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Abstract. The second largest eigenvalue of a graph is an important algebraic parameter which
is related with the expansion, connectivity and randomness properties of a graph. Expanders are
highly connected sparse graphs. In coding theory, Expander codes are Error Correcting codes made
up of bipartite expander graphs. In this paper, first we prove the interlacing of the eigenvalues of
the adjacency matrix of the bipartite graph with the eigenvalues of the bipartite quotient matrices
of the corresponding graph matrices. Then we obtain bounds for the second largest and second
smallest eigenvalues. Since the graph is bipartite, the results for Laplacian will also hold for
Signless Laplacian matrix. We then introduce a new method called vertex-split of a bipartite
graph to construct asymptotically good expander codes with expansion factor D

2 < α < D and
ϵ < 1

2 and prove a condition for the vertex-split of a bipartite graph to be k−connected with respect
to λ2. Further, we prove that the vertex-split of G is a bipartite expander. Finally, we construct
an asymptotically good expander code whose factor graph is a graph obtained by the vertex-split
of a bipartite graph.
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1. Introduction

Let G be a finite graph. The adjacency matrix A(G) of G is an n×n matrix A = [aij ],
where aij = 1 if vi and vj are adjacent, otherwise it is 0. Let λ1 ≥ λ2 ≥ · · · ≥ λn

be the eigenvalues of A known as the spectrum of G. The Laplacian matrix of G is
L(G) = D(G) − A(G) where D(G) is the diagonal degree matrix. Let µ1 ≥ µ2 ≥ µ3 ≥
· · · ≥ µn−1 ≥ µn be the eigenvalues of the Laplacian matrix. The signless Laplacian matrix
of G is Q(G) = D(G) + A(G). For a bipartite graph, Laplacian and signless Laplacian
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eigenvalues are the same.

Expanders are graphs which are sparse but highly connected. The word sparse means
that the number of edges of G is much less than the possible number of edges of G.
Expander has wide application in various areas of computer science including pseudoran-
domness, complexity theory, coding theory, algorithm design, cryptography, etc.

Depending on the use, the term expander has many meanings. An (n,m, d, γ, α)−
expander is a bipartite graph H = (X,Y,E) where |X| = n, |Y | = m, d(x) = d for all
x ∈ X and for every S ⊆ X, |S| ≤ γn, we have the set of vertices N(S) ⊆ Y such
that |N(S)| ≥ α|S|, where γ and α are positive constants. To obtain good expansion,
α should be high. An expander is said to be a lossless expander when α is closer to d.
Expander code has rate at least 1−m

n . Therefore, smaller m implies codes with higher rate.

An Error-Correcting Code (ECC) is a type of encoding used in the theory of coding
to transfer messages as binary numbers in a way that allows the message to be decoded
even if some bits are reversed. The error-correcting codes known as expander codes are
constructed from bipartite expander graphs.

A collection of strings known as codewords form an error correcting code denoted by
C. Block length of an ECC is the number of elements in the code word and it is denoted
by n. The codewords consist of n symbols from σ which is the alphabet set. A code is
referred to as (n, k)q code where |σ| = q and |C| = qk. k indicates how many informa-
tional symbols are contained in each codeword and R(C) = k

n is the rate of the code. The
smallest Hamming distance between two different codewords of C is the distance D(C) of
the code. The parity-check and generator matrix views of the code give reasons for seeing
linear codes as graphs and building them using graph-theoretic methods. To express the
properties of the code from the characteristics of the graph, we can interpret the parity
check matrix for a [n, n −m]2 code as representing an n ×m bipartite graph. Low Den-
sity Parity Check (LDPC) codes are an interesting family of codes since they appear as
sparse graphs in the graph view because there are few 1′s in each row and column of the
parity-check matrix.

In Section 4 we obtain the upper bound for the second largest adjacency eigenvalue,
lower bound for the second smallest adjacency eigenvalue and upper bound for the second
largest Laplacian eigenvalue of a connected bipartite graph G. To obtain sharper bounds,
we discuss some possible cases with respect to the bipartitions of G in a minimally con-
nected bipartite graph and derive bounds for the second largest adjacency eigenvalue and
second smallest adjacency eigenvalue in terms of n, the number of vertices.

In Section 5, we introduce a new concept called vertex-split of bipartite graph and we
prove a condition for the vertex-split of a bipartite graph to be k−connected with respect
to λ2. We prove theorems related to connectivity and prove the expansion of vertex-split
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of a bipartite graph. Finally, in Section 6 we show that the vertex-split of a biregular
bipartite graph forms an expander code.

2. Related work

Eigenvalues are often difficult to compute. Therefore, obtaining bounds for eigenvalues
is useful. In literature, bounds have been found for the second largest eigenvalue of some
family of graphs. Chang An [2] obtained upper and lower bounds for the second largest
eigenvalue of a tree. The lower bounds on the second largest eigenvalue of a regular graph
with given girth were obtained by Patrik Solv [14]. Mehatari and Kannan [11] derived
bounds for the second largest and second smallest eigenvalues of adjacency matrices, nor-
malized adjacency matrices and Laplacian matrices of regular graphs. In 1988, Powers
[12] gave some upper bounds of second largest eigenvalue for general graphs and bipartite
graphs. In 2012, Mingqing Zhaim et al. [18] presented upper bounds for the second largest
eigenvalue of connected graphs and particularly, for bipartite graphs.

Expander codes which are constructed from unbalanced bipartite expander graphs with
expansion factor (1 − ϵ)D for ϵ < 1

2 are said to be asymptotically good codes. Initially,
constructions with α ≈ D

2 were known explicitly. So the requirement is to give explicit
construction of codes with expansion higher than D

2 . In 2002, Capalbo et al. [4] presented
an explicit construction with expansion (1 − ϵ)D where D is the degree of the left side
partition of G for any desired ϵ > 0, and imbalance ratio m

n . Using the edge vertex matrix
is one method of building an unbalanced expander, which Tanner [16] introduced and
Sipser and Spielman [13]-[15] employed. Also, it is observed by Zemor [17] that if the edge
vertex incidence graph’s underlying graph is a bipartite graph, the decoding technique is
straightforward.
In this work, we use vertex-split of a bipartite graph to construct expanders codes with
expansion factor D

2 < α < D and ϵ < 1
2 .

3. Preliminaries

Definition 1. [9](Quotient matrix) Let

M =

M11 · · · M1t
...

. . .
...

Mt1 · · · Mtt


be a real matrix of order n and Mij be the blocks of M, where i,j = 1, 2, . . . , t. Then
B(M)=(bij) is called the Quotient Matrix of M where bij is the sum of all entries in Mij

divided by the number of rows of Mij.

Definition 2. [3](Interlacing) Consider two sequences of real numbers:
ξ1, ξ2, . . . , ξn and η1, η2, . . . , ηm with m ≤ n. The second sequence is said to interlace the
first one whenever ξi ≤ ηi ≤ ξn−m+i for i = 1, 2, . . . ,m. The interlacing is called tight if
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there exists an integer k ∈ [0,m] such that ξi = ηi for 1 ≤ i ≤ k and ξn−m+i = ηi for
k + 1 ≤ i ≤ m.

Definition 3. A graph is said to be minimally connected if removal of any one edge
disconnects the graph.

Lemma 1. ([6]-[10]) Let AQ be the quotient matrix of a symmetric matrix A whose rows
and columns are partitioned according to a partitioning (X1, X2, . . . , Xm). Then

(i) The eigenvalues of AQ interlace the eigenvalues of A.

(ii) If the interlacing is tight then the partition is equitable.

Definition 4. [8] (Vertex expander) A graph G with n vertices is said to be a vertex
expander if |N(S)| ≥ A|S| for all S ⊆ V : |S| ≤ n

2 , where A is a constant and N(S) is the
neighbourhood of S in G not in S.

Definition 5. [8] (Spectral expansion) The spectral expansion of graph G is defined by
λ = max{|λ2|, |λn|}.

Definition 6. [1] Let G = (V,E) be a graph. For a subset S of V let N(S) = {v ∈ V :
vs ∈ E for some s ∈ S}. An (n, d, c)−expander is a bipartite graph on the sets of vertices
X and Y , where |X| = |Y | = n , the maximal degree of a vertex is d, and for every set
S ⊆ X of cardinality |S| = α ≤ n

2 , |N(S)| ≥ (1 + c(1− α
n ))α.

Definition 7. [4] A D−left regular bipartite graph G = (X ∪ Y,E) where |X| = n and
|Y | = m such that for all S ⊆ X with |S| ≤ γn, |N(S)| ≥ α|S|, where γ and α are positive
constants is known as an (n,m,D, γ,D(1− ϵ)) expander.

Note :
Let λ1 ≥ λ2 ≥ · · · ≥ λn be the adjacency eigenvalues of G and let λ′

1 ≥ λ′
2 ≥ · · · ≥ λ′

n

be the adjacency eigenvalues of G′. Assume that γi =
λ′
i
d be the normalized eigenvalues

of G′. Let λ′ be the spectral expansion of G′. Then γ = λ′

d is the spectral expansion of G′

with respect to the normalized adjacency eigenvalues.

Lemma 2. [8] (vertex expansion to spectral expansion). Let G be a d−regular graph. For
every ϵ > 0 and d > 0, there exists γ > 0 such that if G is a d−regular (1 + ϵ)−expander
then G has spectral expansion (1− γ). Specifically, we can take γ = Ω(ϵ2/d).

Lemma 3. [5] Let G be an (n,m,D, γ,D(1 − ϵ)) expander. Then the distance of the
code corresponding to the graph G is ∆(C(G)) ≥ 2γ(1− ϵ)n where C(G) denotes the code
corresponding to an expander graph G.
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4. Eigenvalue Interlacing of Bipartite Quotient Matrix and Spectral
Bounds

In this section we derive the upper bounds for the second largest eigenvalues of both
the adjacency matrix and Laplacian matrix of a connected bipartite graph. Also, we
derive the lower bounds for the second smallest eigenvalue of the adjacency matrix of a
connected bipartite graph. To arrive at these bounds, we define the Bipartite quotient
matrix as follows :

Definition 8. (Bipartite quotient matrix) Let G be a bipartite graph. The Bipartite quo-
tient matrix of the Adjacency matrix A (Laplacian matrix L) of G is the Quotient matrix
of A/L whose rows and columns are partitioned according to the bipartition of G.

4.1. Bounds for the second largest eigenvalue and second smallest eigen-
value of adjacency matrix

In this section we derive the upper bounds for the second largest eigenvalue and lower
bounds for the second smallest eigenvalue of the adjacency matrix of a connected bipartite
graph G.

Theorem 1. Consider a Bipartite graph G with bipartition V = (X,Y ) where |X| = n1,
|Y | = n2 and |V | = n1 + n2 = n. Let λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn be the eigenvalues of
the adjacency matrix A of G, AQ be the bipartite quotient matrix of A and η1 and η2 the
eigenvalues of AQ. Then

(i) λ1 ≥ η1 ≥ λ2

(ii) λn−1 ≥ η2 ≥ λn

(iii) λ2 ≤ m√
n1n2

(iv) λn−1 ≥ −m√
n1n2

Proof. Let A be the adjacency matrix of G represented in the following block matrix
form with respect to the bipartition V = (X,Y ).

A =

[
A11 A12

A21 A22

]
.

Let AQ be the bipartite quotient matrix of A. Then

AQ =

[
0 m

n1
m
n2

0

]
.

The characteristic equation of AQ is λ2 − m2

n1n2
= 0 and the corresponding eigenvalues

of AQ are η1 = m√
n1n2

and η2 = −m√
n1n2

. To get the generalized interlacing, we need n
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eigenvalues. To obtain this, consider the following.

The characteristic matrix of G is given by S̃ =

[
Jn1×1 0n1×1

0n2×1 Jn2×1.

]
n×2

where J is the all-ones matrix. Let S = S̃K
−1
2 where K = diag(|X|, |Y |). i.e., K =[

n1 0
0 n2

]
.

Then S =

[
Pn1×1 0n1×1

0n2×1 Rn2×1

]
n×2

.

where Pn1×1 and Rn2×1 are column matrices with entries (pi1) =
1√
n1

for all vi ∈ X and

(ri1) =
1√
n2

for all vi ∈ Y , respectively.

From the proof of Lemma 1 [7] we have,

AQ = STAS. (1)

Left and right multiplying equation (1) by S and ST respectively, we get, SAQS
T = A.

Now consider SAQS
T and denote it by C.Then

C = (cij) =


m

n1
√
n1

vi ∈ X and vj ∈ Y

m
n2

√
n2

vi ∈ Y and vj ∈ X

0 otherwise.

The above matrix can be represented as a block matrix as follows:

C =

[
0 M
N 0

]
n×n

.

Denote the eigenvalues of C by γi, i = 1, 2, . . . , n. The eigenvalues of C are the square
roots of the non-zero eigenvalues of MN . That is γ1 = m√

n1n2
, γn = −m√

n1n2
and γi = 0 for

i = 2, 3, . . . , n− 1. Then by interlacing we get,

λ1 ≥ γ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ γn−1 ≥ λn ≥ γn.

By comparing the eigenvalues of AQ and C we get,
γ1 =

m√
n1n2

= η1 and γn = −m√
n1n2

= η2.

Now let us first consider λ1 ≥ γ1 ≥ λ2. Since γ1 = η1 we have λ1 ≥ η1 ≥ λ2.
This proves (i).

Since G is bipartite, its eigenvalues are symmetric about the origin. Now from (i) and
since G is bipartite, we get λn ≤ η2 ≤ λn−1. This proves (ii).

To prove (iii), using (i) we have,

λ2 ≤ η1 =
m

√
n1n2

.
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To prove (iv), using (ii), we have,

λn−1 ≥ η2 =
−m

√
n1n2

.

This completes the proof.

Corollary 1. If G is a regular bipartite graph then

λ2 ≤
m

n1

Proof. For a regular bipartite graph G, n1 = n2. Substituting this in (iii) of Theorem
1, we get the result.

Corollary 2. If G is a regular bipartite graph then

λn−1 ≥
−m

n1

Proof. For a regular bipartite graph G, n1 = n2. Substituting this in (iv) of Theorem
1, we get the result.

In the following theorems, we present simpler bounds, involving a single parameter n,
when compared to the bounds obtained in Theorem 1. To achieve this we require m to
be minimum. m would be minimum only if G is minimally connected, that is m = n− 1.
We consider three types of bipartitions such as balanced, unbalanced and average bipar-
titions to arrive at our result.

For a balanced bipartition we have (n1, n2) =

(n−1
2 , n+1

2 ) n is odd

(n2 ,
n
2 ) n is even

.

Unbalanced bipartition is given by, (n1, n2) = (1, n− 1).

Average bipartition is given by

(n1, n2) =


(3n−4

4 , n+4
4 ) if n is even

(3n−3
4 , n+3

4 ) if n = 4k + 3 where k = 0, 1, 2, . . . .

(3n−5
4 , n+5

4 ) if n = 4k + 1 where k = 0, 1, 2, . . . .

Let η11, η12 and η13 represent the largest eigenvalues of the bipartite quotient matrices
corresponding to the three different bipartitions. Let η1 = min{η11, η12, η13}. Let η21, η22
and η23 represent the smallest eigenvalues of the bipartite quotient matrices corresponding
to the three different bipartitions. Let η2 = max{η21, η22, η23}.
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Theorem 2. Let G be a connected bipartite graph of order n. Then

λ2 ≤


2(n−1)√
n2−1

n is odd

2(n−1)
n n is even.

Proof. From Theorem 1 we have,

λ2 ≤
m

√
n1n2

. (2)

Consider the following cases.
Case 1: Let G be minimally connected with balanced bipartition. Substituting for m,n1

and n2 for a balanced bipartition in equation (2), we have

η11 =


2(n−1)√
n2−1

n is odd

2(n−1)
n n is even.

Case 2: Let G be minimally connected with unbalanced bipartition. Substituting for
m,n1 and n2 for an unbalanced bipartition in equation (2), we have

η12 =
n− 1√
n− 1

=
√
n− 1.

Case 3: Let G be minimally connected with the average bipartition. Substituting for
m,n1 and n2 for an average bipartition in equation (2), we have when n is even,

η13 =


4(n−1)√

3n2+8n−16
if n is even

4(n−1)√
3n2+6n−9

if n = 4k + 3 where k = 0, 1, 2, . . . .

4(n−1)√
3n2+10n−25

if n = 4k + 1 where k = 0, 1, 2, . . . .

When n is even, comparing all the three cases, since the numerator contains (n− 1) as a
common term, we have

√
n− 1 ≤

√
3n2 + 8n− 16

4
≤ n

2
.

which implies that
2(n− 1)

n
≤ 4(n− 1)√

3n2 + 8n− 16
≤

√
n− 1.

When n is odd and n = 4k + 3 where k = 0, 1, 2, . . . , comparing all the three cases, since
the numerator contains (n− 1) as a common term, we have

√
n− 1 ≤

√
3n2 + 6n− 9

4
≤

√
n2 − 1

2
.
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which implies that
2(n− 1)√
n2 − 1

≤ 4(n− 1)√
3n2 + 6n− 9

≤
√
n− 1.

When n is odd and n = 4k + 1 where k = 0, 1, 2, . . . , comparing all the three cases, since
the numerator contains (n− 1) as a common term, we have

√
n− 1 ≤

√
3n2 + 10n− 25

4
≤

√
n2 − 1

2
.

which implies that
2(n− 1)√
n2 − 1

≤ 4(n− 1)√
3n2 + 10n− 25

≤
√
n− 1.

Comparing all the three cases, we get η11 ≤ η13 ≤ η12. From this we have, η1 = η11.
Applying this in equation (2), we get a tight upper bound in terms of n as

λ2 ≤


2(n−1)√
n2−1

n is odd

2(n−1)
n n is even.

Theorem 3. Let G be a connected bipartite graph of order n. Then

λn−1 ≥


−(2(n−1))√

n2−1
n is odd

−(2(n−1))
n n is even.

Proof. In Theorem 1, we have proved that

λn−1 ≥
−m

√
n1n2

. (3)

Consider the following cases.
Case 1: G is minimally connected with balanced bipartition. Substituting for m,n1 and
n2 for a balanced bipartition in equation (3), we have

η21 =


−(4(n−1))√
3n2+8n−16

if n is even

−(4(n−1))√
3n2+6n−9

if n = 4k + 3 where k = 0, 1, 2, . . . .

−(4(n−1))√
3n2+10n−25

if n = 4k + 1 where k = 0, 1, 2, . . . .

Case 2: G is minimally connected with unbalanced bipartition. Substituting for m,n1

and n2 for an unbalanced bipartition in equation (3), we have

η22 =
−(n− 1)√

n− 1
= −

√
n− 1.
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Case 3: G is minimally connected with average bipartition. Substituting for m,n1 and
n2 for an average bipartition in equation (3), we have

η23 =


−(2(n−1))

n n is even

−(2(n−1))√
n2−1

n is odd.

When n is even, comparing all the three cases, since the numerator contains (n− 1) as a
common term, we have

√
n− 1 ≤

√
3n2 + 8n− 16

4
≤ n

2
.

which implies that

−(2(n− 1))

n
≥ −(4(n− 1))√

3n2 + 8n− 16
≥ −

√
n− 1.

When n = 4k+3 where k = 0, 1, 2, . . . , comparing all the three cases, since the numerator
contains (n− 1) as a common term, we have

√
n− 1 ≤

√
3n2 + 6n− 9

4
≤

√
n2 − 1

2
.

which implies that
2(n− 1)√
n2 − 1

≤ 4(n− 1)√
3n2 + 6n− 9

≤
√
n− 1.

When n = 4k+1 where k = 0, 1, 2, . . . , comparing all the three cases, since the numerator
contains (n− 1) as a common term, we have

√
n− 1 ≤

√
3n2 + 10n− 25

4
≤

√
n2 − 1

2
.

which implies that
2(n− 1)√
n2 − 1

≤ 4(n− 1)√
3n2 + 10n− 25

≤
√
n− 1.

Comparing all the three cases, we get η21 ≥ η23 ≥ η22. From this we have, η2 = η21.
Applying this in equation (3), we get a tight lower bound in terms of n as

λn−1 ≥


−(2(n−1))√

n2−1
n is odd

−(2(n−1))
n n is even.
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4.2. Bounds for the Second largest Laplacian eigenvalue

In this section we derive the upper bound for the second largest Laplacian eigenvalue
of a connected bipartite graph G.

Theorem 4. Consider a Bipartite graph G with bipartition V = (X,Y ). Let µ1 ≥ µ2 ≥
· · · ≥ µn−1 ≥ µn be the eigenvalues of the Laplacian matrix L of G, LQ be the bipartite
quotient matrix of L and θ1 and θ2 the eigenvalues of LQ. Then

(i) µ1 ≥ θ1 ≥ µ2

(ii) µ2 ≤ mn
n1n2

Proof. The proof is similar to that of Theorem 1.
Let L be the Laplacian matrix of G represented in the following block matrix form with
respect to the bipartition V = (X,Y )

L =

[
L11 L12

L21 L22

]
.

Let LQ be the Bipartite quotient matrix of the Laplacian matrix L of G. Then

LQ =

[ m
n1

−m
n1−m

n2

m
n2

]
.

The characteristic equation of LQ is µ2 − mn
n1n2

µ = 0 Then the eigenvalues of LQ are
θ1 =

mn
n1n2

and θ2 = 0.
To get the generalized interlacing consider the following.

The characteristic matrix of G is given by S̃ =

[
Jn1×1 0n1×1

0n2×1 Jn2×1

]
n×2

Let S = S̃K
−1
2 , where K = diag(|X|, |Y |) i.e., K =

[
n1 0
0 n2

]
.

Then S =

[
Pn1×1 0n1×1

0n2×1 Rn2×1

]
n×2

.

where Pn1×1 and Rn2×1 are column matrices with entries (pi1) =
1√
n1

where i = 1, 2, . . . , n1

and (rj1) =
1√
n2

where j = 1, 2, . . . , n2.

From the proof of Lemma 1 [7] we have,

LQ = STLS. (4)

Left and right multiplying equation (4) by S and ST we have SLQS
T = L.

Now consider SLQS
T and denote it by U .

Let U = (uij) =



m
n2
1

vi, vj ∈ X

m
n2
2

vi, vj ∈ Y

−m
n1

√
n1n2

vi ∈ X and vj ∈ Y

−m
n2

√
n1n2

vi ∈ Y and vj ∈ X
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Then the block matrix representation of U is given by

U =

[
E F
G H

]
n×n

.

Let the eigenvalues of U be β1 ≥ β2 ≥ · · · ≥ βn. The eigenvalues of U are the trace of U
and 0, that is β1 =

mn
n1n2

and βi = 0 for i = 2, 3, . . . , n.
Then the interlacing becomes, µ1 ≥ β1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ βm ≥ µn which implies that
µ1 ≥ β1 ≥ µ2. By comparing the eigenvalues of LQ and U we have, β1 = θ1.
Let us consider µ1 ≥ β1 ≥ µ2. Since β1 = θ1, we have µ1 ≥ θ1 ≥ µ2. This proves (i).
To prove (ii), using (i) we have,

µ2 ≤ θ1 =
mn

n1n2
.

Corollary 3. If G is a regular bipartite graph then µ2 ≤ 2m
n1

.

Proof. For a regular bipartite graph G, n1 = n2. Substituting this in Theorem 4, we
get the result.

Note:
For a complete bipartite graph G, the size of G is equal to the product of the orders of
the bipartitions of G, that is m = n1n2. Hence µ2 ≤ n.

5. Vertex-split of a bipartite graph

In this section, we define vertex split of a bipartite graph. Next, we prove theorems
related to the connectivity and expansion of vertex split of a bipartite graph.

Definition 9. (Vertex-split of a bipartite graph) Let G = (X ∪ Y,E) be a connected
bipartite graph with δ ≥ 4 where |X| = n1 ≥ 4, |Y | = n2 ≥ 3 with n1 > n2. A graph
G′ = (X ′ ∪ Y ′, E′) is said to be a vertex-split of G if

(i) |X ′| = |X| and |Y ′| = |Ya| + |Yb| = 2|Y | where Ya = {y1a, y2a, . . . , yn1a}, Yb =
{y1b, y2b, . . . , yn2b}.

(ii) Let deg(y) = dy = da + db ∀y ∈ Y such that da = deg(ya) ∀ya ∈ Ya and db = deg(yb)

∀yb ∈ Yb with the condition that |da − db| =

{
1 if dy is odd

0 if dy is even.

(iii) N(Ya) ∩N(Yb) ̸= ∅

Example: Vertex-split of a complete graph K8,4 is shown in figure 1 where |X| =
|X ′| = 8, |Y | = 4, |Y ′| = 8
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Figure 1: Vertex-split of K8,4

5.1. Connectivity of Vertex-split of a bipartite graph

Let G′ be a vertex-split of a bipartite graph G with minimum degree δ′ and edge
connectivity κ′(G′). The adjacency eigenvalues of G′ are denoted as λ′

1 ≥ λ′
2 ≥ · · · ≥ λ′

n.

Theorem 5. Let δ′ ≥ k ≥ 2 be a constant and let G(X ∪ Y,E) be a d−regular bipartite
graph and G′ the vertex-split of G. If

λ′
2 ≥

2k − 1√
2

then κ′(G′) ≥ k.

Proof. Our proof is by contradiction. We prove that if G′ is a connected bipartite
graph of order n′ and minimum degree δ′ such that κ′(G′) ≤ 2k′ − 1, then

λ′
2 ≤

2k − 1√
2

. (5)

Let n′ = n′
1 + n′

2 where n′
1 = n1 and n′

2 = 2n2 and δ′ = δ
2 . Let δ

′ ≥ k ≥ 2. From this we

have δ
2 ≥ k ≥ 2. Consider δ

2 ≥ k. By (iii) of Theorem 1 we have,

λ2 ≤
m

√
n1n2

. (6)

For a regular bipartite graph n1 = n2 =
n
2 and m = nd

2 . Suppose δ ≤ 2k − 1. Substituting
this in equation (6) we get,

λ′
2 ≤

d√
2
=

δ√
2

λ′
2 ≤

2k − 1√
2

This completes the proof.

Example for connectivity of vertex-split of a regular graph: Consider a com-
plete bipartite graph K5,5. The vertex-split of K5,5 is a graph with minimum degree δ′ = 2
and the second largest eigenvalue λ′

2 = 2.34. Since it is regular graph, from theorem 1 we
have, for k = 2, 2k−1√

2
= 2.121
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Figure 2: vertex-split of K5,5

Theorem 6. Let G be a biregular bipartite graph with V = (X,Y ) where |X| = n1,
|Y | = n2 and G′ the vertex-split of G. If

λ′
2 ≥

n2(2k − 1)√
2n1n2

then κ′(G′) ≥ k.

Proof. The proof is by contradiction. We prove that if G′ is a connected bipartite
graph of order n′ and minimum degree δ′ such that κ′(G′) ≤ 2k − 1, then

λ′
2 ≥

n2(2k − 1)√
2n1n2

.

Let n′ = n′
1 + n′

2 where n′
1 = n1 and n′

2 = 2n2 and δ′ = δ
2 . Let δ

′ ≥ k ≥ 2. Therefore we

have, δ
2 ≥ k ≥ 2. Consider δ

2 ≥ k. Suppose δ ≤ 2k − 1.
For a biregular bipartite graph n1d1 = n2d2 = m, where d1 and d2 are the degrees of the
bipartition with d1 > d2. Similarly n′

1d
′
1 = n′

2d
′
1 = m′ = m. Substituting this in (iii) of

Theorem 1 we have,

λ′
2 ≤

n2d2√
2n1n2

=
n2δ√
2n1n2

λ′
2 ≤

n2(2k − 1)√
2n1n2

This completes the proof.
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5.2. Expansion of Vertex-split of a bipartite graph

In this section, we prove that the vertex split of a complete bipartite graph is a bipartite
expander.

Theorem 7. The vertex-split of a complete bipartite graph Km,n is a bipartite expander
if

(i) n is even

(ii) n ≤ m ≤ 2n

Proof. Let G′ = (X ′ ∪ Y ′, E′) be the vertex-split of the complete bipartite graph G.
Here |X ′| = |X| = m, |Y ′| = 2|Y | = 2n. Assume that S ⊆ X ′ with |S| = n

2 . To prove this
theorem, consider the following cases.
Case 1: m = n.
In this case, when |S| = m

2 the cardinality of the neighbourhood of S is |N(S)| = m+2
2

which implies that |N(S)| ≥ α|S| where α = (1 + 2
n).

Case 2: m = 2n.
In this case, when |S| = n

2 the cardinality of the neighbourhood of S is |N(S)| = n which
implies that |N(S)| ≥ α|S| where α = 1.
Case 3: n < m < 2n.
In this case, when |S| = n

2 the cardinality of the neighbourhood of S is |N(S)| = n+(i− n
2 ),

i = 2, 3, . . . , n2 which implies that |N(S)| ≥ α|S| where α = 1+
(i−n

2
)

n , where i = 2, 3, . . . , n2 .

By definition (4), in all the cases we conclude that the vertex-split of Km,n is a bipar-
tite expander.

Note:
From the above theorem we say that, vertex-split G′ of G is a α− vertex expander.

Corollary 4. The vertex-split G′ of a complete bipartite graph G = Km,n where n = m
2

is a (1− γ)−spectral expander.

Proof. From the above theorem we know that G′ is a α− vertex expander where
α = 1 + ϵ where ϵ = 1

n . From lemma 2, we can conclude that G′ is (1 − γ)−spectral
expander where γ = 1

n2d′ , where d′ is the degree of G′.

6. Construction of Error correcting code

Consider a biregular graphG with bipartitions (X,Y ) and the corresponding degrees d1
and d2. Let d1 =

|X|
2 . In this section, we prove that the vertex-split of a biregular bipartite

graph is a bipartite expander and then we show that the vertex-split of a biregular bipartite
graph forms an expander code.
Let C(G) be the error correcting code of block length n obtained from a bipartite graph
G and let ∆(C(G)) be the distance of the code C.
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Lemma 4. Let G = (X ∪Y,E) be a biregular bipartite graph with |X| = n1 and |Y | = n2.

Let d1, d2 be the degrees of the corresponding bipartitions X,Y where d1 = ⌊ |X|
2 ⌋. Then

vertex-split G′ of G is a bipartite expander.

Proof. Let G′ = (X ′ ∪ Y ′, E′) be the vertex-split of a biregular bipartite graph G with
|X ′| = n1 and |Y ′| = 2n2. The degrees of the bipartitions X ′, Y ′ are denoted by d′1 and

d′2 respectively. Let S be a subset of X ′ with |S| = n1
d′1
. Since d′1 = |X′|

2 , we have |S| = 2.

For any subset S of X ′ the neighbourhood of S is |N(S)| ≥ n1
2 + 1, which implies that

|N(S)|
|S| ≥ α where α = (n1+2

4 ) is the vertex expansion constant.

That is |N(S)| ≥ α|S|. This proves the result.

Theorem 8. The vertex-split of a biregular bipartite graph G = (X∪Y,E) where |X| = n1,

|Y | = n2 with degree d1 =
|X|
2 is an expander code.

Proof. We proved that the vertex-split of a biregular bipartite graph G is a bipartite
expander in Lemma 4. For constructing an efficient error correcting code, let us fix |Y |
as |Y | = n2 = max{x : x|n

2
1
2 and n1+2

4 < x < n1
2 }. Usually α is close to D

2 where D is the
degree of the larger side partition. Here D = d1 =

n1
2 . Then D

2 = n1
4 . Clearly D

2 < α < D,
where α = (n1+2

4 ). Putting α = D(1− ϵ), we get ϵ = n1−2
2n1

< 1
2 .

Corollary 5. Let the vertex-split G′ of G be a (n1, n2, d1, γ,D(1− ϵ)) expander. Then the

distance of the ECC corresponding to graph G′ is ∆(C(G′)) ≥ n1(n1+2)
2d21

.

Proof. We proved in Lemma 4 that the vertex-split G′ of G is a (n1, n2, d1, γ,D(1− ϵ))
expander, where γ = 1

d1
, α = n1+2

4 and ϵ = n1−2
2n1

. Substituting all these in Lemma 3, we
get the result.

7. Conclusion

In the first part of this paper, we defined bipartite quotient matrix of matrices associ-
ated with bipartite graphs and proved that the two eigenvalues of the bipartite quotient
matrix interlace at the two ends of the spectrum of the adjacency matrix of a bipartite
graph. From this interlacing, we obtained the upper bound for the second largest eigen-
value and the lower bound for the second smallest eigenvalue of a bipartite graph. To
achieve a more sharper bound we considered the minimally connected graph for three
different bipartitions and obtained two new bounds which depend only on the order of the
graph. Also, we proved the eigenvalue interlacing for the Laplacian matrix and obtained
an upper bound for the second largest Laplacian eigenvalue.
In the second part of this paper, we defined vertex-split of a bipartite graph and proved
its connectivity with respect to the second largest eigenvalue. Finally, we proved that the
vertex-splits of complete bipartite graph Km,n and biregular bipartite graph G(X,Y ) are
bipartite expanders and constructed an efficient ECC with expansion factor α > D

2 .
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