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Abstract. A new type of algebraic structure, called a quasi generalized exchange algebra(qGE-
algebra), with the GE-algebra conditions is introduced and its properties are investigated. The
concepts of qGE-subalgebra, qGE-filter, closed qGE-filter and strong qGE-filter of a quasi GE-
algebra are introduced and their relationships are discussed. The conditions for a subset of a quasi
GE-algebra to be a qGE-filter are given.

2020 Mathematics Subject Classifications: 03G25, 06F35

Key Words and Phrases: Quasi GE-algebra(qGE-algebra), qGE-subalgebra, (strong, closed)
qGE-filter

1. Introduction

L. Henkin and T. Skolem made significant contributions to the field of intuitionistic
and non-classical logics during the 1950s by introducing Hilbert algebras. An interesting
development came from A. Diego, who established the local finiteness of Hilbert algebras,
as demonstrated in [3]. In an effort to extend the concept of dual BCK-algebras, H. S.
Kim and Y. H. Kim introduced the notion of BE-algebras, as discussed in [4]. Drawing
connections between Hilbert algebras and BE-algebras, A. Rezaei et al. explored their
interrelations, as presented in [5]. The process of generalization is pivotal in the study
of algebraic structures, leading to the introduction of GE-algebras by R. K. Bandaru et
al., elaborated in [1]. An integral facet of GE-algebras’ advancement lies in filter theory,
which was leveraged by R. K. Bandaru et al. in the establishment of belligerent GE-filters
within GE-algebras. Their properties were thoroughly investigated, as documented in [2].
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In this paper, we introduce a new type of algebraic structure, called a quasi GE-algebra
(briefly, qGE-algebra), with the conditions of GE-algebra and investigate its properties.
We show that GE-algebra and qGE-algebra are independent of each other through exam-
ples. We introduce the substructure of quasi GE-algebra called qGE-subalgebra, qGE-
filter, strong qGE-filter, and closed qGE-filter, and further explore the relevant properties
and interrelationship. We provide several conditions for a subset of a qGE-algebra to be
a qGE-filter.

2. Preliminaries

We display the basic notions on GE-algebras.
A GE-algebra (see [[1]]) is a non-empty set X with a constant 1 and a binary operation

“ ∗ ” satisfying the following axioms:
(GE1) ϖ ∗ϖ = 1,
(GE2) 1 ∗ϖ = ϖ,
(GE3) ϖ ∗ (π ∗ η) = ϖ ∗ (π ∗ (ϖ ∗ η))

for all ϖ,π, η ∈ X.
In a GE-algebra X, a binary relation “≤” is defined by

(∀ϖ,π ∈ X) (ϖ ≤ π ⇔ ϖ ∗ π = 1) . (1)

Every GE-algebra X satisfies the following items (see [[1]]).

(∀ϖ ∈ X) (ϖ ∗ 1 = 1) . (2)

(∀ϖ,π ∈ X) (ϖ ∗ (ϖ ∗ π) = ϖ ∗ π) . (3)

(∀ϖ,π ∈ X) (ϖ ≤ π ∗ϖ) . (4)

(∀ϖ,π, η ∈ X) (ϖ ∗ (π ∗ η) ≤ π ∗ (ϖ ∗ η)) . (5)

(∀ϖ ∈ X) (1 ≤ ϖ ⇒ ϖ = 1) . (6)

(∀ϖ,π ∈ X) (ϖ ≤ (π ∗ϖ) ∗ϖ) . (7)

(∀ϖ,π ∈ X) (ϖ ≤ (ϖ ∗ π) ∗ π) . (8)

(∀ϖ,π, η ∈ X) (ϖ ≤ π ∗ η ⇔ π ≤ ϖ ∗ η) . (9)

3. Quasi GE-algebras

In a GE-algebra X, we consider the following equality:

(∀κ, δ, ς ∈ X)(κ ∗ δ = (ς ∗ κ) ∗ (ς ∗ δ)). (10)

The following example shows that a GE-algebra may not satisfy the condition (10).
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Example 1. Let X = {1, a, b, c, d, e, f} be a set with the binary operation “∗” in the
following Cayley Table.

∗ 1 a b c d e f

1 1 a b c d e f
a 1 1 1 c e e 1
b 1 a 1 d d d f
c 1 1 b 1 1 1 1
d 1 a 1 1 1 1 f
e 1 a b 1 1 1 1
f 1 a b e d e 1

Then X is a GE-algebra and we have

(c ∗ a) ∗ (c ∗ d) = 1 ∗ 1 = 1 ̸= e = a ∗ d.

We would like to introduce a new type of algebra using (10) instead of (GE3) under
the three conditions of GE-agebras.

Definition 1. A quasi GE-algebra (briefly, qGE-algebra) is defined to be a set X with a
special element “1” called the unit and a binary operation “∗” that satisfies three conditions
(GE1), (GE2) and (10).

Example 2. Let X = {1, a, b, c, d, e} be a set with a binary operation “ ∗ ” given in the
following table:

∗ 1 a b c d e

1 1 a b c d e
a a 1 c b e d
b d c 1 e b a
c c d e 1 a b
d b e d a 1 c
e e b a d c 1

It is routine to verify that (X, ∗, 1) is a qGE-algebra.

Example 3. Let X = {1, a, b} be a set with the binary operation “∗” in the following
Cayley Table.

∗ 1 a b

1 1 a b
a b 1 a
b a b 1

Then X is a qGE-algebra.

Example 4. Let X be the set of all integers or all real numbers. Define a binary operation
“∗” on X as follows:

∗ : X ×X → X, (κ, δ) 7→ δ − κ.

It is routine to verify that (X, ∗, 0) is a qGE-algebra.
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Remark 1. Example 1 explains that a GE-algebra may not be a qGE-algebra.

The following example shows that a qGE-algebra may not be a GE-algebra.

Example 5. The qGE-algebra X given in Example 2 is not a GE-algebra because of

a ∗ (b ∗ a) = a ∗ c = b ̸= e = a ∗ d = a ∗ (b ∗ 1) = a ∗ (b ∗ (a ∗ a)).

By Remark 1 and Example 5, we can see that the two concepts GE-algebra and qGE-
algebra are independent of each other.

In a qGE-algebra X, a binary relation “≤” is also defined by (1). If X is a GE-algebra,
then (X,≤) may not be a poset as shown in the following example.

Example 6. Let X = {1, a, b, c, d} be a set with a binary operation “ ∗ ” given in the
following table:

∗ 1 a b c d

1 1 a b c d
a 1 1 1 c c
b 1 a 1 d d
c 1 a 1 1 1
d 1 a 1 1 1

Then (X, ∗, 1) is a GE-algebra. We can observe that c ≤ d and d ≤ c but c ̸= d. Hence
(X,≤) is not be a poset.

But, if X is a qGE-algebra, then (X,≤) is a poset. In fact, it is reflexive by (GE1).
Let κ, δ ∈ X be such that κ ≤ δ. Then κ∗ δ = 1, and so δ ∗κ = (κ∗ δ)∗ (κ∗κ) = 1∗1 = 1,
i.e., δ ≤ κ. Hence ≤ is symmetric. Let κ, δ, ς ∈ X be such that κ ≤ δ and δ ≤ ς. Then
κ ∗ δ = 1 and δ ∗ ς = 1. Hence

κ ∗ ς = 1 ∗ (κ ∗ ς) = (κ ∗ δ) ∗ (κ ∗ ς) = δ ∗ ς = 1,

i.e, κ ≤ ς. Thus ≤ is transitive. Therefore (X,≤) is a poset.
The relation ≤ is also antisymmetric. In fact, let κ, δ ∈ X be such that κ ≤ δ and

δ ≤ κ. Then κ ∗ δ = 1 and δ ∗ κ = 1. Hence

δ = 1 ∗ δ = (δ ∗ 1) ∗ (δ ∗ δ) = (δ ∗ 1) ∗ (δ ∗ κ) = 1 ∗ κ = κ,

and therefore ≤ is antisymmetric.
In general, a GE-algebra has no left cancellation property as shown in the following

example.

Example 7. The GE-algebra X in Example 6 doesn’t have the left cancellation property
since a ∗ a = 1 = a ∗ 1, but a ̸= 1.

Theorem 1. A qGE-algebra X has the left cancellation property.
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Proof. Let κ, δ, ς ∈ X be such that κ ∗ δ = κ ∗ ς. Then

δ = 1 ∗ δ = (κ ∗ 1) ∗ (κ ∗ δ) = (κ ∗ 1) ∗ (κ ∗ ς) = 1 ∗ ς = ς

by (GE2) and (10). Hence κ is left-cancellative. Since κ is arbitrary, X has the left
cancellation property.

Proposition 1. Every qGE-algebra X satisfies:

(∀κ, δ ∈ X)(κ ≤ δ ⇔ κ = δ). (11)

Proof. It is clear that if κ = δ, then κ ≤ δ. Let κ, δ ∈ X be such that κ ≤ δ. Then
κ ∗ δ = 1 = κ ∗ κ by (GE1). It follows from Theorem 1 that κ = δ.

Remark 2. By Proposition 1, we know that the binary relation ≤ is only the set

≤= {(κ, κ) ∈ X ×X | κ ∈ X}.

Proposition 2. Every qGE-algebra X satisfies:

(∀κ, δ ∈ X)(κ ∗ δ = (δ ∗ κ) ∗ 1), (12)

(∀κ, δ ∈ X)((κ ∗ 1) ∗ (κ ∗ δ) = δ), (13)

(∀κ, δ ∈ X)(κ ∗ ((κ ∗ 1) ∗ δ) = δ). (14)

(∀κ, δ, ς ∈ X)(κ ≤ δ ⇒ ς ∗ κ ≤ ς ∗ δ). (15)

Proof. The combination of (GE1) and (10) induces (12), and the combination of (GE2)
and (10) induces (13). If we take κ = 1 in (12) and use (GE2), then δ = (δ ∗ 1) ∗ 1 for all
δ ∈ X. It follows from (13) that

κ ∗ ((κ ∗ 1) ∗ δ) = ((κ ∗ 1) ∗ 1) ∗ ((κ ∗ 1) ∗ δ) = δ

for all κ, δ ∈ X. (15) is clear by (10).

Corollary 1. Every qGE-algebra X satisfies:

(∀κ, δ, ς ∈ X)((ς ∗ κ) ∗ (ς ∗ δ) = (δ ∗ κ) ∗ 1), (16)

(∀κ, δ, ς ∈ X)(κ ∗ ς = δ ∗ ς ⇒ κ = δ). (17)

Proof. The combination of (10) and (12) induces (16). Let κ, δ, ς ∈ X be such that
κ ∗ ς = δ ∗ ς. Using (12), we have

ς ∗ κ = (κ ∗ ς) ∗ 1 = (δ ∗ ς) ∗ 1 = ς ∗ δ.

It follows from Theorem 1 that κ = δ.
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Remark 3. In Proposition 2, (12) shows that X consists of elements κ that satisfy (κ ∗
1) ∗ 1 = κ. That is, X = {κ ∈ X | (κ ∗ 1) ∗ 1 = κ}.

Theorem 2. Let (X, ∗X , 1X) and (Y, ∗Y , 1Y ) be qGE-algebras. Let Z = X × Y be the
Cartesian product of X and Y . Define a binary operation “∗” on Z as follows:

∗ : Z × Z → Z, ((κ,ϖ), (δ, π)) 7→ (κ ∗X δ,ϖ ∗Y π). (18)

Then (Z, ∗, 1) is a qGE-algebra where 1 = (1X , 1Y ). We call it the product qGE-algebra of
(X, ∗X , 1X) and (Y, ∗Y , 1Y ).

Proof. It is straightforward.

An example to explain Theorem 2 is presented as follows.

Example 8. Let (X, ∗X , 1X) be a qGE-algebra and consider the qGE-algebra (Z,−, 0)
which is given in Example 4. Let Y = X × Z and the binary operation “∗” on Y is given
as follows:

(κ,ϖ) ∗ (δ, π) = (κ ∗X δ, π −ϖ)

for all (κ,ϖ), (δ, π) ∈ Y . Then (Y, ∗, 1) is the product qGE-algebra of (X, ∗X , 1X) and
(Z,−, 0) where 1 = (1X , 0).

4. qGE-subalgebras

In what follows, let X be a qGE-algebra unless otherwise specified.

Definition 2. A non-empty subset E of X is called a qGE-subalgebra of X if it satisfies:

(∀κ, δ ∈ X)(κ, δ ∈ E ⇒ κ ∗ δ ∈ E). (19)

It is obvious that the singleton {1} is a qGE-subalgebra of X.

Example 9. Consider the qGE-algebra X given in Example 2. It is routine to verify that
the set E = {1, b, d} is a qGE-subalgebra of X.

Example 10. Let X := R \ {0} where R is the set of all real numbers. Define binary
operations “ ∗+ ” and “ ∗− ” on X as follows:

∗+ : X ×X → X, (κ, δ) 7→ δ
κ , (20)

∗− : X ×X → X, (κ, δ) 7→ − δ
κ , (21)

respectively. It can be easily confirmed that (X, ∗+, 1) and (X, ∗−,−1) are qGE-algebras.
Let E := R+ and D := R− be the set of all positive real numbers and the set of all
positive real numbers, respectively. Then E is a qGE-subalgebra of (X, ∗+, 1), but D is not
a qGE-subalgebra of (X, ∗+, 1). Also D is a qGE-subalgebra of (X, ∗−,−1), but E is not
a qGE-subalgebra of (X, ∗−,−1).
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Proposition 3. Every qGE-subalgebra of X contains the unit 1.

Proof. It is straightforward by (GE1).

Theorem 3. Let (Z, ∗, 1) be the product qGE-algebra of qGE-algebras (X, ∗X , 1X) and
(Y, ∗Y , 1Y ). If D and E are qGE-subalgebras of X and Y , respectively, then their product
D × E is a qGE-subalgebra of Z.

Proof. Let (κ, δ), (ϖ,π) ∈ D × E. Then κ,ϖ ∈ D and δ, π ∈ E, and thus κ ∗X ϖ ∈ D
and δ ∗Y π ∈ E. It follows that

(κ, δ) ∗ (ϖ,π) = (κ ∗X δ,ϖ ∗Y π) ∈ D × E.

Hence D × E is a qGE-subalgebra of Z.

The following example illustrates Theorem 3.

Example 11. Consider the qGE-algebra (X, ∗X , 1X) given in Example 2 and the qGE-
algebra (R,−, 0) which is given in Example 4. Then (X×R, ∗, 1) is the product qGE-algebra
of (X, ∗X , 1X) and (R,−, 0) where ∗ is defined by

(∀(κ, δ), (r, s) ∈ X × R)((κ, δ) ∗ (r, s) = (κ ∗X r, s− δ)).

Let D = {1, a} and E = Z. Then D and E are qGE-subalgebras of X and R, respectively.
Let (κ, δ), (u, v) ∈ D×E. Then κ, u ∈ D and δ, v ∈ E, and thus κ∗X u ∈ D and v−δ ∈ E.
It follows that

(κ, δ) ∗ (u, v) = (κ ∗X u, v − δ) ∈ D × E.

Hence D × E is a qGE-subalgebra of X × R.

Theorem 4. The intersection of two qGE-subalgebras is a qGE-subalgebra.

The union of two qGE-subalgebras may not be a qGE-subalgebra as shown in the
following example.

Example 12. Consider the qGE-algebra X given in Example 2. It is routine to verify
that the set E1 = {1, a} and E2 = {1, c} are qGE-subalgebras of X. But E1∪E2 = {1, a, c}
is not a qGE-subalgebra of X since a, c ∈ E1 ∪ E2 but a ∗ c = b /∈ E1 ∪ E2.

5. qGE-filters

In this section, we introduce the qGE-filter in a qGE-algebra in the same way as the
GE-filter in a GE-algebra as follows.

Definition 3. A subset F of X is called a qGE-filter of X if it satisfies:

1 ∈ F, (22)

(∀κ, δ ∈ X)(κ ∗ δ ∈ F, κ ∈ F ⇒ δ ∈ F ). (23)
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Example 13. Let X = {1, a, b, c, d, e} be a set with a binary operation “ ∗ ” given in the
following table:

∗ 1 a b c d e

1 1 a b c d e
a a 1 c b e d
b b d 1 e a c
c d b e 1 c a
d c e a d 1 b
e e c d a b 1

Then (X, ∗, 1) is a qGE-algebra, and it is routine to check that the set F = {1, c, d} is a
qGE-filter of X.

Example 14. Consider the qGE-algebra (Y, ∗, 1) which is given in Example 8. Consider a
subset K := X×N0 of Y where N0 = N∪{0} and N is the set of all natural numbers. It is
clear that 1 = (1X , 0) ∈ K. Let (κ1, ϖ1), (κ2, ϖ2) ∈ Y be such that (κ1, ϖ1) ∗ (κ2, ϖ2) ∈ K
and (κ1, ϖ1) ∈ K. Then

(κ1, ϖ1) ∗ (κ2, ϖ2) = (κ1 ∗X κ2, ϖ2 −ϖ1) ∈ K,

and so ϖ1 ∈ N0 and ϖ2 −ϖ1 ∈ N0. Hence ϖ2 ∈ N0, and thus (κ2, ϖ2) ∈ K. Therefore K
is a qGE-filter of Y .

Theorem 5. Every qGE-filter F of X satisfies:

(∀ϖ,π ∈ F )(Q(ϖ,π) := {κ ∈ X | ϖ ∗ κ = π} ⊆ F ), (24)

Proof. Assume that F is a qGE-filter of X and let κ ∈ Q(ϖ,π) for ϖ,π ∈ F . Then
ϖ ∗ κ = π ∈ F and so κ ∈ F . Hence Q(ϖ,π) ⊆ F .

Proposition 4. If F is a subset of X that satisfies the condition (24), then F satisfies
the condition (23).

Proof. Let F be a subset of X that satisfies the condition (24). Let κ, δ ∈ X be such
that κ ∈ F and κ ∗ δ ∈ F . Then the equality κ ∗ δ = κ ∗ δ induces δ ∈ Q(κ, κ ∗ δ) ⊆ F ,
and so F satisfies the condition (23).

We present the following open question.

Question 4. If F is a subset of X that satisfies the condition (24), then does F include
the unit 1?

If we can get the positive answer to the Question 4, then we know that every subset
F of X which satisfies the condition (24) is a qGE-filter of X.

If F is a subset of X that satisfies the condition (24) for all ϖ,π ∈ X with ϖ ̸= π,
then F may not be a qGE-filter of X as shown in the following example.
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Example 15. Consider the qGE-algebra (X, ∗, 1) given in Example 2. Let F = {1, d}.
Then we can observe that Q(1, d) = Q(d, 1) = {d} ⊆ F for all 1, d ∈ F . But F is not a
qGE-filter of X since d ∈ F and d ∗ b = d ∈ F but b /∈ F .

Question 5. Does any qGE-filter F of X satisfy the condition below?

(∀κ, δ, ς ∈ X)(ς ∗ (δ ∗ κ) ∈ F, ς ∗ δ ∈ F ⇒ ς ∗ κ ∈ F ). (25)

The example below shows that the answer to Question 5 is negative.

Example 16. Let X = {1, a, b, c, d, e} be a set with a binary operation “ ∗ ” given in the
following table:

∗ 1 a b c d e

1 1 a b c d e
a a 1 d e b c
b c d 1 b e a
c b e c 1 a d
d d c e a 1 b
e e b a d c 1

Then (X, ∗, 1) is a qGE-algebra, and it is routine to verify that the set F := {1, b, c} is
a qGE-filter of X. But it does not satisfy (25) since a ∗ (a ∗ 1) = a ∗ a = 1 ∈ F and
a ∗ a = 1 ∈ F , but a ∗ 1 = a /∈ F.

We use two conditions (22) and (25) to make a qGE-filter from a subset.

Theorem 6. Let F be a subset of X that satisfies (22). If F satisfies the condition (25),
then it is a qGE-filter of X.

Proof. Assume that a subset F of X satisfies two conditions (22) and (25). Let
κ, δ ∈ X be such that δ ∗ κ ∈ F and δ ∈ F . If we take ς := 1 in (25) and use (GE2),
then 1 ∗ (δ ∗ κ) = δ ∗ κ ∈ F and 1 ∗ δ = δ ∈ F . It follows from (25) and use (GE2) that
κ = 1 ∗ κ ∈ F . Thus F is a qGE-filter of X.

For a subset F of X, consider the condition below.

(∀κ, δ, ς ∈ X)(κ ∗ (δ ∗ ς) ∈ F ⇒ δ ∗ ς ∈ F ). (26)

The following example shows that a qGE-filter F of X may not satisfy the condition
(26).

Example 17. Let (X, ∗, 1) be a qGE-algebra and F = {1, b, c} a qGE-filter of X given in
Example 16. Then F does not satisfy (26) since d∗(c∗e) = d∗d = 1 ∈ F but c∗e = d /∈ F .

We explore the conditions for a qGE-filter to satisfy the condition (25).

Theorem 7. Let F be a qGE-filter of X. If F satisfies (26), then it satisfies the condition
(25).
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Proof. Let F be a qGE-filter of X that satisfies (26). Let κ, δ, ς ∈ X be such that
ς ∗ (δ ∗ κ) ∈ F and ς ∗ δ ∈ F . Then δ ∗ κ ∈ F and ς ∗ δ ∈ F . It follows from (10) that
(ς ∗ δ) ∗ (ς ∗ κ) = δ ∗ κ ∈ F and ς ∗ δ ∈ F . Hence ς ∗ κ ∈ F by (23), and therefore the
condition (25) is valid.

We explore the conditions for a subset F of X to be a qGE-filter of X.

Theorem 8. Let F be a subset of X which includes the unit 1. If F satisfies the condition
(26), then F is a qGE-filter of X.

Proof. Assume that a subset F of X includes the unit 1 and satisfies the condition
(26). Let κ, δ ∈ X be such that κ ∗ δ ∈ F and κ ∈ F . Then κ ∗ (1 ∗ δ) = κ ∗ δ ∈ F by
(GE2). It follows from (GE2) and (26) that δ = 1 ∗ δ ∈ F . Hence F is a qGE-filter of X.

Theorem 9. Let F be a subset of X with the unit 1. If it satisfies:

(∀κ, δ, ς ∈ X)(κ ∗ (δ ∗ ς) ∈ F, δ ∈ F ⇒ κ ∗ ς ∈ F ), (27)

then it is a qGE-filter of X.

Proof. Let κ, δ ∈ X be such that κ ∗ δ ∈ F and κ ∈ F . Using (GE2), we have
1 ∗ (κ ∗ δ) = κ ∗ δ ∈ F , and so δ = 1 ∗ δ ∈ F by (GE2) and (27). Hence F is a qGE-filter
of X.

In the following example, we can find a qGE-filter of X which does not satisfy the
condition (27).

Example 18. Consider the qGE-algebra (X, ∗, 1) given in Example 13. It is routine to
verify that the set F := {1, e} is a qGE-filter of X. But F does not satisfy (27) since

a ∗ (e ∗ b) = a ∗ d = e ∈ F and e ∈ F but a ∗ b = c /∈ F.

Definition 6. If a subset F of X satisfies (22) and (27), we say that F is a strong
qGE-filter of X.

Example 19. Let X = {1, a, b, c} be a set with a binary operation “ ∗ ” given in the
following table:

∗ 1 a b c

1 1 a b c
a b 1 c a
b a c 1 b
c c b a 1

Then (X, ∗, 1) is a qGE-algebra, and the set F := {1, c} is a strong qGE-filter of X.

It is obvious that every strong qGE-filter is a qGE-filter (see Theorem 9). But a
qGE-filter may not be a strong qGE-filter as seen in the following example.
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Example 20. Consider the qGE-algebra (X, ∗, 1) given in Example 13. It is routine to
verify that the set F := {1, e} is a qGE-filter of X. But F is not a strong qGE-filter of X
since a ∗ (e ∗ b) = a ∗ d = e ∈ F and e ∈ F but a ∗ b = c /∈ F.

The following example shows that a strong qGE-filter may not be a qGE-subalgebra.

Example 21. Consider the qGE-algebra (R \ {0}, ∗+, 1) given in Example 10. If we take
F+ := {κ ∈ R | κ ≥ 1}, then 1 ∈ F+ ⊆ R \ {0}. Let κ, δ, ς ∈ R \ {0} be such that
κ ∗ (δ ∗ ς) ∈ F+ and δ ∈ F+. Then ς

κδ = κ ∗ (δ ∗ ς) ≥ 1 and δ ≥ 1. It follows that

κ ∗ ς = ς
κ = δς

κδ ≥ 1, i.e., κ ∗ ς ∈ F+. Hence F+ is a strong qGE-filter of R \ {0}. But F+

is not a qGE-subalgebra of R \ {0} because of 3.5 ∗ 2.5 = 2.5
3.5 < 1 and so 3.5 ∗ 2.5 /∈ F+ for

2.5, 3.5 ∈ F+.

In Example 10, the set F− := {κ ∈ R | κ ≤ −1} is neither a strong qGE-filter nor a
qGE-subalgebra, as checked in the following example.

Example 22. Consider the qGE-algebra (R \ {0}, ∗+, 1) given in Example 10. Let F− :=
{κ ∈ R | κ ≤ −1}. Then −1 ∈ F− ⊆ R\{0}. Let κ, δ, ς ∈ R\{0} be such that κ∗(δ∗ς) ∈ F−
and δ ∈ F−. Then ς

κδ = κ ∗ (δ ∗ ς) ≤ −1 and δ ≤ −1. But κ ∗ ς = ς
κ = δς

κδ ≥ 0, i.e.,
κ ∗ ς /∈ F−. Thus F− is not a strong qGE-filter of R \ {0}. Also if κ, δ ∈ F−, then κ ≤ −1
nd δ ≤ −1. Hence κ ∗ δ = δ

κ ≥ 0, that is, κ ∗ δ /∈ F−. Therefore F− is not a strong
qGE-subalgebra of R \ {0}.

The following example shows that a qGE-subalgebra may not be a strong qGE-filter.

Example 23. Consider the qGE-algebra (X, ∗, 1) given in Example 13. It is routine to
verify that the set F := {1, e} is a qGE-subalgebra of X. But F is not a strong qGE-filter
of X since a ∗ (e ∗ b) = a ∗ d = e ∈ F and e ∈ F but a ∗ b = c /∈ F.

By Examples 21 and 23, we can see that the two concepts qGE-subalgebra and strong
qGE-filter are independent of each other.

We discuss relationship between a qGE-subalgebra and a qGE-filter.

Theorem 10. Every qGE-subalgebra is a qGE-filter.

Proof. Let E be a qGE-subalgebra of X. Proposition 3 shows that 1 ∈ E. Let κ, δ ∈ X
be such that κ∗δ ∈ E and κ ∈ E. Then κ∗1 ∈ E by (19), and so δ = 1∗δ = (κ∗1)∗(κ∗δ) ∈
E by (GE2), (10) and (19). Therefore E is a qGE-filter of X.

In the following example, we know that the converse of Theorem 10 may not be true.

Example 24. Consider the qGE-filter K := X × N0 of Y which is described in Example
14. Since

(κ1, 7) ∗ (κ2, 3) = (κ1 ∗X κ2,−4) /∈ K

for all κ1, κ2 ∈ X, we know that K is not a qGE-subalgebra of Y .

Definition 7. A qGE-filter F of X is said to be closed if F is closed under the binary
operation “∗” on X, i.e., F is a qGE-subalgebra of X.
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Example 25. Consider the qGE-algebra X given in Example 16. It is routine to verify
that the set F = {1, b, c} is a closed qGE-filter of X.

Example 26. Consider the qGE-algebra (R, ∗, 0) in Example 4. It is routine to verify
that (Z, ∗, 0) is a closed qGE-filter of (R, ∗, 0).

Proposition 5. Every closed qGE-filter F of X satisfies:

(∀κ ∈ X)(κ ∈ F ⇒ κ ∗ 1 ∈ F ). (28)

Proof. It is clear.

Remark 4. The Proposition 5 is not applicable when the qGE-filter F of X is not closed.
In fact, the qGE-filter K := X × N0 of Y which is described in Example 14 is not closed
(see Example 24), and (κ, 5) ∈ K for all κ ∈ X. But (κ, 5) ∗ 1 = (κ, 5) ∗ (1X , 0) =
(κ ∗X 1X , 0− 5) = (κ ∗X 1X ,−5) /∈ K.

We present the following open question.

Question 8. If a qGE-filter F of X satisfies the condition (28), then is it closed?

Theorem 11. The intersection of two qGE-filters is a qGE-filter.

Proof. This can be easily checked.

The union of two qGE-filters may not be a qGE-filter as shown in the following example.

Example 27. Consider the qGE-algebra X given in Example 2. It is routine to verify
that the set E1 = {1, a} and E2 = {1, c} are qGE-filters of X. But E1 ∪ E2 = {1, a, c} is
not a qGE-filter of X since a ∈ E1 ∪ E2 and a ∗ b = c ∈ E1 ∪ E2 but b /∈ E1 ∪ E2.

6. Conclusions

We have introduced a new type of algebraic structure, called a quasi GE-algebra
(briefly, qGE-algebra) and investigated its properties. We have introduced the concepts
of qGE-subalgebra, qGE-filter, closed qGE-filter and strong qGE-filter of a qGE-algebra
and discussed their relationships between them. We have provided conditions for a subset
of qGE-algebra to be a qGE-filter. In our future work, we will introduce different types of
qGE-filters of a qGE-algebra and investigate their properties.
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