EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 17, No. 2, 2024, 591-603
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

Spectral Properties of Power Graph of Dihedral Groups

Mamika Ujianita Romdhini ${ }^{1, *}$, Athirah Nawawi ${ }^{2}$, Faisal Al-Sharqi ${ }^{3}{ }^{3}$, Ashraf Al-Quran ${ }^{5}$
${ }^{1}$ Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Mataram, Mataram 83125, Indonesia
${ }^{2}$ Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
${ }^{3}$ Department of Mathematics, Faculty of Education for Pure Sciences, University Of Anbar, Ramadi, Anbar, Iraq
${ }^{4}$ College of Engineering, National University of Science and Technology, Dhi Qar, Iraq
${ }^{5}$ Basic Sciences Department, Preparatory Year Deanship, King Faisal University, Al-Ahsa, Saudi Arabia

Abstract

This paper focuses on the power graph of dihedral groups of order $2 n, D_{2 n}$, where $n \geq 3$. We show the characteristic polynomial of the power graph corresponding to the adjacency, Laplacian, signless Laplacian, and normalized form of these matrices.

2020 Mathematics Subject Classifications: 05C25, 05C50, 15A18, 20D99
Key Words and Phrases: Characteristic polynomial, Power graph, Dihedral Groups

1. Introduction

Spectral graph theory describes graphs based on specific matrices, such as adjacency, Laplacian, or signless Laplacian matrices. The spectrum of these matrices can characterize a graph. These various matrices, in general, give insight into the graph based on their spectrum. This paper examines a power graph, one of the finite groups that can be represented by graphs.

A power graph of the group G is denoted by Γ_{G} and defined as a graph whose vertex set is all the elements of G and two distinct vertices v_{p} and v_{q} are adjacent if and only if $v_{p}^{x}=v_{q}$ or $v_{q}^{y}=v_{p}$ for positive integers x and $y[5]$. The vertex set for Γ_{G} is the non-abelian dihedral group of order $2 n$, where $n \geq 3$, denoted by $D_{2 n}=\left\langle a, b: a^{n}=b^{2}=e, b a b=a^{-1}\right\rangle$ [3]. Let $G_{1}=\{e\}, G_{2}=\left\{a^{i}: 1 \leq i \leq n-1\right\}$, and $G_{3}=\left\{a^{i} b: 1 \leq i \leq n\right\}$. Note that

[^0]$D_{2 n}=G_{1} \cup G_{2} \cup G_{3}$. Throughout this paper, the power graph for the dihedral group is denoted by $\Gamma_{D_{2 n}}$. It is clear that $\Gamma_{D_{2 n}}$ is a connected graph [2].

Furthermore, the discussion on the degree formula of the power graph of some finite group can be found in [14]. Later, Takshak, et al. [15] showed the new finding that if Γ_{G} is a power graph of a finite group G, then it is a divisor graph. Kumar et al. [7] have presented a complete and excellent survey of the power graph for some finite groups. Meanwhile, the degree of $\Gamma_{D_{2 n}}$ has been presented by [2] as in the following theorem:

Theorem 1. [2] If $\Gamma_{D_{2 n}}$ is the power graph of $D_{2 n}$, then
(i) the degree of a in $\Gamma_{D_{2 n}}$ is $d_{e}=2 n-1$,
(ii) the degree of a^{i} in $\Gamma_{D_{2 n}}$ is $d_{a^{i}}=n-1$,
(iii) the degree of $a^{i} b$ in $\Gamma_{D_{2 n}}$ is $d_{a^{i} b}=1$,

The above theorem gives the information that vertex e is adjacent to all other vertices in $\Gamma_{D_{2 n}}$. Every vertex in G_{2} is adjacent to e and all other members in G_{2}. Meanwhile, all vertices in G_{3} are only adjacent to e [2].

Several authors have discussed the graphs that are defined on dihedral groups. They worked on the spectral problem of the commuting and non-commuting graphs, which can be seen in [9-13], Accordingly, Romdhini et al. [8] investigated signless Laplacian spectral of interval-valued fuzzy graphs. Moreover, an analysis of the relationship between graphs and unitary commutative rings' prime spectrum is presented by [1]. Motivated by this, this research aims to formulate the characteristic polynomial of the power graph of the dihedral group associated with the adjacency, Laplacian, signless Laplacian, and normalized form of these matrices. The definition of the various matrices can be seen in the following definitions.

Definition 1. ([4]) The adjacency matrix of order $n \times n$ associated with $\Gamma_{D_{2 n}}$ is given by $A\left(\Gamma_{D_{2 n}}\right)=\left[a_{i j}\right]$ whose (i, j)-th entry

$$
a_{i j}= \begin{cases}1, & \text { if } v_{i} \neq v_{j} \text { and they are adjacent } \\ 0, & \text { otherwise }\end{cases}
$$

Definition 2. ([4]) The diagonal degree matrix of order $n \times n$ associated with $\Gamma_{D_{2 n}}$ is given by $D\left(\Gamma_{D_{2 n}}\right)=\left[d_{i j}\right]$ whose (i, j)-th entry

$$
d_{i j}= \begin{cases}d_{v_{i}}, & \text { if } v_{i}=v_{j} \\ 0, & \text { otherwise }\end{cases}
$$

where $d_{v_{i}}$ is the degree of vertex v_{i}, a number of vertices adjacent to v_{i} in $\Gamma_{D_{2 n}}$.
Definition 3. ([4]) The Laplacian matrix of order $n \times n$ associated with $\Gamma_{D_{2 n}}$ is given by $L\left(\Gamma_{D_{2 n}}\right)=D\left(\Gamma_{D_{2 n}}\right)-A\left(\Gamma_{D_{2 n}}\right)$.
Definition 4. ([4]) The signless Laplacian matrix of order $n \times n$ associated with $\Gamma_{D_{2 n}}$ is given by $S L\left(\Gamma_{D_{2 n}}\right)=D\left(\Gamma_{D_{2 n}}\right)+A\left(\Gamma_{D_{2 n}}\right)$.

Definition 5. ([4]) The normalized adjacency matrix of order $n \times n$ associated with $\Gamma_{D_{2 n}}$ is given by

$$
N A\left(\Gamma_{D_{2 n}}\right)={\sqrt{D\left(\Gamma_{D_{2 n}}\right)}}^{-1} A\left(\Gamma_{D_{2 n}}\right) \sqrt{D\left(\Gamma_{D_{2 n}}\right)}-1 .
$$

Definition 6. ([4]) The normalized Laplacian (NL) matrix of order $n \times n$ associated with $\Gamma_{D_{2 n}}$ is given by

$$
N L\left(\Gamma_{D_{2 n}}\right)={\sqrt{D\left(\Gamma_{D_{2 n}}\right)}}^{-1} L\left(\Gamma_{D_{2 n}}\right) \sqrt{D\left(\Gamma_{D_{2 n}}\right)}-1=I_{n}-N A\left(\Gamma_{D_{2 n}}\right) .
$$

Definition 7. ([4]) The normalized signless Laplacian (NSL) matrix of order $n \times n$ associated with $\Gamma_{D_{2 n}}$ is given by

$$
N S L\left(\Gamma_{D_{2 n}}\right)=\sqrt{D\left(\Gamma_{D_{2 n}}\right)^{-1}} S L\left(\Gamma_{D_{2 n}} \sqrt{D\left(\Gamma_{D_{2 n}}\right)}\right)^{-1}=I_{n}+N A\left(\Gamma_{D_{2 n}}\right) .
$$

The characteristic polynomial of $A\left(\Gamma_{D_{2 n}}\right)$ is defined by $P_{A\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\operatorname{det}\left(\lambda I_{2 n}-A\left(\Gamma_{D_{2 n}}\right)\right)$, where $I_{2 n}$ is an $2 n \times 2 n$ identity matrix. Likewise, the notation for other matrices can also be applied in the same way.

To formulate the characteristic polynomial of $\Gamma_{D_{2 n}}$, row and column operations need to be performed. Assume that R_{i} and C_{i} are the i-th row and column of the matrix, respectively. In this case, R_{i}^{\prime} and C_{i}^{\prime} will be the new i-th row and column of the matrix, respectively, as obtained from R_{i} and C_{i}. The following theorem is a result of [6] as our guideline to simplify the characteristic polynomial of $\Gamma_{D_{2 n}}$.
Theorem 2. [6] If a square matrix M can be partitioned into four blocks $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$, where A is a nonsingular, then

$$
|M|=\left|\begin{array}{cc}
A & B \\
O & D-C A^{-1} B
\end{array}\right|=|A|\left|D-C A^{-1} B\right| .
$$

2. Main Results

This section presents the main results on the characteristic polynomial of $\Gamma_{D_{2 n}}$. We begin with the adjacency matrix as the matrix representation of $\Gamma_{D_{2 n}}$.

Theorem 3. Let $\Gamma_{D_{2 n}}$ be the power graph for $D_{2 n}$, then the characteristic polynomial of $A\left(\Gamma_{D_{2 n}}\right)$ is

$$
P_{A\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\lambda^{n-1}(\lambda+1)^{n-2}\left(\lambda^{3}-(n-2) \lambda^{2}+(1-2 n) \lambda+n(n-2)\right) .
$$

Proof. From Theorem 1 we know that vertex e is adjacent to all other vertices in $\Gamma_{D_{2 n}}$ and vertices in G_{3} are only adjacent to e. Meanwhile, every vertex in G_{2} is adjacent to e and all other vertices in G_{2}. Following definition 1, we can construct $A\left(\Gamma_{D_{2 n}}\right)$ of the size
$2 n \times 2 n:$

Matrix $A\left(\Gamma_{D_{2 n}}\right)$ can be partitioned into nine block matrices as follows:

$$
A\left(\Gamma_{D_{2 n}}\right)=\left[\begin{array}{ccc}
0 & J_{1 \times(n-1)} & J_{1 \times n} \\
J_{(n-1) \times 1} & (J-I)_{n-1} & 0_{(n-1) \times n} \\
J_{n \times 1} & 0_{n \times(n-1)} & 0_{n}
\end{array}\right] .
$$

The characteristic polynomial of $A\left(\Gamma_{D_{2 n}}\right)$ is

$$
P_{A\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\left|\begin{array}{ccc}
\lambda & -J_{1 \times(n-1)} & -J_{1 \times n} \tag{2}\\
-J_{(n-1) \times 1} & (\lambda+1) I_{n-1}-J_{n-1} & 0_{(n-1) \times n} \\
-J_{n \times 1} & 0_{n \times(n-1)} & \lambda I_{n}
\end{array}\right| .
$$

We apply the following steps to simplify the determinant in Equation 2:
(i) $R_{n+1+i} \longrightarrow R_{n+1+i}-R_{n+1}$, for $i=1,2, \ldots, n-1$.
(ii) $C_{n+1} \longrightarrow C_{n+1}+C_{n+2}+\ldots+C_{2 n}$.
(iii) $C_{1} \longrightarrow C_{1}+\frac{1}{\lambda} C_{n+1}$.
(iv) $R_{2+i} \longrightarrow R_{2+i}-R_{2}$, for $i=1,2, \ldots, n-2$.
(v) $C_{2} \longrightarrow C_{2}+C_{3}+\ldots+C_{n}$.

Then we get

$$
P_{A\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\left|\begin{array}{ccccc}
\frac{\lambda^{2}+n}{\lambda} & 1-n & -J_{1 \times(n-2)} & -n & -J_{1 \times n} \\
-1 & \lambda-(n-2) & -J_{1 \times(n-2)} & 0 & 0_{1 \times(n-1)} \\
0_{(n-2) \times 1} & 0_{(n-2) \times 1} & (\lambda+1) I_{n-2} & 0_{(n-2) \times 1} & 0_{(n-2) \times(n-1)} \\
0 & 0 & 0_{1 \times(n-2)} & \lambda & 0_{1 \times(n-1)} \\
0_{(n-1) \times 1} & 0_{(n-1) \times 1} & 0_{n-1} & 0_{(n-1) \times 1} & \lambda I_{n-1}
\end{array}\right| .
$$

Consequently, by Theorem 2, we can obtain the characteristic polynomial of $A\left(\Gamma_{D_{2 n}}\right)$ as follows:

$$
P_{A\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\lambda^{n-1}(\lambda+1)^{n-2}\left(\lambda^{3}-(n-2) \lambda^{2}+(1-2 n) \lambda+n(n-2)\right) .
$$

The previous theorem is devoted to the adjacency matrix. Now we are moving to the Laplacian matrix as the representation of $\Gamma_{D_{2 n}}$.

Theorem 4. Let $\Gamma_{D_{2 n}}$ be the power graph for $D_{2 n}$, then the characteristic polynomial of $L\left(\Gamma_{D_{2 n}}\right)$ is

$$
P_{L\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\lambda(\lambda-2 n)(\lambda-n)^{n-2}(\lambda-1)^{n} .
$$

Proof. The Laplacian matrix of $\Gamma_{D_{2 n}}$ construction depends on the degree and adjacency matrices of $\Gamma_{D_{2 n}}$. Now we need to construct a $2 n \times 2 n$ degree matrix of $\Gamma_{D_{2 n}}$ as follows:

$$
\begin{gather*}
 \tag{3}\\
e \\
a \\
a^{2} \\
\vdots \\
\vdots \\
\left.\Gamma_{D_{2 n}}\right)= \\
a^{n-1} \\
b \\
a b \\
0
\end{gather*}\left(\begin{array}{ccccccccc}
e & a & a^{2} & \ldots & a^{n-1} & b & a b & \ldots & a^{n-1} b \\
\vdots & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
\vdots \\
a^{n-1} b & 0 & n-1 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & n-1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 1
\end{array}\right) .
$$

Based on Definition 3, the Laplacian matrix of $\Gamma_{D_{2 n}}$ is

$$
\begin{aligned}
& L\left(\Gamma_{D_{2 n}}\right)=D\left(\Gamma_{D_{2 n}}\right)-A\left(\Gamma_{D_{2 n}}\right) \\
& \begin{array}{lllllllll}
e & a & a^{2} & \ldots & a^{n-1} & b & a b & \ldots & a^{n-1} b
\end{array} \\
& \begin{array}{c}
e \\
a \\
a^{2} \\
\vdots \\
a^{n-1} \\
b \\
a b \\
\vdots \\
a^{n-1} b
\end{array}\left(\begin{array}{ccccccccc}
2 n-1 & -1 & -1 & \ldots & -1 & -1 & -1 & \ldots & -1 \\
-1 & n-1 & -1 & \ldots & -1 & 0 & 0 & \ldots & 0 \\
-1 & -1 & n-1 & \ldots & -1 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & -1 & -1 & \ldots & n-1 & 0 & 0 & \ldots & 0 \\
-1 & 0 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
-1 & 0 & 0 & \ldots & 0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 1
\end{array}\right) .
\end{aligned}
$$

Moreover, $L\left(\Gamma_{D_{2 n}}\right)$ can be partitioned into six block matrices as given below:

$$
L\left(\Gamma_{D_{2 n}}\right)=\left(\begin{array}{ccc}
2 n-1 & -J_{1 \times(n-1)} & -J_{1 \times n} \\
-J_{(n-1) \times 1} & n I_{n-1}-J_{n-1} & 0_{(n-1) \times n} \\
-J_{n \times 1} & 0_{n \times(n-1)} & I_{n}
\end{array}\right) .
$$

The characteristic polynomial of $L\left(\Gamma_{D_{2 n}}\right)$ can be obtained from the following determinant:

$$
P_{L\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\left|\begin{array}{ccc}
\lambda-(2 n-1) & J_{1 \times(n-1)} & J_{1 \times n} \tag{4}\\
J_{(n-1) \times 1} & (\lambda-(n-2)) I_{n-1}-J_{n-1} & 0_{(n-1) \times n} \\
J_{n \times 1} & 0_{n \times(n-1)} & (\lambda-1) I_{n}
\end{array}\right| .
$$

We apply the following steps to equation 4:
(i) $R_{n+1+i} \longrightarrow R_{n+1+i}-R_{n+1}$, for $i=1,2, \ldots, n-1$.
(ii) $C_{n+1} \longrightarrow C_{n+1}+C_{n+2}+\ldots+C_{2 n}$.
(iii) $C_{1} \longrightarrow C_{1}-\frac{1}{\lambda-1} C_{n+1}$.
(iv) $R_{2+i} \longrightarrow R_{2+i}-R_{2}$, for $i=1,2, \ldots, n-2$.
(v) $C_{2} \longrightarrow C_{2}+C_{2+1}+\ldots+C_{n}$,
then we get

$$
P_{L\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\left|\begin{array}{ccccc}
\frac{\lambda^{2}-2 n \lambda+n-1}{\lambda-1} & n-1 & J_{1 \times(n-2)} & n & J_{1 \times(n-1)} \\
1 & \lambda-1 & J_{1 \times(n-2)} & 0 & 0_{1 \times(n-1)} \\
0_{(n-2) \times 1} & 0_{(n-2) \times 1} & (\lambda-n) I_{n-2} & 0_{(n-2) \times 1} & 0_{(n-2) \times(n-1)} \\
0 & 0 & 0_{1 \times(n-2)} & \lambda-1 & 0_{1 \times(n-1)} \\
0_{(n-1) \times 1} & 0_{(n-1) \times 1} & 0_{n-1} & 0_{(n-1) \times 1} & (\lambda-1) I_{n-1}
\end{array}\right| .
$$

Following Theorem 2, we then can obtain

$$
P_{L\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\lambda(\lambda-2 n)(\lambda-n)^{n-2}(\lambda-1)^{n} .
$$

The next theorem presents the characteristic polynomial of $\Gamma_{D_{2 n}}$ associated with the signless Laplacian matrix.

Theorem 5. Let $\Gamma_{D_{2 n}}$ be the power graph for $D_{2 n}$, then the characteristic polynomial of $S L\left(\Gamma_{D_{2 n}}\right)$ is
$P_{S L\left(\Gamma_{D_{2 n}}\right)}(\lambda)=(\lambda-1)^{n-1}(\lambda-n+2)^{n-2}\left(\lambda^{3}+(3-4 n) \lambda^{2}+2 n(2 n-3) \lambda-2(n-1)(n-2)\right)$.
Proof. By Equations 1 and 4, and Definition 4, the signless Laplacian matrix of $\Gamma_{D_{2 n}}$ is

$$
S L\left(\Gamma_{D_{2 n}}\right)=D\left(\Gamma_{D_{2 n}}\right)+A\left(\Gamma_{D_{2 n}}\right)
$$

Moreover, $S L\left(\Gamma_{D_{2 n}}\right)$ can be partitioned into nine block matrices as given below:

$$
S L\left(\Gamma_{D_{2 n}}\right)=\left(\begin{array}{ccc}
2 n-1 & J_{1 \times(n-1)} & J_{1 \times n} \\
J_{(n-1) \times 1} & (n-2) I_{n-1}+J_{n-1} & 0_{(n-1) \times n} \\
J_{n \times 1} & 0_{n \times(n-1)} & I_{n}
\end{array}\right)
$$

The characteristic polynomial of $S L\left(\Gamma_{D_{2 n}}\right)$ can be obtained from the following determinant:

$$
P_{S L\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\left|\begin{array}{ccc}
\lambda-(2 n-1) & -J_{1 \times(n-1)} & -J_{1 \times n} \tag{5}\\
-J_{(n-1) \times 1} & (\lambda-(n-2)) I_{n-1}-J_{n-1} & 0_{(n-1) \times n} \\
-J_{n \times 1} & 0_{n \times(n-1)} & (\lambda-1) I_{n}
\end{array}\right| .
$$

We apply the following steps into Equation 5:
(i) $R_{n+1+i} \longrightarrow R_{n+1+i}-R_{n+1}$, for $i=1,2, \ldots, n-1$.
(ii) $C_{n+1} \longrightarrow C_{n+1}+C_{n+2}+\ldots+C_{2 n}$.
(iii) $C_{1} \longrightarrow C_{1}+\left(\frac{1}{\lambda-1}\right) C_{n+1}$.
(iv) $R_{2+i} \longrightarrow R_{2+i}-R_{2}$, for $i=1,2, \ldots, n-2$.
(v) $C_{2} \longrightarrow C_{2}+C_{2+1}+\ldots+C_{n}$,
then we get

$$
P_{S L\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\left|\begin{array}{ccccc}
\frac{\lambda^{2}-2 n \lambda+n-1}{\lambda-1} & 1-n & -J_{1 \times(n-2)} & -n & -J_{1 \times(n-1)} \\
-1 & \lambda-2 n+3 & -J_{1 \times(n-2)} & 0 & 0_{1 \times(n-1)} \\
0_{(n-2) \times 1} & 0_{(n-2) \times 1} & (\lambda-n+2) I_{n-2} & 0_{(n-2) \times 1} & 0_{(n-2) \times(n-1)} \\
0 & 0 & 0_{1 \times(n-2)} & \lambda-1 & 0_{1 \times(n-1)} \\
0_{(n-1) \times 1} & 0_{(n-1) \times 1} & 0_{n-1} & 0_{(n-1) \times 1} & (\lambda-1) I_{n-1}
\end{array}\right| .
$$

From Theorem 2, we derive the characteristic polynomial of $S L\left(\Gamma_{D_{2 n}}\right)$ as follows:
$P_{S L\left(\Gamma_{D_{2 n}}\right)}(\lambda)=(\lambda-1)^{n-1}(\lambda-n+2)^{n-2}\left(\lambda^{3}+(3-4 n) \lambda^{2}+2 n(2 n-3) \lambda-2(n-1)(n-2)\right)$.
The normalized form of the adjacency, Laplacian, and signless Laplacian matrices of $\Gamma_{D_{2 n}}$ are presented in the following three theorems.

Theorem 6. Let $\Gamma_{D_{2 n}}$ be the power graph for $D_{2 n}$, then the characteristic polynomial of $N A\left(\Gamma_{D_{2 n}}\right)$ is

$$
P_{N A\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\lambda^{n-1}\left(\lambda+\frac{1}{n-1}\right)^{n-2}\left(\lambda^{3}-\frac{(n-2)}{n-1} \lambda^{2}-\frac{n+1}{2 n-1} \lambda+\frac{n(n-2)}{(n-1)(2 n-1)}\right)
$$

Proof. By Definition 5, we need to construct $(\sqrt{D})^{-1}\left(\Gamma_{D_{2 n}}\right)$. Using Equation 3, we can construct $(\sqrt{D})^{-1}\left(\Gamma_{D_{2 n}}\right)$ as follows:

Based on Definition $5, N A\left(\Gamma_{D_{2 n}}\right)$ is a $2 n \times 2 n$ matrix as given below:

$$
\begin{aligned}
& \begin{array}{c|c}
\\
e & e \\
a & 0 \\
a^{2} & \frac{1}{\sqrt{(2 n-1)(n-1)}} \\
\vdots & \frac{1}{\sqrt{(2 n-1)(n-1)}} \\
a^{n-1} & \vdots \\
b & \frac{1}{\sqrt{(2 n-1)(n-1)}} \\
a b & \frac{1}{\sqrt{2 n-1}} \\
\vdots \\
a^{n-1} b & \frac{1}{\sqrt{2 n-1}} \\
& \frac{1}{\sqrt{2 n-1}}
\end{array} \\
& \begin{array}{c}
a \\
\frac{1}{\sqrt{(2 n-1)(n-1)}} \\
0 \\
\frac{1}{n-1} \\
\vdots \\
\frac{1}{n-1} \\
0 \\
0 \\
\vdots \\
0
\end{array} \\
& \begin{array}{cc}
a^{2} & \cdots \\
\frac{1}{\sqrt{(2 n-1)(n-1)}} & \cdots \\
\frac{1}{n-1} & \cdots \\
0 & \cdots \\
\vdots & \ddots \\
\frac{1}{n-1} & \cdots \\
0 & \cdots \\
0 & \ddots \\
\vdots & \cdots
\end{array} \\
& \begin{array}{c}
a^{n-1} \\
\frac{1}{\sqrt{(2 n-1)(n-1)}} \\
\frac{1}{n-1} \\
\frac{1}{n-1} \\
\vdots \\
0 \\
0 \\
0 \\
\vdots \\
0
\end{array} \\
& \begin{array}{cccc}
b & a b & \cdots & a^{n-1} b \\
\frac{1}{\sqrt{2 n-1}} & \frac{1}{\sqrt{2 n-1}} & \cdots & \frac{1}{\sqrt{2 n-1}} \\
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}
\end{aligned}
$$

In other words, $N A\left(\Gamma_{D_{2 n}}\right)$ can be partitioned into nine block matrices as follows:

$$
N A\left(\Gamma_{D_{2 n}}\right)=\left[\begin{array}{ccc}
0 & \frac{1}{\sqrt{(2 n-1)(n-1)}} J_{1 \times(n-1)} & \frac{1}{\sqrt{2 n-1}} J_{1 \times n} \\
\frac{1}{\sqrt{(2 n-1)(n-1)}} J_{(n-1) \times 1} & \frac{1}{n-1}(J-I)_{n-1} & 0_{(n-1) \times n} \\
\frac{1}{\sqrt{2 n-1}} J_{n \times 1} & 0_{n \times(n-1)} & 0_{n}
\end{array}\right] .
$$

The characteristic polynomial of $N A\left(\Gamma_{D_{2 n}}\right)$ is

$$
P_{N A\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\left|\begin{array}{ccc}
\lambda & -\frac{1}{\sqrt{(2 n-1)(n-1)}} J_{1 \times(n-1)} & -\frac{1}{\sqrt{2 n-1}} J_{1 \times n} \tag{8}\\
-\frac{1}{\sqrt{(2 n-1)(n-1)}} J_{(n-1) \times 1} & \left(\lambda+\frac{1}{n-1}\right) I_{n-1}-\frac{1}{n-1} J_{n-1} & 0_{(n-1) \times n} \\
-\frac{1}{\sqrt{2 n-1}} J_{n \times 1} & 0_{n \times(n-1)} & \lambda I_{n}
\end{array}\right| .
$$

We apply the following steps into Equation 8:
(i) $R_{n+1+i} \longrightarrow R_{n+1+i}-R_{n+1}$, for $i=1,2, \ldots, n-1$.
(ii) $C_{n+1} \longrightarrow C_{n+1}+C_{n+2}+\ldots+C_{2 n}$.
(iii) $C_{1} \longrightarrow C_{1}+\frac{1}{\lambda \sqrt{2 n-1}} C_{n+1}$.
(iv) $R_{2+i} \longrightarrow R_{2+i}-R_{2}$, for $i=1,2, \ldots, n-2$.
(v) $C_{2} \longrightarrow C_{2}+C_{2+1}+\ldots+C_{n}$,
then we get
$P_{N A\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\left|\begin{array}{ccccc}\frac{(2 n-1) \lambda^{2}-n}{(2 n-1) \lambda} & -\frac{n-1}{\sqrt{(2 n-1)(n-1)}} & -\frac{1}{\sqrt{(2 n-1)(n-1)}} J_{1 \times(n-2)} & -\frac{n}{\sqrt{2 n-1}} & -\frac{1}{\sqrt{2 n-1}} J_{1 \times n} \\ -\frac{1}{\sqrt{(2 n-1)(n-1)}} & \lambda-\frac{(n-2)}{n-1} & -\frac{1}{n-1} J_{1 \times(n-2)} & 0 & 0_{1 \times(n-1)} \\ 0_{(n-2) \times 1} & 0_{(n-2) \times 1} & \left(\lambda+\frac{1}{n-1}\right) I_{n-2} & 0_{(n-2) \times 1} & 0_{(n-2) \times(n-1)} \\ 0 & 0 & 0_{1 \times(n-2)} & \lambda & 0_{1 \times(n-1)} \\ 0_{(n-1) \times 1} & 0_{(n-1) \times 1} & 0_{n-1} & 0_{(n-1) \times 1} & \lambda I_{n-1}\end{array}\right|$.
(9)

By Theorem 2, we can obtain $P_{N A\left(\Gamma_{D_{2 n}}\right)}(\lambda)$ as follows:

$$
P_{N A\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\lambda^{n-1}\left(\lambda+\frac{1}{n-1}\right)^{n-2}\left(\lambda^{3}-\frac{(n-2)}{n-1} \lambda^{2}-\frac{n+1}{2 n-1} \lambda+\frac{n(n-2)}{(n-1)(2 n-1)}\right) .
$$

Theorem 7. Let $\Gamma_{D_{2 n}}$ be the power graph for $D_{2 n}$, then the characteristic polynomial of $N L\left(\Gamma_{D_{2 n}}\right)$ is

$$
P_{N L\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\lambda(\lambda-1)^{n-1}\left(\lambda-1-\frac{1}{n-1}\right)^{n-2}\left(\lambda^{2}+\frac{(1-2 n)}{n-1} \lambda+\frac{n(n+1)}{(2 n-1)(n-1)}\right) .
$$

Proof. By Definition 6, and Equations 6 and 7, we can construct $N L\left(\Gamma_{D_{2 n}}\right)$ of the size $2 n \times 2 n$ as follows:

$N L\left(\Gamma_{D_{2 n}}\right)$ can be partitioned into nine block matrices as follows:

$$
N L\left(\Gamma_{D_{2 n}}\right)=\left[\begin{array}{ccc}
1 & -\frac{1}{\sqrt{(2 n-1)(n-1)}} J_{1 \times(n-1)} & -\frac{1}{\sqrt{2 n-1}} J_{1 \times n} \\
-\frac{1}{\sqrt{(2 n-1)(n-1)}} J_{(n-1) \times 1} & \left(1+\frac{1}{n-1}\right) I_{n-1}-\frac{1}{n-1} J_{n-1} & 0_{(n-1) \times n} \\
-\frac{1}{\sqrt{2 n-1}} J_{n \times 1} & 0_{n \times(n-1)} & I_{n}
\end{array}\right]
$$

The characteristic polynomial of $N L\left(\Gamma_{D_{2 n}}\right)$ is

$$
P_{N L\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\left|\begin{array}{ccc}
\lambda-1 & \frac{1}{\sqrt{(2 n-1)(n-1)}} J_{1 \times(n-1)} & \frac{1}{\sqrt{2 n-1}} J_{1 \times n} \tag{10}\\
\frac{1}{\sqrt{(2 n-1)(n-1)}} J_{(n-1) \times 1} & \left(\lambda-1-\frac{1}{n-1}\right) I_{n-1}+\frac{1}{n-1} J_{n-1} & 0_{(n-1) \times n} \\
\frac{1}{\sqrt{2 n-1}} J_{n \times 1} & 0_{n \times(n-1)} & (\lambda-1) I_{n}
\end{array}\right| .
$$

By applying row and column operations into Equation 10:
(i) $R_{n+1+i} \longrightarrow R_{n+1+i}-R_{n+1}$, for $i=1,2, \ldots, n-1$.
(ii) $C_{n+1} \longrightarrow C_{n+1}+C_{n+2}+\ldots+C_{2 n}$.
(iii) $C_{1} \longrightarrow C_{1}-\frac{1}{(\lambda-1) \sqrt{2 n-1}} C_{n+1}$.
(iv) $R_{2+i} \longrightarrow R_{2+i}-R_{2}$, for $i=1,2, \ldots, n-2$.
(v) $C_{2} \longrightarrow C_{2}+C_{2+1}+\ldots+C_{n}$,
then we get
$P_{N L\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\left\lvert\, \begin{array}{ccccc}\frac{-n}{(\lambda-1)(2 n-1)}+\lambda-1 & \frac{n-1}{\sqrt{(2 n-1)(n-1)}} & \frac{1}{\sqrt{(2 n-1)(n-1)}} J_{1 \times(n-2)} & \frac{n}{\sqrt{2 n-1}} & \frac{1}{\sqrt{2 n-1}} J_{1 \times n} \\ \frac{1}{\sqrt{(2 n-1)(n-1)}} & \lambda-1+\frac{(n-2)}{n-1} & \frac{1}{n-1} J_{1 \times(n-2)} & 0 & 0_{1 \times(n-1)} \\ 0_{(n-2) \times 1} & 0_{(n-2) \times 1} & \left(\lambda-1-\frac{1}{n-1}\right) I_{n-2} & 0_{(n-2) \times 1} & 0_{(n-2) \times(n-1)} \\ 0 & 0 & 0_{1 \times(n-2)} & \lambda-1 & 0_{1 \times(n-1)} \\ 0_{(n-1) \times 1} & 0_{(n-1) \times 1} & 0_{n-1} & 0_{(n-1) \times 1} & (\lambda-1) I_{n-1}\end{array}\right.$.
(11)

Consequently, based on Theorem 2, we can obtain $P_{N L\left(\Gamma_{D_{2 n}}\right)}(\lambda)$ as follows:

$$
P_{N L\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\lambda(\lambda-1)^{n-1}\left(\lambda-1-\frac{1}{n-1}\right)^{n-2}\left(\lambda^{2}+\frac{(1-2 n)}{n-1} \lambda+\frac{n(n+1)}{(2 n-1)(n-1)}\right) .
$$

Theorem 8. Let $\Gamma_{D_{2 n}}$ be the power graph for $D_{2 n}$, then the characteristic polynomial of $N S L\left(\Gamma_{D_{2 n}}\right)$ is

$$
P_{N S L\left(\Gamma_{D_{2 n}}\right)}(\lambda)=(\lambda-1)^{n-1}\left(\lambda-1+\frac{1}{n-1}\right)^{n-2}\left(\lambda^{3}+\frac{(5-4 n)}{n-1} \lambda^{2}+\frac{\left(9 n^{2}-19 n+8\right)}{(2 n-1)(n-1)} \lambda-\frac{2(n-2)}{2 n-1}\right) .
$$

Proof. By Definition 7, and Equations 6 and 7, we can construct $\operatorname{NSL}\left(\Gamma_{D_{2 n}}\right)$ of the size $2 n \times 2 n$ as given below:

	e	a	a^{2}	a^{n-1}	b	$a b$	$a^{n-1} b$
e	$\text { / } 1$	$\frac{1}{\sqrt{(2 n-1)(n-1)}}$	$\frac{1}{\sqrt{(2 n-1)(n-1)}}$	$\frac{1}{\sqrt{(2 n-1)(n-1)}}$	$\frac{1}{\sqrt{2 n-1}}$	$\frac{1}{\sqrt{2 n-1}}$	$\frac{1}{\sqrt{2 n-1}}$
a	$\frac{1}{\sqrt{(2 n-1)(n-1)}}$	1	$\frac{1}{n-1}$	$\frac{1}{n-1}$	0	0	0
a^{2}	$\frac{1}{\sqrt{(2 n-1)(n-1)}}$	$\frac{1}{n-1}$	1	$\frac{1}{n-1}$	0	0	0
\vdots	\vdots	:	:	:	\vdots	;	\vdots
a^{n-1}	$\frac{1}{\sqrt{(2 n-1)(n-1)}}$	$\frac{1}{n-1}$	$\frac{1}{n-1}$	1	0	0	0
b	$\frac{1}{\sqrt{2 n-1}}$	0	0	0	1	0	0
$a b$	$\frac{1}{\sqrt{2 n-1}}$	0	0	0	0	1	0
\vdots	.				:		:
$a^{n-1} b$	$\frac{1}{\sqrt{2 n-1}}$	0	0	0	0	0	$1)$

In other words, $N S L\left(\Gamma_{D_{2 n}}\right)$ can be partitioned into nine block matrices as follows:

$$
N S L\left(\Gamma_{D_{2 n}}\right)=\left[\begin{array}{ccc}
1 & \frac{1}{\sqrt{(2 n-1)(n-1)}} J_{1 \times(n-1)} & \frac{1}{\sqrt{2 n-1}} J_{1 \times n} \\
\frac{1}{\sqrt{(2 n-1)(n-1)}} J_{(n-1) \times 1} & \left(1-\frac{1}{n-1}\right) I_{n-1}+\frac{1}{n-1} J_{n-1} & 0_{(n-1) \times n} \\
\frac{1}{\sqrt{2 n-1}} J_{n \times 1} & 0_{n \times(n-1)} & I_{n}
\end{array}\right] .
$$

The characteristic polynomial of $N S L\left(\Gamma_{D_{2 n}}\right)$ is

$$
P_{N S L\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\left|\begin{array}{ccc}
\lambda-1 & -\frac{1}{\sqrt{(2 n-1)(n-1)}} J_{1 \times(n-1)} & -\frac{1}{\sqrt{2 n-1}} J_{1 \times n} \tag{12}\\
-\frac{1}{\sqrt{(2 n-1)(n-1)}} J_{(n-1) \times 1} & \left(\lambda-1+\frac{1}{n-1}\right) I_{n-1}-\frac{1}{n-1} J_{n-1} & 0_{(n-1) \times n} \\
-\frac{1}{\sqrt{2 n-1}} J_{n \times 1} & 0_{n \times(n-1)} & (\lambda-1) I_{n}
\end{array}\right| .
$$

We apply the row and column operations to Equation 12:
(i) $R_{n+1+i} \longrightarrow R_{n+1+i}-R_{n+1}$, for $i=1,2, \ldots, n-1$.
(ii) $C_{n+1} \longrightarrow C_{n+1}+C_{n+2}+\ldots+C_{2 n}$.
(iii) $C_{1} \longrightarrow C_{1}+\frac{1}{(\lambda-1) \sqrt{2 n-1}} C_{n+1}$.
(iv) $R_{2+i} \longrightarrow R_{2+i}-R_{2}$, for $i=1,2, \ldots, n-2$.
(v) $C_{2} \longrightarrow C_{2}+C_{2+1}+\ldots+C_{n}$,
consequently we have
$P_{N S L\left(\Gamma_{D_{2 n}}\right)}(\lambda)=\left|\begin{array}{ccccc}\frac{-n}{(\lambda-1)(2 n-1)}+\lambda-1 & -\frac{n-1}{\sqrt{(2 n-1)(n-1)}} & -\frac{1}{\sqrt{(2 n-1)(n-1)}} J_{1 \times(n-2)} & -\frac{n}{\sqrt{2 n-1}} & -\frac{1}{\sqrt{2 n-1}} J_{1 \times n} \\ -\frac{1}{\sqrt{(2 n-1)(n-1)}} & \lambda-1-\frac{(n-2)}{n-1} & -\frac{1}{n-1} J_{1 \times(n-2)} & 0 & 0_{1 \times(n-1)} \\ 0_{(n-2) \times 1} & 0_{(n-2) \times 1} & \left(\lambda-1+\frac{1}{n-1}\right) I_{n-2} & 0_{(n-2) \times 1} & 0_{(n-2) \times(n-1)} \\ 0 & 0 & 0_{1 \times(n-2)} & \lambda-1 & 0_{1 \times(n-1)} \\ 0_{(n-1) \times 1} & 0_{(n-1) \times 1} & 0_{n-1} & 0_{(n-1) \times 1} & (\lambda-1) I_{n-1}\end{array}\right|$.
According to Theorem 2, we can obtain $P_{N S L\left(\Gamma_{D_{2 n}}\right)}(\lambda)$ as follows:
$P_{N S L\left(\Gamma_{D_{2 n}}\right)}(\lambda)=(\lambda-1)^{n-1}\left(\lambda-1+\frac{1}{n-1}\right)^{n-2}\left(\lambda^{3}+\frac{(5-4 n)}{n-1} \lambda^{2}+\frac{\left(9 n^{2}-19 n+8\right)}{(2 n-1)(n-1)} \lambda-\frac{2(n-2)}{2 n-1}\right)$.

Acknowledgements

We wish to express our gratitude to Universitas Mataram, Indonesia, for providing partial funding assistance.

References

[1] B Alharbi. Graphs and the Prime Spectrum of Unitary Commutative Rings. European Journal of Pure and Applied Mathematics, 16(1):314-318, 2023.
[2] F Ali, S Fatima, and W Wang. On the Power Graphs of Certain Finite Groups. Linear and Multilinear Algebra, pages 1-15, 2020.
[3] M Aschbacher. Finite Group Theory. Cambridge University Press, Cambridge, 2000.
[4] A E Brouwer and W H Haemers. Spectra of graphs. Springer, New York, 2011.
[5] T T Chelvam and M Sattanathan. Power Graph of Finite Abelian Groups. Algebra and Discrete Mathematics, 16(1):33-41, 2013.
[6] F R Gantmacher. The Theory of Matrices. Chelsea Publishing Company, New York, 1959.
[7] A Kumar, L Selvaganesh, P J Cameron, and T Chelvam. Recent developments on the power graph of finite groups - a survey. AKCE International Journal of Graphs and Combinatorics, 18(2):65-94, 2021.
[8] M U Romdhini, F Al-Sharqi, A Nawawi, A Al-Quran, and H Rashmanlou. Signless Laplacian energy of interval-valued fuzzy graph and its applications. Sains Malaysiana, 52(7):2127-2137, 2023.
[9] M U Romdhini and A Nawawi. Degree Sum Energy of Non-Commuting Graph for Dihedral Groups. Malaysian Journal of Science, 41(sp1):34-39, 2022.
[10] M U Romdhini and A Nawawi. Maximum and minimum degree energy of commuting graph for dihedral groups. Sains Malaysiana, 51(12):4145-4151, 2022.
[11] M U Romdhini and A Nawawi. Degree subtraction energy of commuting and noncommuting graphs for dihedral groups. Journal of Mathematical and Computational Science, 18(3):497-508, 2023.
[12] M U Romdhini, A Nawawi, and C Y Chen. Degree Exponent Sum Energy of Commuting Graph for Dihedral Groups. Malaysian Journal of Science, 41(sp1):40-46, 2022.
[13] M U Romdhini, A Nawawi, and C Y Chen. Neighbors degree sum energy of commuting and non-commuting graphs for dihedral groups. Malaysian Journal of Mathematical Sciences, 17(1):53-65, 2023.
[14] A Sehgal and S N Singh. The Degree of a Vertex in the Power Graph of a Finite Abelian Group. Southeast Asian Bulletin of Mathematics, 47:89-296, 2023.
[15] N Takshak and A Sehgal A Malik. Power Graph of a Finite Group is Always Divisor Graph. Asian-European Journal of Mathematics, 16(1):2250236, 2023.

[^0]: * Corresponding author.

 DOI: https://doi.org/10.29020/nybg.ejpam.v17i2.5036
 Email addresses: mamika@unram.ac.id (M. U. Romdhini), athirah@upm.edu.my (A. Nawawi), faisal.ghazi@uoanbar.edu.iq (F. Al-Sharqi), aalquran@kfu.edu.sa (A. Al-Quran)

