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Abstract. The primary goal of this article is to present novel analytical solutions for the coupled
nonlinear equation found in the mediated electron transfer process at polymer-modified conducting
ultramicroelectrodes. Taylor’s series method is utilized to obtain approximate analytical solutions
for the reaction-diffusion equations, allowing for the determination of the substrate and mediator
concentrations and the current response concerning the substrate concentration at the electrode’s
surface. The impact of different factors on concentration and current is also explored. The derived
analytical results are in strong agreement with numerical results and with other analytical outcomes
from the literature.
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1. Introduction

Over the course of more than 30 years, ultramicroelectrodes (UMEs) have been utilized
in electrochemistry, resulting in significant theoretical and practical achievements. UMEs
are electrodes with dimensions of one micrometre or less [16], providing benefits such as
higher current density, reduced cell time constants, and lower ohmic drop. Additionally,
ultramicroelectrodes have been used in electrochemical research involving scanning tun-
nelling, atomic force, and electrochemical microscopy [12, 22, 26]. Furthermore, spherical
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or disc-shaped ultramicroelectrodes exhibit a time-independent current response within
relatively brief timeframes, providing practical and theoretical advantages.

Ultramicroelectrodes are also extensively utilized in various fields, such as electro-
organic biosynthesis, atomic semiconductors, electroactive indicators, and solar energy
conversion and storage. Polymer-modified electrodes have gained significant attention over
the past two decades, particularly in electrochemical sensor applications [13, 15, 25, 42].
The working principle of an amperometric polymer sensor is relatively straightforward, and
it has been studied via voltammetry, nonlinear impedance, probe beam deviation, pho-
tometric, and specific gravity techniques to comprehend the behaviour of paired, solvent,
and electronic transit in conducting electroactive molecular thin film materials [6, 11, 20].
This investigation focuses on the alterations in the properties of ultramicrodisc electrodes
by incorporating thin polypyrrole films with electrical conductivity. We will also examine
the substrate’s diffusion and response within an electronically conducting polymer film on
a micrometre-sized support surface.

The mathematical modelling of reaction/diffusion processes in a conducting polymer-
modified ultramicroelectrode is based on coupled nonlinear reaction-diffusion equations.
Adding a chemical reaction term to a Fick diffusion term during differential equation
formulation often results in a nonlinear differential equation that is difficult to solve using
traditional analytical methods. This is common when a complex rate expression depicts
the interaction between the active sensing/mediating group on the polymer chain and the
substrate. Therefore, it’s necessary to get approximations of the solutions.

Meena and Rajendran [31] discussed the reaction and diffusion processes inside an
electroactive polymer film placed on an inlaid microdisc electrode. Meena et al. [32]
used the homotopy perturbation approach to provide approximate analytical solutions
for the nonlinear equations describing diffusion and reaction within the polymer-modified
ultramicroelectrode. Visuvasam et al. [41] employed analytical and numerical solutions
of nonlinear diffusion equations to investigate the chronoamperometric limiting current
generated by an electrochemical reaction in rotating disc electrodes. Lyons et al. [37]
theoretically analyzed the electrochemical behaviour of microdisk electrodes coated with
electroactive polymer thin films, considering the radial diffusion and bimolecular chemical
reactions within polymer-modified ultramicroelectrodes. Albery and Hillman [7]and An-
drieux et al. [8] have conducted theoretical investigations on mediated electron transfer in
electroactive polymer films. Lyons et al. [27, 28] recently explored mediated electroanal-
ysis, including charge percolation, electromigration, sensing catalysis, substrate diffusion,
and the Michaelis-Menten rate equation. Rebouillat et al. [36] provided concentration
and current expressions for only six limiting cases. This communication aims to present
analytical solutions for the steady-state concentration and current of a polymer-modified
ultramicroelectrode about the substrate concentration at the electrode surface using the
Taylor series method.
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2. Mathematical modelling of a problem

Standard analytical approaches cannot be used to solve the coupled non-linear reac-
tion/diffusion equations system because of the non-linear chemical reactions. Hence, it
is necessary to obtain approximate solutions. As Rebouillat et al. [36] have thoroughly
analyzed the underlying assumptions and physical description of the problem, we will only
provide a brief overview. Substrate diffusion is anticipated to be high in the solution layer
near the microelectrode. In this study, we propose that a conducting polymer film elec-
trodeposited on an ultramicrodisc surface would assume a hemispherical geometry with
minimal spillover.

Nomenclature

s∞ Bulk concentration of the substrate (µM)

A Radius of the electrode (µm)

C∑ Total concentration of reduced and oxidized mediator species (µM)

DS Diffusion coefficient of substrate

(
µm2

s

)
DE Diffusion coefficient of oxidized mediator,

µm2

s
r Radial variable (µm)

b Concentration of oxidized mediator (µM)

s Concentration of substrate (µM)

k Bimolecular rate constant for the mediator–substrate reaction (ms)

A Area of the hemispherical electrode (µm2)

F Faraday constant (C/mol)

u Dimensionless concentration of substrate

v Dimensionless concentration of mediator

u(0) Dimensionless concentration of substrate at electrode surface

ρ = γs
γE

Dimensionless parameter

γs Catalytic reaction versus substrate diffusion in the film (Dimensionless dif-
fusion parameters)

γE Catalytic reaction versus electron diffusion in the film (Dimensionless reac-
tion parameters)

ψ Normalized steady-state current

K Partition coefficient

I Net current, None

x Dimensionless radial distance emanating from the origin of the polymer
hemisphere, None

n Number of the electrode, None
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Figure 1: Schematic representations of the geometry modified electrode. 
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Figure 2: Schematic Representation of Conducting Polymer-Adopted by the Polymer-coatedmicroelectrode.

In Figure 1, a spherical polymer is shown resting on a flat surface. S conducting
wire emerges at the hemisphere’s center, as represented by a line on the flat insulating
surface. Figure 2 illustrates the reaction mechanism model, where r denotes the radial
distance from the center of the polymer sphere. The coupled reaction-diffusion equations
governing the steady-state conditions in this process can be expressed as follows [36].

DEb
′′(r) +

2DE

r
b′(r)− ks (r) b (r) = 0, (1)

DSs
′′(r) +

2DS

r
s′(r)− ks (r) b (r) = 0, (2)

In this system, s refers to the concentration of substrate species present in the film, and
b denotes the concentration of the oxidized mediator. The bimolecular rate constant of
the mediator-substrate reaction is denoted by k, while r represents the radial coordinate.
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The boundary conditions for this system can be described as follows:

r = 0, b = C∑, ds

dr
= 0, (3)

r = a,
db

dr
= 0, s = ks∞, (4)

In this context, the total concentration of reduced and oxidized mediator species is
represented by c∑ = s + b. The electrode’s radius is denoted by a, and s∞ signifies the
bulk concentration of the substrate species in the solution. The net current, denoted by
‘I’, can be expressed as follows:

I =
i

nFA
= −DE

(
db

dr

)
r=0

= DS

(
ds

dr

)
r=a

, (5)

The area of the hemispherical electrode is denoted by A, the Faraday constant is
represented by F , and n indicates the charge number of the electrode reaction. To make
the non-linear partial differential equations outlined in Eqs. (1) and (2) dimensionless, we
introduce the following dimensionless variables [9, 36]:

u =
s

ks∞
, v =

b

c∑ , x =
r

a
, γE =

kKs∞a2

DE
, γS =

kcΣa
2

Ds
, (6)

The non-dimensional parameters γE and γS are used to measure the ratio of chemical
reaction rates to charge percolation rates. The resulting system of equations is nonlinear
and can be expressed as follows:

u′′(x) +
2

x
u′(x)− γsu(x)v(x) = 0, (7)

v′′(x) +
2

x
v′(x)− γEu(x)v(x) = 0, (8)

And the dimensionless boundary conditions are

du

dx
= 0, v = 1 when x = 0, (9)

u = 1,
dv

dx
= 0 when x = 1, (10)

The normalized current is given by [36]

ψ =
ia

nFADEC∑ = −
(
dv

dx

)
x=0

, (11)

or

ψ =
ia

nFADsks∞
=

(
du

dx

)
x=1

. (12)
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3. Analytical solution of nonlinear differential equations using the
Taylor’s series method

In many scientific disciplines, nonlinear differential equations are widely used for mod-
elling complex kinetic processes. For nonlinear equations, in general, exact solution are
not obtainable and hence approximate numerical solutions are sought.

Numerous nonlinear differential equations in the fields of chemistry and physics can be
solved using analytical or semi-analytical methods, such as the Akbari-Ganji [4, 5, 23, 29],
variation iteration [1, 35], modified homotopy perturbation [10, 18, 19, 24], Green’s func-
tion iterative [2, 3], hyperbolic function [14], Adomian decomposition [34], Taylor’s series
[17, 30, 33, 39, 40], and He-Laplace method [21]. Taylor’s series method (TSM) has re-
cently been utilized to solve nonlinear problems in chemical science [17, 30, 33, 39, 40].
TSM does not require a perturbation parameter, unlike perturbation-based approaches or
trial functions, such as HAM or HPM. TSM is efficiently simple and cab be easily imple-
mented via various computer algebra programs like Mathematica or Maple. The proposed
TSM method generates analytical expressions of the substrate and product concentrations
by direct substitution into the nonlinear model (7)-(8) (see details in Appendix A.)

u(x) = u(0) +
γsu(0)

3

(
x2

2!

)
+
γs
5
[γsu(0) + γE(u(0))

2]

(
x4

4!

)
+
γs
7
[γ2su(0) + γE(u(0))

2

+ γ2s (u(0))
2 + γE(u(0))

3 + 10γsu(0) + 10γEu(0)]

(
x6

6!

)
, (13)

By utilizing the boundary condition Eq. (10), we obtain

1 = u(0) +
γsu(0)

3

(
1

2

)
+

(
1

120

)
(γ2su(0) + γEγs(u(0))

2)

+

(
1

5040

)
(γ3su(0) + γsγE(u(0))

2

+ γ3s (u(0))
2 + γsγE(u(0))

3 + 10γ2su(0) + 10γEγsu(0)), (14)

Some computed values of u(0) for specific parameter values of γs and γE are given in
Table 1. Using Eq. (14), and the relation between u(x) and v(x) (Appendix B), we obtain

v(x) = 1 +
u(x)− u(0)

ρ
, (15)

The expression of the current follows from Eqs. (12) and (13) as follows:

ψ =

(
du

dx

)
x=1

= u(0)

[
γs
3

+
γ2s
420

+
γ3s
840

+
γsγE
840

]
+ (u(0))2

[
29γsγE
420

+
γ3s
840

]
+ (u(0))3

γsγE
840

. (16)
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4. Previous results

The concentration of substrate and mediator was analytically determined by Sen-
thamarai and Rajendran [38] using the variation iteration method, yielding the following
result:

u(x) = l +
x2

4
(2l − 2 + lγs)−

x3

3
lmγs +

x4

8
(1− l + lm)γs +

x5

5
(l − 1)γsm+

x6

12
mγs(1− l),

(17)

v(x) = 1 +
x2

4
(lγE − 2m)− x3

3
lmγE +

x4

8
(1− l + lm)γE +

x5

5
(l − 1)γEm+

x6

12
mγE(1− l),

(18)

where

l = u(0) =
(360− γSγE − 30γS + 180γE)

(360 + 4γSγE + 30γS + 180γE)
and m =

γE
γE + 2

, (19)

Additionally, Rebouillat and colleagues [36] employed the variation iteration method
to derive the following analytical formulas for the concentration of substrate and mediator:

u(x) =
sinh(

√
γsx)

xsinh(
√
γs)

, (20)

v(x) =
exp(−√

γE)√
γEf(γE)x

{f(γE)exp[−
√
γE(1− x)]− exp[

√
γE(1− x)]}, (21)

where

F (γE) = 1 + f(γE)exp(−2
√
γE) in which f(γE) =

1 +
√
γE

1−√
γE
. (22)

Senthamarai’s result (Eq. (18)) for v(x) is bigger than one for all values of parameters
(refer Table 5). However, Rebouillat et al.’s solution (Eq. (21)) is not a valid representation
of v(x) (refer Table 5). On the other hand, for all parameter values, our new results
(Eqs. (13) and (15)) are less than or equal to one (refer Tables 2–5).
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5. Discussion

Eq. (13) presents new analytical formulas that allow for the interpretation of substrate
concentration profiles for all values of γs and γE in a more straightforward manner.

5.1. Validation of analytical results

The validation of analytical findings is a critical objective to ensure the accuracy and
reliability of any proposed technique. In this study, we validate our analytical results by
comparing them with previous analytical and simulation results. Our analytical findings
are compared with prior analytical results in Tables 2 and 3, and with simulation results
in Table 4. The comparison in Table 2 reveals that the results reported by Senthamarai
et al. [38] are only satisfactory for small values of γS and γE (in particular when γS ≤ 1 and
γE ≤ 1), while Eq. (20) obtained by Rebouillat et al. [36] is independent of the parameter
γE (see Eq. (20)). The comparison in Table 4 shows that the maximum average deviation
between our analytical results and numerical results (MATLAB) is 0.1. Furthermore,
Table 5 indicates that the result of Rebouillat et al. [36] is not an acceptable expression
for v(x), while Senthamarai’s results [38] for v(x) are greater than one. In contrast, our
results are less than or equal to one for all parameter values.

Figure 3(a–d) shows a set of normalized concentration profiles of a substrate, which
vary with the reaction/diffusion parameters γS and γE . By referring to Eq. (13) and the
graph, it can be seen that the minimum value of u occurs at x = 0, which is denoted by
u(0), and the maximum value of u occurs at x = 1, with a maximum value of 1. Based on
Figure 3(a–d), it can be inferred that u is approximately equal to 1 for all values of γE and
γS ≤ 0.1. Additionally, as γS increases, the concentration of substrate at the electrode
surface (u(0)) decreases.

Figure 4 represents the concentration of a mediator, denoted as v, for all values of γS
and γE . Figures 4(a) and 4(b) indicate that the mediator concentration (v) is approxi-
mately equal to 1 when both γS and γE are less than or equal to 1. Furthermore, the
concentration of v(x) increases as γE increases or γS decreases, according to Figures 4(a)
and 4(b). Referring to Eq. (15) and Figure 4, it can be inferred that the minimum value
of the mediator concentration v occurs at x = 0, with a minimum value of 1, while the
maximum value of v occurs at x = 1, with a maximum value of 1 + 1/ρ(1− u(0)).

The normalized current response for different values of γE and γS is depicted in Fig-
ure 5(a–c). The figure suggests that an increase in γE and γS leads to a corresponding
increase in current. Furthermore, it can be observed that the current attains a steady-state
value when γS ≫ 100 and γE ≫ 100.

A comparison between our analytical results and the numerical results for the current
at all parameter values is presented in Table 6. The table indicates that the average
maximum difference between our analytical and numerical results is 0.005.
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(a)                                                                  (b)  

                         

                                               (c)                                                                                 (d) 

                     

Figure 3: Normalized substrate concentration u at a polymer microelectrode. The concentrations 

were computed using Eq. (13), for various values of the reaction/diffusion parameters    and    . 

Figure 3(a-d) shows a set of normalized concentration profiles of a substrate, which vary 

with the reaction/diffusion parameters             . By referring to Eq. (13) and the graph, it can 

be seen that the minimum value of u occurs at    , which is denoted by     , and the 

maximum value of u occurs at    , with a maximum value of 1. Based on Figure 3(a-d), it can 

Figure 3: Normalized Substrate Concentration u at a Polymer Microelectrode. The Concentrations Were
Computed Using Eq. (13), for Various Values of the Reaction/Diffusion Parameters γE and γs.

14 
 

be inferred that u is approximately equal to 1 for all values of               . Additionally, as 

    increases, the concentration of substrate at the electrode surface (   )) decreases. 

Figure 4 represents the concentration of a mediator, denoted as v, for all values of  

            . Figures 4(a) and 4(b) indicate that the mediator concentration (v) is approximately 

equal to 1 when both              are less than or equal to 1. Furthermore, the concentration of 

     increases as    increases or    decreases, according to Figures 4(a) and 4(b). Referring to 

Eq. (15) and Figure 4, it can be inferred that the minimum value of the mediator concentration v 

occurs at    , with a minimum value of 1, while the maximum value of v occurs at    , 

with a maximum value of               . 

(a)                                                                                  (b) 

            

Figure 4: Normalized mediator concentration v at a polymer microelectrode using Eq. (15), for 

various values of the reaction/diffusion parameters    and   . 

 

 

 

 

 

Figure 4: Normalized Mediator Concentration v at a Polymer Microelectrode Using Eq. (15), for Various Values
of the Reaction/Diffusion Parameters γE and γs.
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    (a)                                                                           (b) 
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Figure 5: Variation of normalized steady-state current response   for various values of    using Eq. 

(16). 

The normalized current response for different values of    and    is depicted in Figure 

5(a-c). The figure suggests that an increase in    and    leads to a corresponding increase in 

Figure 5: Variation of Normalized Steady-State Current Response ψ for Various Values of γE Using Eq. (16).

6. Conclusions

This study aims to estimate the concentrations of the mediator, substrate, and current
for the non-linear Michaelis-Menten kinetic scheme. To achieve this, we utilized Tay-
lor’s series method to derive analytical expressions for the substrate concentration and
the mediated profiles within the polymer film. The steady-state substrate and mediator
concentrations, as well as the steady-state current, were also expressed analytically in
simple closed forms. Furthermore, we evaluated the transport and kinetics based on the
polymer’s fundamental reaction/diffusion parameters, γS and γE . Our method is straight-
forward and holds promise for solving other non-linear equations. The analytical results
demonstrate the reliability of Taylor’s series method in solving this type of non-linear
differential equation. It is possible to extend this analytical procedure to other spillover
models for various electrode geometries, among others, in addition to the amperometric
biosensor study.
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Appendix

Appendix A. Approximate analytical solution of nonlinear Eq. (7) using
Taylor’s series method

Assume the solution of Eq. (7) is expressed in the following Taylor’s series expansion

u(x) = u(0) + u′(0)x+ u′′(0)
x2

2!
+ u′′′(0)

x3

3!
+ u(4)(0)

x4

4!
+ · · · , (A1)

Take the derivate of the Eq. (7), we get

xu′′′(x) + 3u′′(x)− γs[xu
′(x)v(x) + xu(x)v′(x) + u(x)v(x)] = 0, (A2)
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Put x = 0 in Eqn. (A2) and using the boundary condition given in Eq. (9), we get

u′′(0) =
γsu(0)

3
, (A3)

Differentiating Eq. (A2) again, with respect to x, gives

xu(4)(x) + 4u′′′(x)− γs[xv(x) + xu′′(x)v′′(x) + 2u′(x)v
′(x) + 2u′(x)v(x) + 2u(x)v

′(x)] = 0,
(A4)

Substituting x = 0 in Eq. (A4) and using boundary conditions (Eq. (9)) implies

u′′′(0) = 0, (A5)

Continuing with another derivative of Eq. (A4) and using the boundary condition
(Eq. (9)) gives

xu(5)(x) + 5u(4)(x)− γs[xu
′′′(x)v(x) + xu(x)v′′′(x) + 3xu′′(x)(x)v

′(x) + 3u
′′(x)v(x)

+ 3xu′(x)v(x) + 3u(x)v(x) + 6u(x)v′(x)] = 0, (A6)

Now when x = 0, Eq. (A6) becomes

u(4)(0) =
γs
5
[γsu(0) + γE(u(0)

2], (A7)

By similar technique, the following are readily obtained:

u(5)(0) = 0, (A8)

u(6)(0) =
γs
7
[γ2su(0) + γEγs(u(0))

2 + γ2s (u(0))
2 + γsγE(u(0))

3 + 10γsu(0) + 10γEu(0)].

(A9)

When we substitute Eqs. (A3), (A5), (A7), (A8) and (A9) into Eq. (A1), we obtain
Eq. (13).

Appendix B. Relation between u(x) and v(x)

From Eqs. (7) and (8), we have

1

γs

d

dx

(
x2
du(x)

dx

)
=

1

γE

d

dx

(
x2
dv(x)

dx

)
, (B1)

d

dx

(
x2
du(x)

dx

)
=
γs
γE

d

dx

(
x2
dv(x)

dx

)
, (B2)

d

dx

(
x2
du(x)

dx

)
= ρ

d

dx

(
x2
dv (X)

dx

)
, (B3)
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where ρ = γs
γE

Integrating (B3) gives
du(x)

dx
= ρ

dv(x)

dx
+

1

x2
, (B4)

And integrating (B4) gives

xu(x) = xρv(x)− c1 + xc2, (B5)

Letting x = 0 in Eq. (B5) gives c1 = 0, and hence Eq. (B5) becomes

u(x) = ρv(x) + c2, (B6)

Letting x = 0 again leads to c2 = u(0)− ρ. Solving Eq. (B6) for v(x) gives

v(x) = 1 +
u(x)− u(0)

ρ
. (B7)


