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Abstract. This study introduces an ample Hausdorff groupoid Â ⋊R extracted from an ample
Hausdorff groupoid G and a unital commutative ring R; a Hausdorff groupoid D which is the
discrete twist over Â ⋊ R. In the groupoid C*-algebra perspective, when R = C there is an
isomorphism between the non-twisted groupoid C*-algebra (C∗(G)) and the twisted groupoid C*-
algebra (C∗(Â ⋊ R;D)). However, in this paper, in a purely algebraic setting, the non-twisted
Steinberg algebra (AR(G)) and the twisted Steinberg algebra (AR(D; Â⋊R)) are non-isomorphic.
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1. Introduction

The study of groupoids was initiated by Brandt in 1926 in [2]. Brandt utilizes the no-
tion of groupoid in [4] and other researchers produced more studies related to groupoids.
In [12], groupoid is defined as a small category in which every morphism is invertible.
Groupoid was used in various areas like the fibre bundle theory, in differential theory, in
foliation theory and in differential topology.

In 1980s, Renault was motivated by the works of Feldman and Moore [5, 6] for von
Neumann algebras and initiated the study of C*-algebras associated to groupoids in his
PhD thesis [10]. This study proved itself useful as it caters many problem in C*-algebras.
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Significant works on characterization of Lei-type maps with C*-algebra are in [13] and
[8]. Renault then introduced the twisted groupoid C*-algebras where the twist is done by
incorporating a T-valued 2-cocycle to its multiplication and involution. This study yields
extreme importance in the structures of large classes of C*-algebras as seen in the works
of Renault[11], Tu[14] and Barlak and Li[4]. In [15], Williams, Renault and Muhly proved
that the groupoid C*-algebra (C∗(G)) and the twisted groupoid C*-algebra (C∗(Â⋊R;D))
are isomorphic when R = C with the additional conditions for G to be second countable
locally compact groupoid with a Haar system and abelian isotropy.

Last 2010, thirty years after the introduction of twisted groupoid C*-algebras, Stein-
berg algebra was introduced independently in [3, 9]. It is an algebraic analogue of groupoid
C*-algebra. In 2021, Becky Armstrong, Lisa Clark, et al. introduced the twisted Steinberg
algebra in [1]. It is a purely algebraic analogue of Renault’s twisted groupoid C*-algebra.
This study is a generalisation of Steinberg algebra by twisting the convolution and invo-
lution in two ways: a locally constant 2-cocyle σ and a discrete twist Σ over a Hausdorff
étale groupoid G.

In this paper, we consider a purely algebraic perspective, that is, in the notion of
Steinberg algebra. Without the analysis requirements for our groupoid, our goal is to
show that the non-twisted Steinberg algebra and the twisted Steinberg algebra are non-
isomorphic. Our first task is to construct an ample Hausdorff groupoid Â ⋊ R from an
ample Hausdorff groupoid G and a unital commutative ring R with R× as the set of units

of R. From the unit space of Â⋊R, we then construct a sequence Â× T
i
↪→ D

q
↪→ Â⋊R

where D is a Hausdorff groupoid, T ≤ R× and (D, i, q) is our desired twist over Â ⋊R.
We then investigate properties of the Steinberg algebra of G over R or AR(G) and the
twisted Steinberg algebra associated to the pair (Â⋊R, D) or AR(D; Â⋊R) and look at
when isomorphism between the two fails to hold.

2. Preliminaries

In this section, important concepts and notations on topological groupoids, Steinberg
algebra and twisted Steinberg algebra arising from a discrete twist are presented.

Definition 1. [7] Let G be a set and G(2) be a subset of G × G such that there is a
(composition) map (γ, α) 7→ γα from G(2) to G. Suppose that there is an inverse map
γ 7→ γ−1 on G such that (γ−1)−1 = γ. Then we say that G is a groupoid if the following
are satisfied:

(G1) if (γ, α), (α, β) ∈ G(2), then (γα, β), (γ, αβ) ∈ G(2) and the following equation is
satisfied: (γα)β = γ(αβ);

(G2) for all γ ∈ G, (γ−1, γ) ∈ G(2);

(G3) if (γ, α) ∈ G(2), then (γ−1γ)α = α and γ(αα−1) = γ.

We call G(2) as the set of all composable pairs. We write G(3) for the set of composable
triples in G, that is, G(3) = {(α, β, γ) : (α, β), (β, γ) ∈ G(2)}.
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Lemma 1. [12] Let G be a groupoid and γ, β ∈ G. We say that (γ, β) ∈ G(2) if and only
if s(γ) = r(β).

Definition 2. [12] Define the functions s and r from G to itself by s(α) = α−1α called the
source of α ∈ G and r(α) = αα−1 called the range of α ∈ G, respectively. The common
image of r and s is the unit space of G and is denoted by G(0), that is, G(0) := s(G) = r(G).

Example 1. [12]

(i) Let G be a group with identity e. Then G is a groupoid with G(2) = G×G; s(γ) =
γ−1γ = e; r(γ) = γγ−1 = e; and G(0) = {e}.

(ii) If {Gi|i ∈ I} is a family of groups with identities {ϵ1|i ∈ I}, then the disjoint union⋃
i∈I Gi has a groupoid structure with d(g) = c(g) = ϵi for every g ∈ Gi. The

composition, defined only for pairs (g, h) ∈
⋃

i∈I Gi ×Gi, is just the relevant group
law. This is known as a group bundle.

Lemma 2. [7] Let G be a groupoid. We have

(i) (α, γ), (γ, β) ∈ G(2) and αγ = βγ imply α = β. Similarly, if (γ, α), (γ, β) ∈ G(2) and
γα = γβ, then α = β.

(ii) r(αβ) = r(β) and s(αβ) = s(β) for all α, β ∈ G(2).

(iii) (αβ)−1 = β−1α−1 for all α, β ∈ G(2).

(iv) r(x) = x = s(x) for all x ∈ G(0).

If γ ∈ G, then (r(γ), γ) and (γ, s(γ)) belong to G(2), and r(γ)γ = γ = γs(γ).

Definition 3. [12] Let xG = r−1(x), Gx = s−1(x), and xGy = xG ∩Gy. The isotropy of
a groupoid G is the set Iso(G) := {γ ∈ G : r(γ) = s(γ)} =

⋃
x∈G(0)

xGx. We say that G is

principal if Iso(G) = G(0).

Remark 1. [12] The isotropy of any groupoid is a group bundle.

Lemma 3. [7] A groupoid G is principal if γ 7→ (r(γ), s(γ)) is injective.

Definition 4. [12] A groupoid G is effective if the interior of the isotropy group of G is
equal to its unit space.

Definition 5. [12] Given groupoid G and H, we call a map ϕ : G → H a groupoid
homomorphism if (ϕ× ϕ)(G(2)) ⊆ H(2) and ϕ(α)ϕ(β) = ϕ(αβ) for all (α, β) ∈ G(2).

The following concepts is taken from [12].
A topological groupoid consists of a groupoid G and a topology compatible with the

groupoid structure such that the composition and involution are continuous and G(2) has
the induced topology from the product topology. Every groupoid is a topological groupoid
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with the discrete topology. An open set B ⊆ G is an open bisection if r|B and s|B are
homeomorphisms onto an open subset of G. A topological groupoid is étale if r (or
equivalently s) is a local homeomorphism. An étale groupoid is ample if the topology of
G has a basis of compact open bisections. Discrete group, discrete groupoids, and discrete
space are some examples of an ample groupoid with the discrete topology.

Definition 6. [12] Given a topological space X and a topological ring R, the open support
of a function f : X → R is the set supp(f) := {x ∈ X : f(x) ̸= 0} = f−1(R\{0}). We say
that f is compactly supported if supp(f) is contained in a compact set.

We use the following notion for the characteristic function of a subset U of G:
1U : G → R defined by

1U (g) =

{
1 if g ∈ U

0 if g /∈ U

Let RG be the set of all functions f : G → R. Canonically RG has the structure of an
R-module with operations defined pointwise.

Definition 7. [12] Let AR(G) be the R-submodule of RG generated by the set {1U |U is a
Hausdorff compact open subset of G}, that is, AR(G) = {f : G → R|f is continuous and
supp(f) is compact}. The convolution of f, g ∈ AR(G) is defined as

(f ∗ g)(x) :=
∑
y∈G,

s(y)=s(x)

f(xy−1)g(y) =
∑

(z,y)∈G(2),
zy=x

f(z)g(y)

for all x ∈ G. The R-module AR(G) with the convolution, is called the Steinberg algebra
of G over R.

The following example is a Steinberg algebra of R over Z.

Example 2. [12] Consider the set of G = R\{0} which is a group under multiplication. By
Example 1, G is a groupoid with the following structures: G(2) = G×G, s(γ) = γ−1γ = 1,
r(γ) = γγ−1 = 1 and G(0) = {1}. We note that G is an ample Hausdorff groupoid with
respect to the discrete topology. Its base is composed of singletons {r} where r ∈ G. We
let G as our unital commutative ring and 1{r} : G → Z is the characteristic function of a
subset {r} of G. Then

AZ(G) := spanZ{1{r} : {r}is a compact open bisection}
:= {f : G → Z}. (1)

Hence, AZ(G) together with the convolution

(f ∗ g)(x) :=
∑
y∈G,

s(y)=s(x)

f(xy−1)g(y) =
∑

(z,y)∈G(2),
zy=x

f(z)g(y)

is a Steinberg algebra of Z over G.



R. S. Bongcawel et al. / Eur. J. Pure Appl. Math, 17 (1) (2024), 519-545 523

The following discussions is taken from [1] where the Steinberg algebra is twisted via
the discrete twist.

Definition 8. Let G be a Hausdorff étale groupoid, and R be a commutative unital ring,

and let T < R×. A discrete twist by T over G is a sequence G(0)×T
i
↪→ Σ

q
↪→ G, where the

groupoid G(0)×T is regarded as trivial group bundle with fibres T , Σ is a Hausdorff étale
groupoid with Σ(0) = i(G(0) ×{1}), and i and q are continuous groupoid homomorphisms
that restricts to homeomorphism of unit spaces, such that the following condition holds:

(1) The sequence is exact, in the sense that i({x} × T ) = q−1(x) for every x ∈ G(0), i is
injective, and q is a quotient map

(2) The groupoid Σ is a locally trivial G-bundle, in the sense that for each α ∈ G, there
is an open bisection Bα of G containing α, and a continuous map Pα : Bα → Σ such
that

(i) q ◦ Pα = idBα

(ii) the map (β, z) → i(r(β), z)Pα(β) is a homeomorphism from Bα×T to q−1(Bα).

(3) The image of i is central in Σ, in the sense that i(r(ϵ), z)ϵ = ϵi(s(ϵ), z) for all ϵ ∈ Σ
and z ∈ T .

We will denote a discrete twist over G by (Σ, i, q).

The following is an example of a discrete twist.

Example 3. Consider the the set of integers Z as our groupoid and unital commutative
ring. Then our groupoid Z will have the following structures: Z× = {−1, 1} , s(x) =
x−1 + x = {0}, r(x) = x+ x−1 = {0}, Z(0) = {0} and Z(2) = {(x, y) ∈ Z×Z|s(x) = r(y)}.
Note that Z is a Hausdorff étale groupoid having the discrete topology. Let the function
σ : Z(2) → T ≤ R× be a continuous 2-cocycle. Choose T ≤ Z× = {1}. Then Z × T is a
Hausdorff groupoid with respect to the product topology with multiplication given by

(α, z)(β,w) := (αβ, σ(α, β)zw),

and inversion given by

(α, z)−1 := (α−1, σ(α, α−1)−1z−1) = (α−1, σ(α−1, α)−1z−1),

for all (α, β) ∈ Z(2) and z, w ∈ T . Then, (Z× T, i, q) is a discrete twist by T over Z with

the sequence Z(0) × T
i
↪→ Z× T

q
↪→ Z where i(x, z) = (x, z) and q(γ, z) = γ for all x, γ ∈ Z

and z ∈ T .

Definition 9. A continuous map Pα : Bα → Σ is called a continuous local section if it
satisfies Definition 8(2i). If P (G(0)) = Σ(0) = i(G(0) × 1), then Pα is a continuous global
section.
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Definition 10. Let G be an ample Hausdorff groupoid and let (Σ, i, q) be a discrete twist
by T ≤ R× over G. Denote C(Σ, R) as the collection of continuous functions from Σ to
R. We say that f ∈ C(Σ, R) is T -equivariant if f(z · ϵ) = zf(ϵ) for all z ∈ T and ϵ ∈ Σ,
and we define AR(G; Σ) := {f ∈ C(Σ, R) : f is T -equivariant and q(supp(f)) is compact}.

Lemma 4. Let G be an ample Hausdorff groupoid, and let (Σ, i, q) be a discrete twist by
T ≤ R× over G. Then AR(G; Σ) is an R-submodule of C(Σ, R).

Definition 11. Let G be an ample Hausdorff groupoid, and let (Σ, i, q) be a discrete
twist by T ≤ R× over G. Let P : G → Σ be any continuous global section. There is a
multiplication called convolution on the R-module AR(G; Σ), given by

(f ∗Σ g)(ϵ) :=
∑

γ∈Gs(q(ϵ)) f(ϵP (γ))g(P (γ)−1),

under which AR(G; Σ) is an R-algebra. We call AR(G; Σ) the twisted Steinberg algebra of
G associated to the pair (G,Σ).

The following is an example of a twisted Steinberg algebra of a discrete group Z over
a commutative ring R called the twisted discrete group algebra.

Example 4. Let R be a discrete commutative unital ring and consider an ample Hausdorff
groupoid Z with the discrete topology. Let σ : Z 7→ R× be a continuous 2-cocycle which
is locally constant. Then the set AR(Z, σ) = span {1{z} : Z 7→ R |{z} is compact open
bisection of Z} with the twisted convolution

(f ∗σ g)(z) :=
∑

(x,y)∈Z(2)
xy=z

σ(x, y)f(x)g(y)

is the twisted Steinberg algebra of Z over R associated to the pair (Z, σ) denoted as
AR(Z, σ).

3. The groupoid Â⋊R and discrete twist (D, i, q)

In this section, we will define what is Â⋊R from a groupoid G and a commutative unital
ring R, investigate its properties and construct the discrete twist (D, i, q). Throughout, G
is an ample Hausdorff groupoid.

Let A = Iso(G) = {γ ∈ G : s(γ) = r(γ)} be the isotropy of G. For u ∈ G(0), we let
Au = {γ ∈ A : s(γ) = u}. We define Âu = {χ : Au → R×|χ is a continuous group
homomorphism} with Au and R× having the subspace and discrete topology, respectively.

Define R = G/A = {γA : γ ∈ G}. Let γ̇ = γA ∈ R, Â = {(χ, u) : u ∈ G(0), χ ∈ Âu}
and Â⋊R = {(χ, u, γ̇) : (χ, u) ∈ Â, r(γ) = u}.

Theorem 1. Let G be an ample Hausdorff groupoid and R be a commutative unital ring.
Then R is an ample Hausdorff groupoid.

Proof. Let m : R(2) → R be the composition map defined by m((α̇, β̇)) = α̇β = αβA
where αβ ∈ G and (α, β) ∈ G(2) and i : R → R be defined by i(γ̇) = γ̇−1 = γ−1A.
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Let (α̇, β̇), (γ̇, µ̇) ∈ R(2) such that (α̇, β̇) = (γ̇, µ̇). Then αA = γA and βA = µA. So
that m((α̇, β̇)) = αβA = αAβA = γAµA = γµA = m((γ̇, µ̇)). Thus, m is well-defined.

For α̇, γ̇ ∈ R with α̇ = γ̇, i(γ̇) = γ−1A = α−1A = i(α̇). Also, for γ̇, β̇ ∈ R with γ̇ = β̇,

s(γ̇) = γ̇−1γ̇ = (γA)−1γA = γ−1AγA = β−1AβA = β̇−1β̇ = s(β̇);

r(γ̇) = γ̇γ̇−1 = γAγ−1A = βAβ−1A = β̇β̇−1 = r(β̇).

Thus, the inverse, source and range maps are also well-defined.
Let (α̇, β̇), (β̇, γ̇) ∈ R(2). Then s(α̇) = β̇β̇−1 and s(β̇) = γ̇γ̇−1 since α and β are

composable. Hence,

s(α̇β) = (α̇β)−1(α̇β)

= (αβA)−1(αβA)

= β−1α−1AαβA

= α−1αβ−1βA

= s(αβ)A

= s(β)A,

= β−1βA.

Also, r(γ̇) = γ̇γ̇−1 = β̇−1β̇ = β−1β A. Hence, s(α̇β) = r(γ̇). Thus, (α̇β̇, γ̇) ∈ R(2). We
also have β̇γ̇ = β̇γ. Hence,

r(β̇γ) = (β̇γ)(β̇γ)−1

= (βγA)(βγA

= βγAγ−1β−1A

= ββ−1γγ−1A

= r(βγ)A

= r(β)A

= ββ−1A.

Since s(α̇) = α̇−1α̇ = β̇β̇−1 = βAβ−1A = ββ−1A, then r(β̇γ̇) = s(α̇) and (α̇, β̇γ̇) ∈ R(2).
Now, (α̇β̇)γ̇ = (αβA)γA = (αA(βγA)) = α̇(β̇γ) = α̇(β̇γ̇). Let γ̇ ∈ R. Now,

(γ̇−1)−1 = (γ−1A)−1 = (γ1)−1A = γA = γ̇.

For γ̇ ∈ R, r(γ̇−1) = γ̇−1(γ̇−1)−1 = γ̇−1γ̇. Hence, (γ̇, γ̇−1) ∈ R(2). Let (β̇, γ̇) ∈ R(2).
Then , (β̇γ̇)γ̇−1 = β̇(γ̇γ̇−1) = β̇r(γ̇) = β̇s(β̇) = β̇ and γ̇−1(γ̇β̇) = (γ̇−1γ̇)β̇ = s(γ̇)β̇ =
r(β̇)β̇ = β̇. Thus, R is a groupoid.

Let R be a topological space with the quotient topology τR. Define the quotient map
πR : G → R by πR(α) = αA = α̇. Define the topology for R × R and R(2) as follow:
τR×R = {U × V : U, V ∈ τR} and τR(2) = {(U × V ) ∩ R(2) : U × V ∈ τR×R}. Let U
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be an open set in R. Then V = π−1
R (U) is open in G. Let (γ̇, β̇) ∈ m−1(U) ⊆ R(2).

Then π(γ)π(β) ∈ U , i.e., (γ̇, β̇) ∈ U × U and (γ̇, β̇) ∈ (U × U) ∩ R(2) ∈ τR(2) since
U × U ∈ τR×R. Since (α̇, β̇) is chosen arbitrarily, every element in m−1(U) is con-
tained in some open set in τR(2) and m is continuous. Also, let M be an open set
in R. Then there exists V = π−1

R (M) = {γ ∈ G : πR(γ) ∈ M} ⊂ G. Note that
i−1(M) = πR(V ) = {γ ∈ G : πR(γ

−1) ∈ M} = {γ ∈ G : γ−1 ∈ M}. For any open set
U ′ ∈ R, π−1

R (U ′) is open in G. In particular, V = π−1
R (M) is open in G. It follows that

πR(V ) is open in R. Hence, i−1(M) is open in R and i is continuous. Thus, R is a
topological groupoid.

Suppose that γ̇ and β̇ are distinct points in R. Then for γ, β ∈ G, πR(γ) = γA and
πR(β) = βA where γA ̸= βA. Let U̇ be an open set in G defined as U̇ = {α ∈ G : πR(α) ̸=
βA}. Since γA ̸= βA, then γ ∈ U̇ . Hence, U̇ is an open neighborhood in G containing γ.
Now, let V̇ be an open set in G defined as V̇ = {α ∈ G : πR(α) ̸= γA}. Since βA ̸= γA,
then β ∈ V̇ . Hence, V̇ is an open neighborhood containing β. Let α ∈ U̇ ∩ V̇ . Then,
πR(α) ̸= γA and πR(α) ̸= βA which is a contradiction since γA and βA are distinct.
Thus, we have found open sets U̇ and V̇ in G such that U̇ ∩ V̇ is empty. It follows that
π(V̇ ) and π(V̇ ) are open in R with π(V̇ )∩π(V̇ ) = ∅ and each contains distinct equivalence
classes. Thus, R is Hausdorff.

Since R is Hausdorff then R(0) is Hausdorff. Let B be a basis for a topology in G.
Then πR(B) = {πR(B) : B ∈ B} is a basis for the quotient topology in R. Let V
be an open subset of R and consider s|πR(B) : πR(B) → V . We denote s1 = s|πR(B).

Let U be an open subset of V . Then π−1
R (U) is open in G. Since πR(B) is a ba-

sis for the topology on R, then there exists basic element πR(B) in πR(B) containing
s−1
1 (U). Now, let s−1

1 = (s|πR(B))
−1 : V → πR(B). Let B ⊆ πR(B) which is open in

R. Then there exists W ⊆ G such that W is the inverse image of of B under πR. Then
W = π−1

R (B) = {γ ∈ G : πR(γ) ∈ B}. Since πR is surjective, s−1
1 (B) = πR(W ). Since

πR is a quotient map then it is an open map. Thus, for any open set U ′ in R, πR(U) is
open in G. In particular, W = π−1

R (B) is open in G. It follows that πR(W ) is open in R.
Hence, s−1

1 (W ) is open and the source map is a homeomorphism onto an open subset of
R. Similarly, the range map is also homeomorphic onto an open subset of R. Therefore,
R is an ample Hausdorff groupoid with respect to the quotient topology.

From now on, we denote the elements of Â ⋊ R by (χ, γ̇) with χ ∈ Âr(γ). A sub-

set C of Â is closed if and only if for all sequences where xn converges to x such that
xn ∈ C, then x ∈ C. We will denote our topology for Â as τÂ = {D : D = Cc, C is

closed in Â} and Cc stands for the compliment of C. Also, τÂ×R = {U × V : U ∈ τÂ
and V ∈ τR}, and τ(Â⋊R)×(Â⋊R) = {A × B : A,B ∈ τÂ⋊R} which gives us the relative

topology for (Â ⋊R)(2) as τ(Â⋊R)(2) = {(A × B) ∩ (Â ⋊R)(2) : A × B ∈ τ(Â⋊R)×(Â⋊R)}.
Let r((χ, γ̇)) = (χ, r(γ)) and s((χ, γ̇)) = (χ · γ, s(γ)), respectively. The set of composable
pairs is (Â ⋊R)(2) = {((χ, γ̇), (χ′, γ̇′))|χ′ = χ · γ}. Note that χ · γ(a) = χ(γaγ−1). Also,
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for every u ∈ G, χ · u = χ since

χ · u(a) = χ(uau−1) = χ(auu−1) = χ(ar(u)) = χ(au) = χ(as(a)) = χ(a).

Also, i((χ, γ̇)) = (χ · γ, γ̇−1) and m((χ, γ̇), (χ′, γ̇′)) = (χ, γ̇γ̇′) are the inversion and com-
position maps, respectively.

Theorem 2. Let G be an ample Hausdorff groupoid and R be a commutative unital ring.
Then Â⋊R = {(χ, u, γ̇) : (χ, u) ∈ Â, r(γ) = u} is a groupoid.

Proof.
Suppose that ((χ1, γ̇1), (χ

′
1, γ̇

′
1)) , ((χ2, γ̇2), (χ

′
2, γ̇

′
2)) ∈ (Â⋊R)(2) with

((χ1, γ̇1), (χ
′
1, γ̇

′
1)) = ((χ2, γ̇2), (χ

′
2, γ̇

′
2)).

Then, (χ1, γ̇1) = (χ2, γ̇2) and (χ′
1, γ̇

′
1) = (χ′

2, γ̇
′
2). Now,

m(((χ1, γ̇1), (χ
′
1, γ̇

′
1))) = (χ1, γ̇1γ̇

′
1) = (χ2, γ̇2γ̇

′
2) = m(((χ2, γ̇2), (χ

′
2, γ̇

′
2))).

Let (χ, γ̇), (χ′, γ̇′) ∈ Â⋊R such that (χ, γ̇) = (χ′, γ̇′). Then

i((χ, γ̇)) = (χ · γ̇, γ̇−1) = i((χ′, γ̇′));

r((χ, γ̇)) = (χ, r(γ)) = (χ′, r(γ′)) = r((χ′, γ̇′));

s((χ, γ̇)) = (χ · γ, s(γ)) = (χ′ · γ′, s(γ′)) = s((χ′, γ̇′)).

Thus, the composition, inverse, range and source maps are well-defined.
Let ((χ, γ̇), (χ′, γ̇′)) , ((χ′, γ̇′), (χ′′, γ̇′′)) ∈ (Â⋊R)(2). Then

s((χ, γ̇)) = (χ · γ, s(γ)) = r((χ′, γ̇′)) = (χ′, r(γ′));

s((χ′, γ̇′)) = (χ′ · γ′, s(γ′)) = r((χ′′, γ̇′′)) = (χ′′, r(γ′′)).

Now,

s((χ, γ̇), (χ′, γ̇′)) = s((χ, γ̇γ̇′)) = (χ · γγ′, s(γγ′)) = (χ · γγ′, s(γ′))
= (χ · γγ′, r(γ′′)) = (χ′ · γ′, r(γ′′))
= (χ′′, r(γ′′)) = r(χ′′, γ̇′′);

r[(χ′, γ̇′)(χ′′, γ̇′′)] = r((χ′, γ̇′γ̇′′)) = (χ′, r(γ′γ′′)) = (χ′, r(γ′))

= (χ · γ, s(γ)) = s((χ, γ̇)).

Hence, ((χ, γ̇)(χ′, γ̇′), (χ′′, γ̇′′)) ∈ (Â⋊R)(2) and ((χ, γ̇), (χ′, γ̇′)(χ′′, γ̇′′)) ∈ (Â⋊R)(2).
Now, [(χ, γ̇)(χ′, γ̇′)](χ′′, γ̇′′) = (χ, γ̇γ̇′)(χ′′, γ̇′′) = (χ, γ̇γ̇′γ̇′′) = (χ, γ̇)(χ′, γ̇′γ̇′′) = (χ, γ̇)[(χ′, γ̇′)(χ′′, γ̇′′)].
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Let (χ, γ̇) ∈ Â⋊R. Then

((χ, γ̇)−1)−1 = (χ · γ, γ̇−1) = (χ · γγ−1, (γ̇−1)−1)

= (χ · r(γ), γ̇)
= (χ · u, γ̇)
= (χ, γ̇);

r((χ, γ̇)−1) = r((χ · γ, γ̇−1)) = (χ · γ, r(γ−1)

= (χ · γ, s(γ))
= s((χ, γ̇)).

Hence, ((χ, γ̇), (χ, γ̇)−1) ∈ (Â⋊R)(2). Suppose that ((χ′, γ̇′), (χ, γ̇)) ∈ (Â⋊R)(2). Then,

[(χ′, γ̇′)(χ, γ̇)](χ, γ̇)−1 = (χ, γ̇γ̇′)(χ′, γ̇′)−1

= (χ, γ̇γ̇′)(χ′ · γ′, (γ̇′)−1)

= (χ, γ̇γ̇′(γ̇′)−1)

= (χ, γ̇r((γ̇′))

= (χ, γ̇s(γ̇))

= (χ, γ̇)

Also,

(χ, γ̇)−1[(χ, γ̇)(χ′, γ̇′)] = (χ, γ̇)−1(χ, γ̇γ̇′)

= (χ · γ, γ̇−1)(χ, γ̇γ̇′)

= (χ · γ, γ̇−1γ̇γ̇′)

= (χ · γ, s(γ̇)γ̇′)
= (χ · γ, r(γ̇′)γ̇′)
= (χ′, γ̇′)

Therefore, Â⋊R is a groupoid.

Lemma 5. Â⋊R is an ample Hausdorff groupoid.

Proof. Let U be open in Â ⋊ R. Then U = (A × B) ∩ (Â ⋊ R) where A × B is
open in Â × R. Let ((χ, γ̇), (χ′, γ̇′)) ∈ m−1(U). Then (χ, γ̇γ̇′) ∈ (A × B) and (χ, γ̇γ̇′) ∈
Â ⋊ R. Since A × B is open in Â × R, then there exists open set (A × B)′ containing
(χ, γ̇γ̇′) such that (A × B)′ ⊆ A × B. Also there exists open set W in Â ⋊R containing
(χ, γ̇γ̇′). Since Â ⋊ R ⊆ Â × R, then there exists open set W ′ in Â × R containing
(χ, γ̇γ̇′) where W ′ = W ∩ Â ⋊R. Consider the set (A × B)′ ×W ′ ⊆ (Â ×R) × (Â ×R)
where (A × B)′ ∈ τÂ×R and W ′ ∈ τÂ×R. It follows that (A × B)′ × W ′ is open in

(Â × R) × (Â × R). Define M = ((A × B)′ × W ′) ∩ (Â ⋊ R)(2) = {((χ, γ̇), (χ′, γ̇′)) ∈
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(Â ⋊ R)(2) : m(((χ, γ̇), (χ′, γ̇′))) ∈ (A × B)′ ∩ W ′}. We claim that M ⊂ m−1(U). Let
((χ, γ̇), (χ′, γ̇′)) ∈ M . Then m(((χ, γ̇), (χ′, γ̇′))) ∈ (A× B)′ ∩W ′ ⊆ (A× B) ∩ Â⋊R and
m(((χ, γ̇), (χ′, γ̇′))) ∈ (A×B)∩ Â⋊R, i.e., ((χ, γ̇), (χ′, γ̇′)) ∈ m−1(U) and M ⊂ m−1(U).
Since (A×B)′×W ′ is open in (Â×R)× (Â×R), then M is open in (Â⋊R)(2). It follows
that m−1(U) is open and m is continuous.

Let U be an open set in Â⋊R. Then U = V ∩ Â⋊R where V is open in Â×R. Let
(χ, γ̇) ∈ i−1(U). Then, i((χ, γ̇)) ∈ V ∩ Â⋊R. Since V is open in Â×R , then there exists
open set Uv containing (χ, γ̇) where Uv ⊆ V . Also, there exists open set W containing
(χ, γ̇)−1 where W ⊆ Â ⋊ R. Define U ′

v = {(χ′, γ̇′) ∈ Â ⋊ R : i((χ′, γ̇′)) ∈ Uv ∩ W}.
Let (χ′, γ̇′, ) ∈ U ′

v. By definition, i((χ′, γ̇′)) ∈ Uv ∩ W ⊂ V ∩ Â ⋊ R which means that
(χ′, γ̇′) ∈ i−1(U). Hence, U ′

v ⊆ i−1(U). Since Uv ⊆ V , then U ′
v ⊆ V ∩ W . Notice that

V ∩ W is open in Â ⋊ R. Hence, U ′
v is open in Â ⋊ R. Thus, i−1(U) is open and our

inverse map is continuous.
Let (χ, γ̇) and (χ′, γ̇′) be distinct points in Â⋊R. We can choose open sets U and V

in Â × R such that U ∩ V = ∅ with (χ, γ̇) ∈ U and (χ′, γ̇′) ∈ V . Let U ′ = U ∩ Â ⋊ R
and V ′ = V ∩ Â⋊R. Since U and V are in τÂ⋊R, then U ′ and V ′ are open sets in Â⋊R
containing (χ, γ̇) and (χ′, γ̇′), respectively. Note that U and V are disjoint, hence U ′ and
V ′ are also disjoint and we have proved that Â⋊R is a Hausdorff groupoid.

Since Â ⋊R is Hausdorff, (Â ⋊R)(0) is Hausdorff. Let B be a basis for the product
topology on Â×R. Then, B′ = {B∩ Â⋊R : B ∈ B} is a basis for the relative topology on
Â⋊R. Now, let r1 = r|B′ : B′ → U where U is an open subset of Â⋊R and let V be an
open subset of U . Then V = (A×B)∩ Â⋊R where A×B is open in Â×R. Since B′ is a
base for the topology on Â⋊R, then there exists a basic element B containing (χ, γ̇) such
that r1(χ, γ̇) ∈ V . Then r−1

1 (U) is open in Â⋊R. Now, denote r−1
1 = (r|B′)−1 : U → B′.

Let B be open subset of B′. Then B = A ∩ (Â ⋊ R) where A ∈ B. Let (χ, γ̇) ∈ r1(B).
Then r−1

1 (χ, γ̇) ∈ A ∩ (Â ⋊ R). Since A is open in Â × R, then there exists open set
A′ containing (χ, γ̇) where A′ ⊆ A. Also, there exists open set W ⊆ Â ⋊ R containing
(χ, γ̇). Define A′′ = {(χ′, γ̇′) ∈ U : r−1

1 (χ′, γ̇′) ∈ A′ ∩W}. Let (χ′, γ̇′) ∈ A′′. By definition,
r−1
1 (χ′, γ̇′) ∈ A′′ ∩W ⊂ A ∩ (Â⋊R). Hence, r−1

1 (χ′, γ̇′) ∈ A ∩ (Â⋊R) which means that
(χ′, γ̇′) ∈ r1(B). Hence, A′′ ⊂ r1(B). Since A′′ ⊆ A′∪W and A′ ⊂ A, A′′ ⊆ A∩W . Notice
that A ∩W is open in Â⋊R. Hence, A′′ is open in Â⋊R. Thus, r1(B) is open and r is
a homeomorphism onto an open subset of Â ⋊R. Similarly, s is homeomorphic onto an
open subset of Â⋊R.

Proposition 1. Â⋊R is a principal groupoid with unit space Â.

Proof. Let (χ, u) ∈ Â where u ∈ G(0). Then, s(γ) = u for γ ∈ Au and s(γ) = r(γ) for
γ ∈ A. Hence, (χ, u) = (χ, s(γ)) = (χ, r(γ)) = (χ · γ, s(γ)). Thus, (χ, u) ∈ (Â⋊R)(0) and
Â ⊆ (Â⋊R)(0). Let (χ · γ, s(γ)) ∈ (Â⋊R)(0) where (χ, γ̇) ∈ Â⋊R. Then (χ · γ, s(γ)) =
(χ, r(γ)) = (χ · γ, u) since r(γ) = u. Thus, (Â ⋊ R)(0) ⊆ Â and Â is the unit space of
Â⋊R.

Let θ : Â ⋊ R → Â × Â be defined by θ((χ, γ̇)) = (r((χ, γ̇)), s((χ, γ̇))) and let



R. S. Bongcawel et al. / Eur. J. Pure Appl. Math, 17 (1) (2024), 519-545 530

(χ1, γ̇1), (χ2, γ̇2) ∈ Â⋊R such that θ((χ1, γ̇1)) = θ((χ2, γ̇2)). Then

(r((χ1, γ̇1)), s((χ1, γ̇1))) = (r((χ2, γ̇2)), s((χ2, γ̇2))).

Also, r((χ1, γ̇1)) = (χ1, r(γ1)) = r((χ2, γ̇2)) = (χ2, r(γ2)) and s((χ1, γ̇1)) = (χ1·γ1, s(γ1)) =
s((χ2, γ̇2)) = (χ2 · γ2, s(γ2)). Hence, χ1 = χ2 and γ1 = γ2. Thus, (χ1, γ̇1) = (χ2, γ̇2) and θ
is injective. Therefore, Â⋊R is a principal groupoid.

We now introduce a sequence of groupoids and investigate whether it is our desired
discrete twist over Â ⋊R. Define Â ∗ G × T = {(χ, z, γ) : χ ∈ Âr(γ), z ∈ T, and γ ∈ G}.
Let r((χ, z, γ)) = (χ, r(γ)) and s((χ, z, γ)) = (χ · γ, s(γ)) be the range and source maps,
respectively. The composition map and inverse map is (χ, z, γ)(χ′, z′, γ′) = (χ, zz′, γγ′)
and (χ, z, γ)−1 = (χ · γ, z−1, γ−1), respectively. We note that (χ, z, γ) and (χ′, z′, γ′) are
composable pairs if we have χ′ = χ · γ and χ · γ is defined by χ · γ(a) = χ(γaγ−1) where
χ · u = χ.

Lemma 6. Â ∗ G × T is a Hausdorff groupoid.

Proof. Let (χ, z, γ), (χ′, z′, γ′) ∈ Â ∗ G × T with (χ, z, γ) = (χ′, z′, γ′). Now,

(χ, z, γ)−1 = (χ · γ, z−1, γ−1) = (χ′ · γ′, (z−1)′, γ′−1) = (χ′, z′, γ′)−1.

Also,
r((χ, z, γ)) = (χ, r(γ)) = (χ, s(γ′)) = r((χ′, z′, γ′));

s((χ, z, γ)) = (χ · γ, s(γ)) = (χ′ · γ′, s(γ′)) = s((χ′, z′, γ′)).

Hence, the inverse range and source maps are well-defined.
Composition is well-defined since for ((χ1, z1, γ1), (χ

′
1, z

′
1, γ

′
1)), ((χ2, z2, γ2), (χ

′
2, z

′
2, γ

′
2)) ∈

Â∗G×T (2) with ((χ1, z1, γ1), (χ
′
1, z

′
1, γ

′
1)) = ((χ2, z2, γ2), (χ

′
2, z

′
2, γ

′
2)),m(((χ1, z1, γ1)(χ

′
1, z

′
1, γ

′
1))) =

(χ1, z1z
′
1, γ1γ

′
1) = (χ2, z2z

′
2, γ2γ

′
2) = m(((χ2, z2, γ2), (χ

′
2, z

′
2, γ

′
2))).

Now, let ((χ1, z1, γ1), (χ2, z2, γ2)), ((χ2, z2, γ2), (χ3, z3, γ3)) ∈ Â ∗ G × T (2). Then

s((χ1, z1, γ1)(χ2, z2, γ2)) = s((χ1, z1z2, γ1γ2))

= (χ1 · γ1γ2, s(γ1γ2))
= (χ2 · γ2, s(γ2))
= (χ3, r(γ3))

= ((χ3, z3, γ3)).

Also,

r((χ2, z2, γ2)(χ3, z3, γ3)) = r((χ2, z2z3, γ2γ3))

= (χ2, r(γ2γ3))

= (χ2, r(γ2))

= (χ1 · γ1, s(γ1))



R. S. Bongcawel et al. / Eur. J. Pure Appl. Math, 17 (1) (2024), 519-545 531

= s((χ1, z1, γ1)).

Thus, ((χ1, z1, γ1)(χ2, z2, γ2), (χ3, z3, γ3)),((χ1, z1, γ1), (χ2, z2, γ2)(χ3, z3, γ3)) ∈ (Â ∗ G ×
T )(2). Composition in Â ∗ G × T is associative since

((χ1, z1, γ1)(χ2, z2, γ2))(χ3, z3, γ3) = (χ1, z1z2, γ1γ2)(χ3, z3, γ3)

= (χ1, z1z2z3, γ1γ2γ3)

= (χ1, z1, γ1)(χ2, z2z3, γ2γ3)

= (χ1, z1, γ1)((χ2, z2, γ2)(χ3, z3, γ3)).

For (χ, z, γ) ∈ Â ∗ G × T ,

((χ, z, γ)−1)−1 = (χ · γ, z−1, γ−1)−1

= (χ · γ · γ−1, (z−1)−1, (γ−1)−1)

= (χ · r(γ), z, γ)
= (χ · u, z, γ)
= (χ, z, γ).

Also, r((χ, z, γ)−1) = r((χ · γ, z−1, γ−1)) = (χ · γ, r(γ−1)) = (χ · γ, s(γ)) = s((χ, z, γ)).
Hence, ((χ, z, γ), (χ, z, γ)−1) ∈ Â ∗ G × T (2). Notice that

((χ1, z1, γ1)(χ2, z2, γ2))(χ2, z2, γ2)
−1 = (χ1, z1z2, γ1γ2)(χ2, z2, γ2)

−1

= (χ1, z1z2, γ1γ2)(χ2 · γ2, z−1
2 , γ−1

2 )

= (χ1, z1z2z3, γ1γ2γ
−1
3 )

= (χ1, z1, γ1r(γ2))

= (χ1, z1, γ1s(γ1))

= (χ1, z1, γ1).

Also,

(χ1, z1, γ1)
−1((χ1, z1, γ1)(χ2, z2, γ2)) = (χ1, z1, γ1)

−1(χ1, z1z2, γ1γ2)

= (χ1 · γ1, z−1
1 , γ−1

1 )(χ1, z1z2, γ1γ2)

= (χ1 · γ1, z−1
1 z1z2, γ

−1
1 γ1γ2)

= (χ2, z2, s(γ1)γ2)

= (χ2, z2, r(γ2)γ2)

= (χ2, z2, γ2).

Hence, Â ∗ G × T is a groupoid.
Endowed Â ∗ G × T with the product topology define as τÂ∗×G = {(A ∗ B × C) ∈

Â ∗ G × T : A ∈ τÂ, B ∈ τG , C ∈ τT }. Since G, T and Â ⋊ R are Hausdorff, Â is
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also Hausdorff. Let (χ, z, γ) and (χ′, z′, γ′) be distinct points in Â ∗ G × T . Since Â is
Hausdorff, then there exists open neighborhoods A1 and A2 in Â containing χ and χ′,
respectively such that A1 ∩A2 = ∅. Also, there exists open neighborhoods G1 and G2 in
G containing γ and γ′, respectively such that G1 ∩ G2 = ∅. For the Hausdorff space T ,
there exists open neighborhoods T1 and T2 in T containing z and z′, respectively wherein
T1 ∩ T2 = ∅. Then by definition of τÂ∗G×T , U = A1 ∗G1 × T1 and V = A2 ∗G2 × T2 are

open neighboorhoods in Â ∗ G × T containing (χ, z, γ) and (χ′, z′, γ′), respectively such
that U ∩ V = ∅. Therefore, Â ∗ G × T is Hausdorff.

Lemma 7. Let Â × T = {(χ, z, u) : (χ, u) ∈ Â and z ∈ T}. Then Â × T is the isotropy
group of Â ∗ G × T .

Proof. Note that Iso(Â ∗ G × T ) = {(χ, z, γ) ∈ Â ∗ G × T : s(χ, z, γ) = r(χ, z, γ)}. Let
(χ, z, γ) ∈ Iso(Â∗G×T ). Then s(χ, z, γ) = r(χ, z, γ), that is, (χ·γ, s(γ)) = (χ, r(γ)). Note
that χ · γ = χ if and only if γ = u where u ∈ G(0). Also, s(γ) = r(γ) means γ = u ∈ G(0).
Thus, (χ, z, γ) = (χ, z, u) and Iso(Â ∗ G × T ) = {(χ, z, u) ∈ Â ∗ G × T : (χ, u) ∈ Â, z ∈
T} = Â× T. Therefore, Â× T is the isotropy group for Â ∗ G × T .

Lemma 8. Define ∼ on Â ∗G ×T by (χ, z, γ) ∼ (χ′, z′, γ′) if and only if χ = χ′ and there
exists a ∈ Au such that χ(a)z = z′ and γ = a · γ′. Then ∼ is an equivalence relation on
Â ∗ G × T .

Proof. Let (χ, z, γ) ∈ Â ∗ G × T . Choose a ∈ Au such that χ(a) = 1 ∈ R×. Then
χ(a)z = 1(z) = z and s(a) = u. Since γ ∈ Au, s(γ) = u, s(γ) = u = s(a) = r(a)
and a and γ are composable pairs in G. Then, (aa−1)γ = γ where aa−1 ∈ Au. Hence
(χ, z, γ) ∼ (χ, z, γ).

Let (χ, z, γ), (χ′, z′, γ′) ∈ Â∗G×T such that (χ, z, γ) ∼ (χ′, z′, γ′). Then χ(a)χ(a)−1z =
χ(a)−1z′ and we have z = χ(a)−1z′. Also since γ′ ∈ Au then s(γ′) = u = r(a), that is,
(γ′, a) ∈ G(2) and aa−1γ′ = a−1γ which is γ′ = a−1γ, a−1 ∈ Au. Thus, (χ′, z′, γ′) ∼
(χ, z, γ).

Let (χ1, z1, γ1) ∼ (χ2, z2, γ2) and (χ2, z2, γ2) ∼ (χ3, z3, γ3). Then χ1 = χ3 and z3 =
χ2(a)χ1(a)z1 = χ1(a)χ1(a)z1 = χ1(a)z1. Also, γ1 = a · γ2 = a · a · γ3 = a · γ3. Thus
(χ1, z2, γ1) ∼ (χ3, z3, γ3). Therefore, ∼ is an equivalence relation on Â ∗ G × T .

Denote the set of equivalence classes of Â ∗ G × T with respect to the equivalence
relation ∼ on Lemma 8 by D = Â ∗ G × T/ ∼= {[χ, z, γ] : (χ, z, γ) ∈ Â ∗ G × T}.

Define the following structure for D and verify whether it is a groupoid. The range
and source maps will be r([χ, z, γ]) = [χ, r(γ)] and s([χ, z, γ]) = [χ · γ, s(γ)], respectively.
The composition and inverse map is [χ, z, γ][χ′, z′, γ′] = [χ, zz′, γγ′] and [χ, z, γ]−1 =
[χ · γ, z−1, γ−1], respectively. We note that [χ, z, γ] and [χ′, z′, γ′] are composable pairs if
χ′ = χ · γ where χ · γ is defined by χ · γ(a) = χ(γaγ−1) and χ · u = χ.

Theorem 3. D is a Hausdorff étale groupoid with respect to the quotient topology with
D(0) = i(Â× {1}).
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Proof. Let [χ, z, γ], [χ′, z′, γ′] ∈ D with [χ, z, γ] = [χ′, z′, γ′]. Now,

[χ, z, γ]−1 = [χ · γ, z−1, γ−1] = [χ′ · γ′, (z−1)′, γ′−1] = [χ′, z′, γ′]−1.

Also,
r([χ, z, γ]) = [χ, r(γ)] = [χ, s(γ′)] = r([χ′, z′, γ′]);

s([χ, z, γ]) = [χ · γ, s(γ)] = [χ′ · γ′, s(γ′)] = s([χ′, z′, γ′]).

Hence, the inverse, range and source maps are well-defined.
Let ([χ1, z1, γ1], [χ

′
1, z

′
1, γ

′
1]), ([χ2, z2, γ2], [χ

′
2, z

′
2, γ

′
2]) ∈ D(2) with ([χ1, z1, γ1], [χ

′
1, z

′
1, γ

′
1]) =

([χ2, z2, γ2], [χ
′
2, z

′
2, γ

′
2]). Composition is well-defined since

m(([χ1, z1, γ1], [χ
′
1, z

′
1, γ

′
1])) = [χ1, z1z

′
1, γ1γ

′
1]

= [χ2, z2z
′
2, γ2γ

′
2]

= m(([χ2, z2, γ2], [χ
′
2, z

′
2, γ

′
2])).

Now, let ([χ1, z1, γ1], [χ2, z2, γ2]), ([χ2, z2, γ2], [χ3, z3, γ3]) ∈ D(2). Then

s([χ1, z1, γ1][χ2, z2, γ2]) = s([χ1, z1z2, γ1γ2])

= [χ1 · γ1γ2, s(γ1γ2)]
= [χ2 · γ2, s(γ2)]
= [χ3, r(γ3)]

= r([χ3, z3, γ3]).

Also,

r([χ2, z2, γ2][χ3, z3, γ3]) = r([χ2, z2z3, γ2γ3])

= [χ2, r(γ2γ3)]

= [χ2, r(γ2)]

= [χ1 · γ1, s(γ1)]
= s([χ1, z1, γ1]).

Thus, ([χ1, z1, γ1][χ2, z2, γ2], [χ3, z3, γ3]) and ([χ1, z1, γ1], [χ2, z2, γ2][χ3, z3, γ3]) are compos-
able pairs. To show that composition in D is associative,

([χ1, z1, γ1][χ2, z2, γ2])[χ3, z3, γ3] = [χ1, z1z2, γ1γ2][χ3, z3, γ3]

= [χ1, z1z2z3, γ1γ2γ3]

= [χ1, z1, γ1][χ2, z2z3, γ2γ3]

= [χ1, z1, γ1]([χ2, z2, γ2][χ3, z3, γ3]).
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For [χ, z, γ] ∈ D we have,

([χ, z, γ]−1)−1 = [χ · γ, z−1, γ−1]−1

= [χ · γ · γ−1, (z−1)−1, (γ−1)−1]

= [χ · r(γ), z, γ]
= [χ · u, z, γ]
= [χ, z, γ].

Also, r([χ, z, γ]−1) = r([χ ·γ, z−1, γ−1]) = [χ ·γ, r(γ−1)] = [χ ·γ, s(γ)] = s([χ, z, γ]). Hence,
([χ, z, γ], [χ, z, γ]−1) ∈ D(2). Notice that

([χ1, z1, γ1][χ2, z2, γ2])[χ2, z2, γ2]
−1 = [χ1, z1z2, γ1γ2][χ2, z2, γ2]

−1

= [χ1, z1z2, γ1γ2][χ2 · γ2, z−1
2 , γ−1

2 ]

= [χ1, z1z2z3, γ1γ2γ
−1
3 ]

= [χ1, z1, γ1r(γ2)]

= [χ1, z1, γ1s(γ1)]

= [χ1, z1, γ1].

Also,

[χ1, z1, γ1]
−1([χ1, z1, γ1][χ2, z2, γ2]) = [χ1, z1, γ1]

−1[χ1, z1z2, γ1γ2]

= [χ1 · γ1, z−1
1 , γ−1

1 ][χ1, z1z2, γ1γ2]

= [χ1 · γ1, z−1
1 z1z2, γ

−1
1 γ1γ2]

= [χ2, z2, s(γ1)γ2]

= [χ2, z2, r(γ2)γ2]

= [χ2, z2, γ2].

Hence, D is a groupoid.
Let D be a topological space with the quotient topology τD. We define the quotient

map πD : Â∗G×T → D by πD((χ, z, γ)) = [χ, z, γ] for (χ, z, γ) ∈ Â∗G×T and [χ, z, γ] ∈ D
and τÂ∗G×T = {U × V : U ∈ τÂ, V ∈ τG×T } where τG×T is the product topology with the
topology in G and T having the discrete topology.

Let [χ, z, γ] and [χ′, z′, γ′] be distinct elements of D. Then there exists (χ, z, γ) ≁
(χ′, z′, γ′) in Â ∗G ×T , that is, (χ, z, γ) ̸= (χ′, z′, γ′) such that πD((χ, z, γ)) = [χ, z, γ] and
πD((χ

′, z′, γ′)) = [χ′, z′, γ′]. Since Â ∗ G ×T is Hausdorff, there exists open neighborhoods
U and V in Â∗G×T containing (χ, z, γ) and (χ′, z′, γ′), respectively such that U ∩V = ∅.
Then, πD(U) and πD(V ) are open neighborhoods in D containing [χ, z, γ] and [χ′, z′, γ′],
respectively such that πD(U) ∩ πD(V ) = ∅.

Let [χ, z, γ] ∈ D and U and V be open subsets of D where [χ, z, γ] ∈ U . We need
to show that r : U → V is a homeomorphism. Let V1 be an open subset of V such that
r−1(V1) ⊆ U . Then, M = π−1

D (V1) is open in Â∗G×T so that r−1(V1) = πD(M) is open D.
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Hence, r is continuous. Similarly, r−1 is continuous. Thus, r is a local homeomorphism.
Therefore, D is a Hausdorff étale groupoid.

Let [χ, z, γ] ∈ D such that s([χ, z, γ]) = r([χ, z, γ]). Note that

s([χ, z, γ]) = [χ, z, γ]−1[χ, z, γ]

= [χ · γ, z−1, γ−1][χ, z, γ]

= [χ · γ, z−1z, γ−1γ]

= [χ · γ, 1, s(γ)]

r([χ, z, γ]) = [χ, z, γ][χ, z, γ]−1

= [χ, z, γ][χ · γ, z−1, γ−1]

= [χ, zz−1, γγ−1]

= [χ, 1, r(γ)].

Hence, [χ · γ, 1, s(γ)] = [χ, 1, r(γ)], that is, χ · γ = χ and r(γ) = s(γ). Then γ = u ∈ G(0).
Hence, the elements in D(0) will look like [χ, 1, u]. Now, i(Â× {1}) = i(χ, 1, u) = [χ, 1, u].
Therefore, D(0) = i(Â× {1}).

Note that Â × T is the isotropy group of Â ∗ G × T by Lemma 7. Hence, Â × T is

a group bundle by Remark 1. Then, define the sequence Â × T
i
↪→ D

q
↪→ Â ⋊ R where

D is a Hausdorff étale groupoid by Proposition 3, and the maps i and q are defined by
i((χ, z, u)) = [χ, z, u] and q([χ, z, γ]) = (χ, γ̇), respectively.

Lemma 9. The maps i and q are continuous groupoid homomorphism that restricts to
homeomorphism of unit spaces.

Proof. Let (χ, z, u), (χ′, z′, u′) ∈ Â×T such that (χ, z, u) = (χ′, z′, u′). Then [χ, z, u] =
[χ′, z′, u′]. Thus, i((χ, z, u)) = i((χ′, z′, u′)) and i is well-defined. Let [χ1, z1, γ1] and
[χ2, z2, γ2] be elements in D such that q[χ1, z1, γ1] ̸= q[χ2, z2, γ2]. Then (χ1, γ̇1) ̸= (χ2, γ̇2).
If χ1 ̸= χ2, then (χ1, z1, γ1) ≁ (χ2, z2, γ,). If γ̇1 ̸= γ̇2, then γ1A ̸= γ2A. Since Au ⊂ A,
then we cannot find a ∈ Au such that γ1 = a · γ2. Hence, (χ1, z1, γ1) ≁ (χ2, z2, γ2). In
both cases (χ1, z1, γ1) ≁ (χ2, z2, γ2) which means that [χ1, z1, γ1] ̸= [χ2, z2, γ2]. Thus, q is
well-defined.

We need Â × T ⊂ Â ∗ G × T to show that i is continuous. Let (χ, z, u) ∈ Â × T
where (χ, u) ∈ Â, and u ∈ G(0). Since G(0) ⊂ G, then (χ, z, u) ∈ Â ∗ G × T . Since
πD : Â ∗ G × T → D is continuous, i = πD|Â×T : Â× T → D is also continuous.

Let q ◦ πD : Â ∗ G × T → Â ⋊ R be defined by (q ◦ πD)(χ, z, γ) = q(πD(χ, z, γ))
and let U be an open subset of Â ⋊ R. Then U = (A × B) ∩ Â ⋊ R where A × B
is open in Â × R. Let (χ, z, γ) ∈ (q ◦ πD)

−1(U). Then q ◦ πD(χ, z, γ) ∈ U , that is,
q(πD(χ, z, γ)) = q([χ, z, γ]) = (χ, γ̇) ∈ A×B∩ Â⋊R. Then (χ, γ̇) ∈ A×B, that is, χ ∈ A
and γ̇ ∈ B. Since πR is continuous, π−1

R (B) is open in G containing γ. Let

M = A ∗B2 × {z} = {(χ, z, γ) ∈ Â ∗ G × T : πD(χ, z, γ) ∈ (q ◦ πD)−1(U)}.
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Then M ⊆ (q ◦ πD)−1(U) and M is open in Â ∗ G × T . Thus, (q ◦ πD)−1(U) is open and
q ◦ πD is continuous. Since πD is continuous , q is continuous.

Consider i× i : (Â× T )(2) → D(2) defined by

(i× i)(((χ, z, u), (χ′, z′, u′))) = (([χ, z, u], [χ′, z′, u′])) ∈ D(2).

Also, q × q : D(2) → (Â×R)(2) defined by

(q × q)(([χ, z, γ], [χ′, z′, γ′])) = ((χ, γ̇), (χ′, γ̇′)) ∈ (Â⋊R)(2).

Now,
i((χ, z, u)(χ′, z′, u′)) = i((χ, zz′, uu′)) = [χ, zz′, uu′];

i((χ, z, u))i((χ′, z′, u′)) = [χ, z, u][χ′, z′, u′] = [χ, zz′, uu′].

Also,
q([χ, z, γ][χ′, z′, γ′]) = q([χ, zz′, γγ′]) = (χ, γ̇γ̇′);

q([χ, z, γ])q([χ′, z′, γ′]) = (χ, γ̇)(χ′, γ̇′) = (χ, γ̇γ̇′).

Thus, i and q are continuous groupoid homomorphism.
Let i|(Â×T )(0) : (Â × T )(0) → D(0). Since i is continuous by Lemma 9, then i|(Â×T )(0)

is continuous. Let V be open in (Â× T )(0). Then V = A× B where A is open in Â and
B is open in T . Let M = A ∗ G(0) × B = {(χ, z, u) ∈ Â ∗ G × T : πD(χ, z, u) ∈ i(V )}.
Then M = π−1

D (i(V )) and M is open in Â ∗ G × T since A is open in Â, G(0) is open in G
and B is open in T . Hence, i(V ) is open in D(0) and i−1 is continuous. Thus, i|Â×T is a
homeomorphism of unit spaces.

Now, let q|D(0) : D(0) → (Â⋊R)(0). Since q is continuous by Lemma 9, then q|D(0) is
continuous. Let Y be an open subset of D(0). Then π−1

D (Y ) is open in Â ∗ G × T , that

is, π−1
D (Y ) = A ∗ B × C where A is open in Â, B is open in G and C is open in T . Let

M = A × πR(B) ∩ (Â ⋊R)(0) = {(χ, γ̇) ∈ (Â ⋊R)(0) : q−1(χ, γ̇) ∈ Y }. Then M = q(Y )
and M is open in (Â⋊R)(0) since A is open in Â and πR(B) is open in R. Then q(Y ) is
open in (Â⋊R)(0) and q−1 is continuous. Therefore, q|D(0) is a homeomorphism.

In order to show that (D, i, q) is a discrete twist over Â ⋊ R. We prove first the
following results.

Theorem 4. The sequence Â× T
i
↪→ D

q
↪→ Â⋊R is exact, that is,

(i) i({(χ, u)× T}) = q−1((χ, u)) for (χ, u) ∈ (Â⋊R)(0),

(ii) i is injective, and

(iii) q is a quotient map.

Proof.

(i) Let (χ, u) ∈ Â. Then i({(χ, u)} × T}) = [χ, z, u] for some z ∈ T and q−1((χ, u)) =
[χ, z, u] for some z ∈ T . Hence, i({(χ, u)×T}) = q−1((χ, u)) for (χ, u) ∈ (Â⋊R)(0).
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(ii) Let (χ1, z1, u1), (χ2, z2, u2) ∈ Â ⋊ T with q((χ1, z1, u1)) = q((χ2, z2, u2)). Then,
[χ1, z1, γ1] = [χ2, z2, γ2], that is, (χ1, z1, γ1) ∼ (χ2, z2, γ2). Then χ1 = χ2 and we can
choose a ∈ AU such that χ(a) = 1 ∈ R× such that z1 = χ(a)z2 = (1)z2 = z2. Also,
choose a′ ∈ AU such that a;∈ G(0). Then γ1 = a · γ2 = γ2. Thus, (χ1, z1, γ1) =
(χ2, z2, γ2) and i is injective.

(iii) By Lemma 9, q is continuous. Let (χ, γ̇) ∈ Â⋊R. Then [χ, z, γ] where r(γ) = u is
the pre-image of (χ, γ̇) in D. Thus, q is surjective and a quotient map.

Theorem 5. D is a locally trivial G-bundle in the sense that for each (χ, γ̇) ∈ Â⋊R, there
is an open bisection Bα of Â⋊R containing (χ, γ̇), and a continuous map Pα : Bα → D
such that

(i) q ◦ Pα = idBα

(ii) the map (β, z) → i(r(β), z)Pα(β) is a homeomorphism from Bα × T to q−1(Bα).

Proof.

(i) Let (χ, γ̇) ∈ Â⋊R and Bα be an open bisection of Â⋊R containing (χ, γ̇) and let
Pα : Bα → D defined by Pα((χ, γ̇)) = [χ, z, γ]. Let U be an open subset of D. Then
π−1
D (U) is open in Â ∗ G × T , that is, π−1

D (U) = A ∗B ×C where A is open in Â, B
is open in G and C is open in T . Let (χ, z, γ) ∈ π−1

D (U). Then (χ, z, γ) ∈ A ∗B×C,
that is, χ ∈ A and γ ∈ B. Since B is open in G, then πR(B) is open in D containing
γ̇. Let M = A × πR(B) ∩ Â ⋊ R. Then (χ, γ̇) ∈ M and M is open in Â ⋊ R.
Since (χ, γ̇) is chosen arbitrarily, then for every element in P−1

α (U) there exists an
open neighborhoodM containing (χ, γ̇). Thus, P−1

α (U) is open and Pα is continuous.
Now, q◦Pα : Bα → Â⋊R. Then, q◦Pα((χ, γ̇)) = q(pα((χ, γ̇))) = q([χ, z, γ]) = (χ, γ̇).
Hence, the image of Bα in Pα is just itself and we have q ◦ Pα = idBα .

(ii) Let θ : βα × T → q−1(βα) where βα × T ⊆ Â ⋊ R × T and q−1(βα) ⊆ D. Let
U be an open subset of q−1(βα). Then there exists U ′ ∈ Â ∗ G × T such that
U = U ′/ ∼ ∈ D where U ′ is open in Â ∗ G × T . Here, U ′ is the pre-image of U
under πD. Since U ′ is open in Â ∗ G × T , then U ′ = (A × B) × C where A is
open in Â, B is open in G and C is open in the discrete topology for T . Note
that θ−1(U) = {(χ, z, γ̇) ∈ Â ⋊ R × T : θ(χ, z, γ̇) ∈ U)}. Since U = U ′/ ∼, then
there exists an element (χ, z, γ) in U ′ whose equivalence class in D is in U . Since
(χ, z, γ) ∈ U ′, then χ ∈ Â, z ∈ C which is open in T , and γ ∈ B which is open in G.
Since we have B to be an open set in G containing γ, then there exists open set M
in R containing γ̇. Hence, (A×M)×C is an open set in Â⋊R× T . Since (χ, z, γ̇)
is arbitrary, we have shown that every element in θ−1(U) is contained in some open
set in Â⋊R× T . Thus, θ is continuous.

Note that θ−1 : q−1(βα) → βα × T . Let U be an open subset of βα × T . Then,
U = V ×T ′ where V is open in Â⋊R and T ′ is open in T . Let [χ, z, γ] ∈ θ(U). Then
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θ−1([χ, z, γ]) ∈ V ×T ′, that is, (χ, z, γ) ∈ V ×T ′. Hence, z ∈ T ′ and (χ, γ̇) ∈ V . Since
V is open in Â⋊R, then V = A×B ∩ Â⋊R where χ ∈ A, A open in Â and γ̇ ∈ B,
B open in R. Thus, π−1

R (B) is open in G. Let π−1
D (θ(U)) = M = A ∗ π−1

R (B) × T ′

which is open in Â ∗ G × T . Hence, θ(U) is open q−1(Bα) and θ−1 is continuous.
Therefore, θ is a homeomorphism.

Theorem 6. The image i(Â×T ) is central in D in the sense that i(r([χ, z, γ]), z)[χ, z, γ] =
[χ, z, γ]i(s([χ, z, γ]), z) for all [χ, z, γ] ∈ D and z ∈ T .

Proof. Let [χ, z, γ] ∈ D and z′ ∈ T . Now,

i(r([χ, z, γ]), z′)[χ, z, γ] = i((χ, r(γ)), z′)[χ, z, γ]

= [χ, z′, r(γ)][χ, z, γ]

= [χ, z′z, r(γ)γ]

= [χ, z′z, γ].

Also,

[χ, z, γ]i(s([χ, z, γ]), z′) = [χ, z, γ]i((χ · γ, s(γ), z′))
= [χ, z, γ][χ · γ, z′, s(γ))]
= [χ, zz′, γs(γ)]

= [χ, zz′, γ].

Hence, i(r([χ, z, γ]), z′)[χ, z, γ] = [χ, z, γ]i(s([χ, z, γ]), z′) and so the image of i is central
in D.

The following corollary follows from Theorems 4, 5 and Lemma 6.

Corollary 1. (D, i, q) is a discrete twist over Â⋊R.

4. Non-isomorphic property of AZ(Z) and AZ(D; Â⋊R)

In this section we present a case in which the non-twisted Steinberg algebra (AR(G))
and twisted Steinberg algebra (AR(D; Â⋊R)) is not isomorphic when G = Z and R = Z.

Let G = Z and R = Z. The set of multiplicative units of Z is Z× = {−1, 1} = T
and the unit space of Z is Z(0) = {x ∈ Z : x = s(y) = r(y), y ∈ Z} = {0}. The
source and range maps are s(x) = (−x) + x = {0} and r(x) = x + (−x) = {0}, respec-
tively. The isotropy group for Z is A = Z. Also, R = ZZ = {x + Z : x ∈ Z} = {0̇}
where {0̇} = 0 + Z. For u ∈ Z(0), we have A0 = Z. Also, Â0 = {χ1, χ2|χi : Z →
{1,−1} is a continuous group homomorphism}, i = 1, 2 where χ1 : Z → Z× defined by
χ1(a) = 1 and χ2 : Z → Z× defined by

χ2(a) =

{
1 if a ∈ 2Z
−1 if a ∈ 2Z+ 1.
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Note that

Â ∗ Z× T = {(χ, z, x) : χ ∈ Â0, z ∈ T, x ∈ Z}
= {(χ1, 1, x), (χ1,−1, x), (χ2, 1, x), (χ2,−1, x)}.

So, D = (Â ∗ Z× T/ ∼) = {[χ1, 1, x], [χ1,−1, x], [χ2, 1, x], [χ2,−1, x]|x ∈ Z}.
Claim 1: D = {[χ1, 1, 0], [χ1,−1, 0], [χ2, 1, 0], [χ2,−1, 0]}.
For i = 1, 2,

[χi, 1, x] = {(χ′, z′, x′)|χi = χ′,∃ a ∈ Zwhereχi(a)(1) = z′ andx = a · x′}
= {(χi, z

′, x′)|∃ a ∈ Zwhere 1 = χi(a)(1) = z′ andx = a · x′}
= {(χi, 1, x

′)|∃ a ∈ Z, x = a · x′}
= {(χi, 1, x/a)|a ∈ Z, x ∈ Z}
= {(χi, 1, x)|a = 1, x ∈ Z}
= {· · · (χi, 1,−1), (χi, 1, 0), (χi, 1, 1) · · · }

[χi,−1, x] = {(χ′, z′, x′)|χi = χ′,∃ a ∈ Zwhereχi(a)(−1) = z′ andx = a · x′}
= {(χi, z

′, x′)|∃ a ∈ Zwhere − 1 = χi(a)(−1) = z′ andx = a · x′}
= {(χi,−1, x′)|∃ a ∈ Z, x = a · x′}
= {(χi,−1, x/a)|a ∈ Z, x ∈ Z}
= {(χi,−1, x)|a = 1, x ∈ Z}
= {· · · (χi,−1,−1), (χi,−1, 0), (χi,−1, 1) · · · }

Hence, (χi, 1, 0) ∈ [χi, 1, x] and (χi,−1, 0) ∈ [χi,−1, x] imply that [χi, 1, x] = [χi, 1, 0]
and [χi,−1, x] = [χi,−1, 0]. Therefore,

D = {[χ1, 1, 0], [χ1,−1, 0], [χ2, 1, 0], [χ2,−1, 0]}.

and claim 1 is proved.
Now, the source of [χ1,−1, 0] in D is,

s([χ1,−1, 0]) = [χ1,−1, 0]−1[χ1,−1, 0]

= [χ1 · 0, (−1)−1, 0][χ1,−1, 0]

= [χ1, (−1)−1(−1), 0(0)]

= [χ1, 1, 0].

Also, the range of [χ1,−1, 0] in D is,

r([χ1,−1, 0]) = [χ1,−1, 0][χ1,−1, 0]−1

= [χ1,−1, 0][χ1 · 0, (−1)−1, 0]
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= [χ1, (−1)(−1)−1, (0)0]

= [χ1, 1, 0]

For [χ2,−1, 0] in D,

s([χ2,−1, 0]) = [χ2,−1, 0]−1[χ2,−1, 0]

= [χ2 · 0, (−1)−1, 0][χ2,−1, 0]

= [χ2, (−1)−1(−1), 0(0)]

= [χ2, 1, 0].

and

r([χ2,−1, 0]) = [χ2,−1, 0][χ2,−1, 0]−1

= [χ2,−1, 0][χ2 · 0, (−1)−1, 0]

= [χ2, (−1)(−1)−1, (0)0]

= [χ2, 1, 0]

Our groupoid D is best understood with this illustration:

[x1, 1, 0]

[x1,−1, 0] [x2,−1, 0]

[x2, 1, 0]

Figure 1: Morphisms in D

Hence, the unit space for D is D(0) = {[χ1, 1, 0], [χ2, 1, 0]}.
When Z is endowed with the discrete topology, its base will be composed of singletons

{z}, for all z ∈ Z. Let 1{z} denotes the characteristic function of {z} from Z to Z. The
Steinberg algebra associated to Z is

AZ(Z) := span{1{z} : Z → Z|{z} is a compact open bisection of Z}

equipped with pointwise addition,

a11{z1} + a21{z2} = (a1 + a2)1{z1+z2}

and multiplication as follows;

a11{z1} · a21{z2} = a1a21{z1+z2}.

Claim 2: Â⋊R = (Â⋊R)(0)

The source and range of (χ1, 0, 0̇) ∈ Â⋊R are:

s((χ1, 0, 0̇)) = (χ1, 0, 0̇)
−1(χ1, 0, 0̇) = (χ1 · 0, 0, 0̇)(χ1, 0, 0̇) = (χ1, 0, 0̇)
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r((χ1, 0, 0̇)) = (χ1, 0, 0̇)(χ1, 0, 0̇)
−1 = (χ1, 0, 0̇)(χ1 · 0, 0, 0̇) = (χ1, 0, 0̇).

Also, the source and range for (χ2, 0, 0̇) ∈ Â⋊R are:

s((χ2, 0, 0̇)) = (χ2, 0, 0̇)
−1(χ2, 0, 0̇) = (χ2 · 0, 0, 0̇)(χ2, 0, 0̇) = (χ2, 0, 0̇)

r((χ2, 0, 0̇)) = (χ2, 0, 0̇)(χ2, 0, 0̇)
−1 = (χ2, 0, 0̇)(χ2 · 0, 0, 0̇) = (χ2, 0, 0̇).

Hence, (Â⋊R)(0) = {(χ1, 0, 0̇), (χ2, 0, 0̇)} = Â⋊R.

Theorem 7. If Â⋊R = (Â⋊R)(0), then AZ(Â⋊R) ∼= AZ(D; Â⋊R).

Proof. Let F : AZ(Â⋊R) → AZ(D; Â⋊R) be defined by

F (f)([χi, z, γ]) = z · f(r((χi, γ̇)))

where z ∈ T, (χi, γ̇) ∈ Â⋊R. Linearity holds since for all f, g ∈ AZ(Â⋊R) and n ∈ Z,

F (f + g)([χi, z, γ]) = z(f + g)(r((χi, γ̇)))

= zf(r((χi, γ̇))) + zg(r((χi, γ̇)))

= (F (f) + F (g))([χi, z, γ])

and
F (nf) = znf(r((χi, γ̇))) = nzf(r(χi, γ̇))) = nF (f).

Now, observe that

F (fg)([χi, z, γ]) = z(fg)(r((χi, γ̇))) = zf(r((χi, γ̇)))g(r((χi, γ̇))).

Also,

(F (f)F (g))([χi, z, γ])(χi, γ̇) =
∑

((χ′
i,γ̇

′),(χ′′
i ,γ̇

′′)∈(Â⋊R)(2),
(χ′

i,γ̇
′))(χ′′

i ,γ̇
′′)=(χi,γ̇)

F (f)(χ′
i, γ̇

′)F (g)(χ′′
i , γ̇

′′)−1

Since Â⋊R = (Â⋊R)(0), then for all (χi, γ̇) ∈ Â⋊R the only composable pairs in Â⋊R is
of the form ((χi, γ̇), (χi, γ̇)) where s(χi, γ̇) = (χi, γ̇) = r(χi, γ̇). But (χ1, 0̇)(χ2, 0̇) ̸= (χ1, 0̇).
Hence,

(F (f)F (g))([χi, z, γ])(χ1, 0̇) =
∑

((χ1,0̇),(χ1,0̇)∈(Â⋊R)(2),

(χ1,0̇))(χ1,0̇)=(χ1,0̇)

F (f)(χ1, 0̇)F (g)(χ1, 0̇)
−1

= F (f)(χ1, 0̇)F (g)(χ1, 0̇)
−1

= F (f)(χ1, 0̇)F (g)(χ1, 0̇)

= zf(r((χ1, 0̇)))g(r((χ1, 0̇))).
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Also, since (χ2, 0̇)(χ1, 0̇) ̸= (χ2, 0̇), we get

(F (f)F (g))([χi, z, γ])(χ2, 0̇) =
∑

((χ2,0̇),(χ2,0̇)∈(Â⋊R)(2),

(χ2,0̇))(χ2,0̇)=(χ2,0̇)

F (f)(χ2, 0̇)F (g)(χ2, 0̇)
−1

= F (f)(χ2, 0̇)F (g)(χ2, 0̇)
−1

= F (f)(χ2, 0̇)F (g)(χ2, 0̇)

= zf(r((χ2, 0̇)))g(r((χ2, 0̇))).

Thus, for all (χi, γ̇) ∈ Â⋊R,

F (f)F (g)([χi, z, γ])(χi, γ̇) = zf(r((χi, γ̇)))zg(r((χi, γ̇))) = F (fg)([χi, z, γ])

and F is a Z-module homomorphism.
Suppose that F (f)([χi, z, γ]) = 0 for [χi, z, γ] ∈ D. Then, zf(r((χi, γ̇))) = 0 for all

z ∈ T and γ ∈ Z which means that f(r((χi, γ̇))) = 0. Since Â ⋊ R = (Â ⋊ R)(0), then
for all (χi, γ̇) ∈ Â ⋊ R, r((χi, γ̇)) = (χi, γ̇). Hence for all (χi, γ̇) ∈ Â ⋊ R, f((χi, γ̇)) =
f(r((χi, γ̇))) = 0 which implies that f = 0. Thus, F is injective. Now let h ∈ AZ(D; Â⋊R)
and define fh : Â ⋊ R → Z by fh((χi, 0̇)) = h([χi, 1, 0]). Notice that every element in
AZ(Â⋊R) is a mapping from Â⋊R to Z. We are left to show that fh is continuous and
supp(fh) is compact. Since Â ⋊R and Z are both discrete, then fh is continuous. Since
h ∈ AZ(D; Â⋊R), h = a11{[χ1,1,0]} + a21{[χ1,−1,0]} + a31{[χ2,1,0]} + a41{[χ2,−1,0]}. Thus,

fh(χi, γ̇) = h([χi, z, γ])

= (a11{[χ1,1,0]} + a21{[χ1,−1,0]} + a31{[χ2,1,0]} + a41{[χ2,−1,0]})([χi, z, γ])

Hence,

fh(χ1, 0̇) = h([χ1, 1, 0])

= (a11{[χ1,1,0]} + a21{[χ1,−1,0]} + a31{[χ2,1,0]} + a41{[χ2,−1,0]})([χ1, 1, 0])

= a1

fh(χ2, 0̇) = h([χ2, 1, 0])

= (a11{[χ1,1,0]} + a21{[χ1,−1,0]} + a31{[χ2,1,0]} + a41{[χ2,−1,0]})([χ2, 1, 0])

= a3

If a1 = a3 = 0, then supp(fh) = ∅ which is closed and bounded, that is, compact. If
a1, a2 ∈ Z \ {0}, then supp(fh) = {(χi, γ̇) ∈ Â ⋊R : fh((χi, γ̇)) ̸= 0))} = Â ⋊R which is
compact. Thus, fh ∈ AZ(Â ⋊R). Now for [χi, z, γ] ∈ D and since [χi, z, 0] and [χi, z, γ]
are the same equivalence classes in D,

F (fh)([χi, z, γ]) = zfh(r((χi, γ̇)))
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= zfh(χi, r(γ))

= zfh(χi, γ)

= zh([χ,1, 0])

= h([χi, z, 0])

= h([χi, z, γ])

= h.

Then F is surjective. Therefore, AZ(Â⋊R) ∼= AZ(D; Â⋊R).

Since Â ⋊ R = {(χ1, 0̇), (χ2, 0̇)} is a topological space with the discrete topology,
{(χ1, 0̇)} and {(χ2, 0̇)} are the basic elements of its base which are compact and an open
bisection since they are singletons. Hence, we introduce our characterictic functions that
spans AZ(Â⋊R) as 1{(χ,γ̇)} : Â⋊R → Z defined by

1{(χ,γ̇)}(g) =

{
1 if g ∈ {(χ, γ̇)}
0 if g /∈ {(χ, γ̇)}.

Define the Steinberg algbera of Â ⋊ R over Z as AZ(Â ⋊ R) = span {1{(χ1,0̇)}, 1{(χ2,0̇)}}
equipped with the pointwise addition and multiplication as follows:

a11{(χ1,0̇)} + a21{(χ1,0̇)} = (a1 + a2)1{(χ1,0̇)}+{(χ2,0̇)}

a11{(χ1,0̇)} · a21{(χ2,0̇)} = (a1 · a2)1{(χ1,0̇)}{(χ2,0̇)}.

By Theorem 7, AZ(Â⋊R) ∼= AZ(D; Â⋊R). Then the twisted Steinberg algebra of Â⋊R
over the pair (D,Z) is defined as AZ(D; Â⋊R) ∼= span {1{(χ1,0̇)}, 1{(χ2,0̇)}}.

Thus, dimension of AZ(D; Â ⋊ R) is less than or equal to 2. Note that AZ(Z) is a
Z-module. Since AZ(Z) is generated by the characteristic functions of the form 1{z} where
z ∈ Z which is infinite, then AZ(Z) is infinite dimensional. Hence, if we map AZ(Z) to
AZ(D; Â⋊R) it will never be injective. Thus, isomorphism fails to hold.

Note that from Section 3, the isotropy group of Z is itself, that is, Iso(Z) = Z and the
unit space of Z is Z(0) = {0}. Now, the interior of Iso(Z) = Z ̸= Z(0). By Definition 4, Z
is not an effective groupoid.

Conjecture:
Let G be an effective ample Hausdorff groupoid and R be a unital commutative ring. Then
AR(G) ∼= AR(D; Â⋊R).

Conclusion: We have defined a groupoid Â ⋊ R coming from the isotropy of an
ample Hausdorff groupoid G. We have examined the properties of the groupoid Â ⋊ R.
We have successfully constructed a discrete twist on Â ⋊ R thereby the presence of a
twisted Steinberg algebra over Â ⋊ R via the discrete twist (D, i, q). Finally, we have
shown that for G = Z and R = Z isomorphism between AR(G) and AR(D; Â⋊R) fails to
hold.
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