuzzy (1,2) —
gp—cld never fuzzy (1,2) — ga—cld, since S < E € 11, and o — cla(S) = R° £ E.

The example below indicates that fuzzy (1,2) — g8 — cld # fuzzy (1,2) — gs — cld.

Example 5. Suppose E, H, R, and S fuzzy subsets of X = {a,b} as follows:

E(a,b) ={0.5,0.7}, H(a,b) = {0.6,0.5}, R(a,b) =1{0.4,0.3}, S(a,b) ={0.5,0.5}.
Assume 11 = {0,1,E}, and o = {0,1, H, R}. Then we can see that S is fuzzy (1,2) —
gB—cld never fuzzy (1,2) — gs—cld, since S < E € 11, and s — cla(S) = F(a,b) =
{0.6,0.5} £ E.
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Likewise, the following example shows that fuzzy (1,2) — g5 — cld # fuzzy (1,2) — gp—
cld.

Example 6. Suppose E,H, R, and S fuzzy subsets of X = {a,b} as follows:

E(a,b) = {0.5,0.7}, H(a,b) = {0.4,0.6}, R(a,b) = {0.3,0.4}, S(a,b) = {0.5,0.5}.
Assume 71 = {0,1,E}, and 7o = {0,1, H, R}. Then we can see that S is fuzzy (1,2) —
gB—cld never fuzzy (1,2) — gp—cld, since S < E € 71, and p — cla(S) = F(a,b) =
{0.6,0.5} £ E.

Theorem 3. Assume (X, 71,72) is fbts and E is fuzzy 7,—open (resp,7; — cld). Then,
the statements below are equal:

(1) E is fuzzy (i,7) — gp — cld (resp, fuzzy (i,j) — gp — open).
(2) E is fuzzy 7; — ¢ — cld (resp, fuzzy 7; — ¢ — open).

Proof. Suppose E € 7;, and fuzzy (i,j) — gp—cld. Then 7; —p —cl(E) < E, and hence
E is fuzzy 1; — p—cld. Conversely, it is obvious in Theorem 2, also from Figure (1).

Theorem 4. Let E € 7; and be fuzzy (i,j) — ga—cld. Then ENF is fuzzy (i,j) — gp—cld,
wherever F' € F,.

Proof. As E € 1;, and fuzzy (i, j) — gae—cld, then by Theorem 3 E is fuzzy 7; — a—cld.
After that, E A F' is fuzzy 7; — a—cld, which implies that it is fuzzy (i, j) — ga—cld.
Therefore by Figure (1) we conclude E A F' is fuzzy (i,5) — gp—cld.

Corollary 1. Suppose A € F;, and fuzzy (i,j) — ga — open. Thereafter ANV F is fuzzy
(t,7) — gp—open, whenever F € ;.

Theorem 5. Finite union of fuzzy (i,7) — gp—cld of (X, 11,72) is fuzzy (i,7) — gp—cld.

Proof. Assume E, and D are fuzzy (i, j)—gp—cld in fbts (X, 71, 72). Then EVD is fuzzy
(1,7) — gp—cld. It follows from the fact 7 —p—cl(EV D) =1j—p—cl(E)V1; —p—cl(D).

Corollary 2. If E, and D are fuzzy (i,7) — gp—open. Thereafter E N D is fuzzy

(i,4) — gp—open.

Remark 3. The finite intersection of fuzzy (i,5) — gp—cld in fots (X, 1, 72) is not fuzzy
(i,7) — gp—cld in general.

We show that by the following example for the specific type that is fuzzy (i,j) — ga—-cld.
Suppose E, H, R, D1, and Dy are fuzzy subsets of X = {a,b} as below:

E(a,b) ={0.6,0.6}, H(a,b) = {0.7,0.8}, R(a,b) = {0.6,0.7}, Dy(a,b) = {0.5,0.7},
Dy(a,b) ={0.8,0.5}. Assume 11 = {0,1, E}, and 7o = {0,1, H, R}. Then Dy and Dy are
fuzzy (1,2) — ga— cld, but Dy A Dy is not fuzzy (1,2) — ga — cld.

Corollary 3. (1) The finite itersection of fuzzy (i, j) —gp—open in fots (X, 11, 72) is fuzzy
(4,7) — gp—open.

(2) The finite union of fuzzy (i, j)—gp—open in fots (X, 11, m2) is not fuzzy (i, j)—gp—open
in general.
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4. Types of Fuzzy Generalized Compactness in Fuzzy Bitopological
Spaces

This section introduces the idea of generalized compactness in fuzzy bitoplogy and
characterize it in terms of important theorems and some properties.

Definition 12. The space X of fbts (X, 01,02) is named fuzzy (i,7) — gp—compact when
all fuzzy (i,7) — gp—open cover for X has a finite subcover.

In addition, A fuzzy subset A of fbts (X, d1,02) is called fuzzy (i,j) — gp—compact subset
of X when all fuzzy (i,j) — gp—open cover for A has a finite subcover.

Example 7. Suppose A(a,b) = {0.5,0.5} is fuzzy subset of X = {a,b} , and the fuzzy
topologies 61 = {0,1}, 62 = {0,1,A}. Then X is fuzzy (1,2) — gp—compact space. Fur-
thermore, A is fuzzy (1,2) — gp—compact subset of X.

Corollary 4. In any fbts (X, 01,92) if 6; is a fuzzy indiscrete topology, then (X, 01,0d2) is
fuzzy (i,7) — gp—compact, and any subset of it is fuzzy (i,7j) — gp— compact.

Theorem 6. All fuzzy (i,j) — gp—cld subset of fuzzy (i, j) — gp—compact space is (i,j) —
gp—compact.

Proof. Assume F is fuzzy (i, j)—gp—cld, and {G; : i € I} is fuzzy (i, j)—gp—open cover
for E. Then, E¢ is fuzzy (i,j) — gp—open, and hence {G;, E¢:i € I} is (i,j) — gp—open
cover for X. Then 3 finite subcover to X, which is {G;;, £ : j = 1,2,...,n}, and hence
3 finite subcover of F, which is {G;; : i € I,j = 1,2,..,n}. Therefore, I is fuzzy

(i,7) — gp—compact.
Corollary 5. All fuzzy 0;—cld subset of fuzzy (i, j) — gp—compact space is fuzzy
(i,4) — gp—compact too.

Theorem 7. If (X, 61,02) is fuzzy (i,7) — gp—compact space, thus it is fuzzy é;—compact
space.

Proof. Suppose {G; : j € I} is an open cover of (X,d;). Then from Figure(1l) and
Theorm 2, {G; : i € I} is consider fuzzy (i,j) — gp—open cover to X, after that {G;} has
finite subcover. Therefore, X is fuzzy J;—compact space.

Theorem 8. If (X, d1,02) is fuzzy 6;—cld and §;—compact space. After that, it is fuzzy
(i,7) — gp—compact.

Proof. Assume {G; : i € I} is fuzzy (i,j) — gp—open cover for X. As X is §;—cld,
then by Theorem 3 {G; : i € I} is fuzzy d;—open cover to X, but X is J;—compact, after
that 3 finite subcover. Therefore X is fuzzy (i,7) — gpo—compact space.

Theorem 9. In fbts (X, 01,0d2). The next explanations are true:

(1) VY fuzzy (i,5)—gB—compact is fuzzy (i, j) —gp—compact and fuzzy (i, j)—gs—compact.
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(2) VY fuzzy (i,j) — gp— compact or fuzzy (i,j) —gs—compact is fuzzy (i, j) — go— compact.
(3) VY fuzzy (i,j) — go — compact is fuzzy 6;—compact.

Proof. Obviously from Definition 12 and the relations between types of (i, 7) — gp — cld
sets in Theorem 2 and Figure (1).

The diagram below explains the relationships between all types of fuzzy (i, j)—ge—compact:

(1,7) — g3 — compact — (i,j) — gp — compact
l l
(2,7) — gs — compact — (i,7) — ga — compact

!

d; — compact

Figure 2: Explain the relations between (7, j) — gyp—compact.

Remark 4. In general, the opposite of the aforementioned graph is not true, and this is
clear from Definition 12 and the relations between (i,7) — gp—cld sets in Theory 2 and
Ezxamples 2 through 1. In addition, we can see that the concepts of the fuzzy (i,j) —
gp—compact space and (i,7) — gs—compact space are independent.

Theorem 10. If E, D are fuzzy (i,j) — gp—compact subsets of (X,d1,02). Then E N D
is fuzzy (i,j) — gp—compact.

Proof. Suppose {G; : i € I} is fuzzy (i, j) — gp—open cover of EAD. Since EAD < E,
and EAD < D, then {G; : i € I} < {U; : i € I,such that E < U;—1U;} AN{V; :
i € I,such that D < U;—1V;}. Then by Corollary 2, and as E,D are fuzzy (i,j) —
gp—compact, then {G;} has a finite subcover {G;; : j = 1,2,...,n}. Therefore E'A D is
fuzzy (i,7) — gp—compact.

Definition 13. A mapping f : (X, 61,02) — (Y, 01, 02) is named fuzzy (i, j)—generalized o—
continuous (shortly, (i,7) — gp — conts) when the opposite image of each fuzzy open of
(Y, 05) is fuzzy (i,5) — gp — open of X.

By using the complement, we find:

Theorem 11. Suppose f: (X, d1,02) — (Y,01,02). Then f is fuzzy (i,]) — gp — conts <
V fuzzy closed set V at (Y,0;), f~1(V) is fuzzy (3,7) — gp — cld set at X.

Theorem 12. The portrait (i, j)—gp—conts of fuzzy (i, j)—ge—compact is fuzzy 0;—compact.

Proof. Suppose f : (X,01,02) — (Y,01,02) is fuzzy (i,7) — gp — conts, surjective
mapping, and (X, d1,d2) is fuzzy (i, j) — gp—compact space. Assume that {B;:j € I} is
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§j—open cover for Y, thus {f~1(B;) : j € I} is fuzzy (i,5) — gp—open cover for X, then
it has finite subcover for X, and since f is surjective mapping, so 3 {B1, Ba, ..., B, } finite
subcover for Y. Therefore Y is fuzzy d;—compact.

Corollary 6. The 0;— continuous image of (i,j) — gp—compact is 0;—compact.

Definition 14. A mapping f : (X, d1,02) — (Y, 01,02) is named fuzzy (i, j)—generalized o—
irresolute mapping (shortly, (i,j) — gp — irres) when the opposite image of all fuzzy
(i,7) — gp — open set of X is fuzzy (i,7) — gp — open of Y.

By using the complement we find:

Theorem 13. Suppose f: (X, 01,02) = (Y,01,02). Then f is fuzzy (i,7) — gp —irres <
for all fuzzy (i,7) — go—cld V at'Y, f~Y(V) is fuzzy (i,j) — go — cld at X.

Theorem 14. If f : (X, d1,02) — (Y, 01,02) is fuzzy (i,7) — gp — irres mapping, and E
is fuzzy (i,7) — gp—compact set of X. Thus f(E) is fuzzy (i,7) — gp—compact of Y.

Proof. Suppose f : (X,01,02) — (Y,01,02) is fuzzy (i,j) — gp — irres, onto mapping,
also
{Vi:iel}is fuzzy (1,7) — gp—open cover of f(FE). As f is onto, then
F(E) < F(ULLf-1 (Vi) < U, Vi, So, f(E) is fuzzy (i, ) — gp-—compact at Y

Corollary 7. When f : (X,01,62) = (Y, 01,02) is fuzzy (i,7) — gp —irres, onto mapping,
and X s fuzzy (i,7) — gp—compact. After that, Y is fuzzy (i,j) — gp— compact.

Theorem 15. If (X,01,92) is fots. So X is fuzzy (i,j) — gp—compact < ¥ {F;} of
fuzzy (i,7) — gp—cld sets of X satisfying F.I.P (Definition 9) has itself a non empty
intersection.

Proof. Suppose (X, d1,02) is fuzzy (i,j) — gp—compact, {F; : i € I} is fuzzy (i,5) —

gp—cld sets of X satisfying F.I.LP, and N{F; : i € I} = ¢. Then X = U{F;“: i € I}. let
U = (F;°) is fuzzy (i, j) — gp—open cover for X. As X is fuzzy (i, j) — gp—compact, then
U most contain finite subcover of X and X = (N7_, F;;)¢, which implies N7_, F}; = ¢.
This runs counter to the hypothesis that F; has F.I.P.
Conversely, assume X is not compact and N {F; : i € I} # ¢, where {F;} is collection of
fuzzy (i,7) — gp—cld subsets at X has F.ILP. Then 3U = {G; : i € I} is (i,j) — gp—open
cover for X, that is lacking finite subcover of X, then {X — Gy, X — Giy, ..., X — G, } is
a class of (i,7) — gp—cld sets has F.I.P, and hence N {X — G;} = X — U G; # ¢, then
X # U;=1G;. The reality that U is a fuzzy (i,j) — gp—open cover for X is in conflict with
this.
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5. Conclusion and Future Studies

In this research, we explore the relationships between different types of generalized
closed sets in a new domain, which is a fuzzy bitopological space. In addition, we explored
the interconnections between these sets by some counterexamples. After that, we scrutinize
the fundamental theorems and distinctive characteristics associated with these concepts.
Also, we applied them to fuzzy compactness and studied their theorems, properties, and
relationships. Through this in-depth analysis, we contribute to a better comprehension of
these key ideas in the context of fuzzy bitopological spaces. This work also opens up new
horizons for the future study of these sets in other fields of fuzzy sets, such as regular sets,
study them in more than two topologies, or in another domain, such as fuzzy soft spaces.
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