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Abstract. In this article, we investigated new travelling wave solutions for the modified Burgers
equation with additional time-dependent variable coefficient via the functional variable method.
The performance of this method is reliable and effective and gives the exact solitary wave solutions.
All solutions of this equation have been examined and three dimensional graphics of the obtained
solutions have been drawn by using the Matlab program. The exact solutions have its great
importance to reveal the internal mechanism of the physical phenomena. This method presents a
wider applicability for handling nonlinear wave equations.
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1. Introduction

Burgers equation was first given by Bateman and later was studied by Burgers as
a mathematical model for turbulence[12, 15]. The Burgers equation has applications
in various fields such as convection and diffusion, number theory, gas dynamics, heat
conduction, elasticity, engineering and other scientific fields[29]. The Burgers equation is
in the form

ut + uux − νuxx = 0,

where u(x, t) denotes the velocity for space x and time t and ν > 0 is a constant repre-
senting the kinematics viscosity of the fluid.
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The one-dimensional modified Burgers equation is in the form

ut + u2ux − νuxx = 0,

where u(x, t) is the dependent variable, ν is the viscosity parameter, t and x are the
independent parameters. This equation describes in several areas of applied mathematics
such as various practical transport problems, nonlinear waves in a medium with low-
frequency pumping or absorption, ion reflection at quasi-perpendicular shocks, turbulence
transport, the transport and dispersion of pollutants in rivers[14].

In the literature many numerical method was applied to approximate the solution of
the modified Burgers equation by several authors. The collocation method with quintic
splines[14], the colocation method with septic splines[31], the sextic B-spline collocation
method[24], a non-polynomial spline based method[22], an explicit numerical scheme[13],
Petrov-Galerkin method[33] and explicit exponential finite difference schemes have been
used to obtain numerical solution of the modified Burgers equation by several authors[16].

Many direct methods of nonlinear evolutions equations have been developed to find
solutions, such as tanh-function method[25], functional variable method[4, 5, 7, 9, 10],
Hirota method[23], Backlund transform method[32], exp-function method[28], G/G′ ex-
pansion method[6, 8] and extended tanh-method[19] are used for searching the exact
solutions[2, 3, 11, 20, 26, 27].

In[17], the arteries were considered as thin-wall prestressed elastic tubes of variable
radius, and the long-wavelength approximation was used. The propagation of weakly
nonlinear waves in such an elastic tube filled with a liquid was investigated using the
modified Korteweg-de Vries equation with a variable coefficient

ut + 6u2ux − uxxx = h(t)ux,

where t is the scale coordinate along the vessel axis after a static deformation (this coor-
dinate characterizes the axi symmetric stenosis on the surface of the arterial wall), x is a
variable depending on time and the coordinate along the vessel axis, h(t) is the shape of
the stenosis, and the function u(x, t) characterizes the average axial velocity of the liquid.

The modified KdV-Burgers equation with variable coefficients is defined as

ut + uxxx + 3αu2ux + βuxx = 0,

where α and β are constant coefficients, and they incorporate the effects of nonlinearity
(αu2ux) and dissipation (βuxx) into the equation; β is the coefficient of the kinematic
viscosity of a fluid (β < 0). When the dispersion term uxxx = 0, then this equation
was was formulated from the modified Burgers equation[30]. When β = 0, this equation
is just the so called mKdV equation, which originates from nonlin ear optics[1] and the
propagation of long internal waves in a fluid when the coefficient of the ordinary nonlinear
term in the KdV equation. The higher order nonlinear term u2ux dominates over higher
or dispersive terms[21].

In this article, we consider the modified Burgers equation with additional time-dependent
variable coefficient

ut + h1(t)u
2ux − h2(t)uxx + ω(t)ux = 0, (1)
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where u(x, t) is an unknown function, x ∈ R, t ≥ 0, h1(t) ̸= 0, h2(t) ̸= 0, ω(t) ̸= 0
are given continuous differentiable functions and h2(t) > 0 is a variable representing the
kinematics viscosity of the fluid.

The equation (1) arises in many physical problems including the motions of waves
in nonlinear optics, plasma or fluids, water waves, ion-acoustic waves in a collision less
plasma. The first element ut designates the evolution term and the second one shows the
term of dispersion.

The main aim of this paper is to find the exact soliton solutions of the equation (1)
via functional variable method. The main advantage of the proposed method over other
methods is that it provides more new exact traveling wave solutions. All solutions of this
equation have been examined and three dimensional graphics of the obtained solutions have
been drawn by using the Matlab program. The exact solutions have its great importance
to reveal the internal mechanism of the physical phenomena.

2. Description of the method

The basic idea of the functional variable method proposed in[18]. Let us consider
the nonlinear differential equation with independent variables x, y, z, t and a dependent
variable u

P (u, ut, ux, uy, uz, uxy, uyz, uxz, ...) = 0, (2)

where P is a polynomial in u(t, x, y, z, ...) and its partial derivatives. The equation (2)
is a nonlinear partial differential equation that is not integrable, in general. Sometime it
is difficult to find a complete set of solutions.

Step 1. The following transformation is used for the new wave variable as

ξ =

p∑
i=0

αiχi + δ, (3)

where χi are distinct variables, when p = 1, ξ = α0χ0 +α1χ1 + δ. If the quantities α0, α1

are constants, then, they are called the wave pulsation and χ0, χ1 are the variables t and
x, respectively.

We can introduce the following transformation for a travelling wave solution of equation
(2)

u(χ0, χ1, ...) = u(ξ), (4)

and the chain rule
∂u

∂χi
= αi

du

dξ
,

∂2u

∂χi∂χj
= αiαj

d2u

dξ2
, .... (5)

Using equation (3) and equation (5), the nonlinear partial differential equation (2) can
be transformed into an ordinary differential equation of the form

Q(u, u′, u′′, u′′′, ...) = 0, (6)

where Q is a polynomial in u(ξ) and its total derivatives, while u′ = du
dξ .
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Step 2. We make a transformation in which the unknown function u is considered as
a functional variable in the form

u′ = F (u), (7)

then, the solution can be found by the relation∫
du

F (u)
= ξ + C, (8)

here C is a constant of integration which is set equal to zero for convenience. Some
successive differentiations of u in terms of F are given as

u′′ = dF (u)
du

du
dξ = dF (u)

du F (u) = 1
2

d(F 2(u))
du ,

u′′′ = 1
2

d2(F 2(u))
du2

√
F 2(u),

u(IV ) = 1
2

[
d3(F 2(u))

du3 F 2(u) +
d2(F 2(u))

du2

d(F 2(u))
du

]
,

........................................................................

(9)

Step 3. The ordinary differential equation (6) can be reduced in terms of u, F and
its derivatives upon using the expressions of equation (7) and (9) into equation (6) gives

R(u,
dF (u)

du
,
d2F (u)

du2
,
d3F (u)

du3
, ...) = 0. (10)

After integration, equation (10) provides the expression of F (u) and this, together with
equation (7), give appropriate solutions to the being considered problem.

3. Algorithm for finding solutions

We use the following algorithm to calculate the exact solution of the equation (1) by
the functional variable method. Using the wave variable

u(x, t) = u(t, ξ), ξ = a(t) + b(t)x, (11)

that will convert equation (1) to following form

u′t + (at(t) + bt(t))u
′
ξ + h1(t)b(t)u

2u′ξ − h2(t)b
2(t)u′′ξ + ω(t)b(t)u′ξ = 0, (12)

where a(t) and b(t) are an unknown time-dependent functions, we will determine these
functions later.

Let a(t), b(t), h1(t), h2(t) and ω(t) are constant functions. We use the following
transformation

ξ = a+ bx. (13)

We put a(t), b(t), h1(t), h2(t) and ω(t) into (11) and (12), integration constants are
considered zero. It is easy to show that after transformation, the equation (12) can be
transformed into an ordinary differential equation of the form

h1bu
2u′ξ − h2b

2u′′ξ + ωbu′ξ = 0. (14)
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Integrating once equation (14), we have

h1
3
u3 − h2bu

′
ξ + ωu = 0. (15)

It is easy to deduce from equation (15) an expression for the function u′ξ

u′ξ = ru+ nu3, (16)

where r = ω
h2b

, n = h1
3h2b

.
We search the solution of equation (1) in the form:

u(t, ξ) =
m∑
k=0

qk(t)Φ
k(ξ) = q0(t) + q1(t)Φ(ξ) + ...+ qm(t)Φ(ξ)m, (17)

where Φ satisfies equation (16) as

Φ′ = λΦ+ µΦ3, (18)

where λ and µ are free parameters and m is an undetermined integer and qk(t) are coeffi-
cients to be determined later.

One of the most useful techniques for obtaining the parameter m in (17) is the ho-
mogeneous balance method. Substituting (17) into equation (12) and by making balance
between the linear term u′′ and the nonlinear term uu′ to determine the value of m, and
by simple calculation we have got that 3m+2 = m+4, this in turn gives m = 1, and the
solution (17) takes the form

u(t, ξ) =
1∑

k=0

qk(t)Φ
k(ξ) = q0(t) + q1(t)Φ(ξ). (19)

Now, we substitute (19) into (12) along with (18) and set each coefficient of Φk (Φ′)p

(k = 0, 1, 2 and p = 0, 1 ) to zero to obtain a set of algebraic equations for q0(t), q1(t),
a(t) and b(t): 

bt(t) = 0,
q0t(t) + h1(t)q

2
0(t) = 0,

q1t(t) + 2q0(t)q1(t)h1(t)b(t) = 0,
at(t)− λh2(t)b

2(t) + ω(t)b(t) = 0
h1(t)q

2
1(t)− 3µh2(t)b(t) = 0.

(20)

Solving the system of algebraic equations, we can obtain a(t), b(t), q0(t) and q1(t). For
this, we consider the following 2 cases in the system of equations (20).

Let q0(t) = 0, then the system of algebraic equations (20) has the following solution
a(t) =

∫ t
0

(
λS2

2h2(τ)− S2ω(τ)
)
dτ + S1,

b(t) = const = S2,
q0(t) = 0,
q1(t) = const = S3.

(21)
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h2(t) = kh1(t), k = const, (22)

where S1, S2 and S3 are the integration constants and are identified from initial data of
the pulse. Notice that h1(t) and h2(t) serve as constraint relations between the coefficient
functions and which indicate that (22) must be satisfied to assure the existence and the
formation process of soliton structures.

Taking account of (11), (18), (19) and (21), we get the exact solutions for equation (1)

u1(x, t) = S3

√√√√ e2(
∫ t
0 (λS

2
2h2(τ)−S2ω(τ))dτ+S1+S2x)

1− e2(
∫ t
0 (λS

2
2h2(τ)−S2ω(τ))dτ+S1+S2x)

. (23)

Let q0(t) ̸= 0, then the system of algebraic equations (20) has the following solution
a(t) =

∫ t
0

(
λC2

2h2(τ)− C2ω(τ)
)
dτ + C1,

b(t) = const = C2,
q0(t) =

1∫ t
0 h1(τ)dτ+C3

,

q1(t) =
C4

(
∫ t
0 h1(τ)dτ+C3)

2C2
.

(24)

h2(t) =
C2
4

3µC2

h1(t)(∫ t
0 h1(τ)dτ + C3

)4C2
, (25)

where C1, C2, C3 and C4 are the integration constants and are identified from initial
data of the pulse. Notice that h1(t) and h2(t) serve as constraint relations between the
coefficient functions and which indicate that (25) must be satisfied to assure the existence
and the formation process of soliton structures.

Taking account of (11), (18), (19) and (24), we get the exact solutions for equation (1)

u2(x, t) =
1∫ t

0 h1(τ)dτ + C3

+
C4(∫ t

0 h1(τ)dτ + C3

)2C2

√√√√ e2(
∫ t
0 (λC

2
2h2(τ)−C2ω(τ))dτ+C1+C2x)

1− e2(
∫ t
0 (λC

2
2h2(τ)−C2ω(τ))dτ+C1+C2x)

.

(26)

4. Examples

Solitary wave solutions represent an important type of solutions for nonlinear partial
differential equations as many nonlinear partial differential equations have been found to
have a variety of solitary wave solutions. The solitary wave solutions were obtained in
this article and could be helpful in analyzing long wave propagation on the surface of a
fluid layer, iron sound waves in plasma, and vibrations in a nonlinear string. Also, solitary
wave in the concept of mathematical physics is defined as a self-reinforcing wave package
that retains its shape. It propagates at a constant amplitude and velocity.
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We illustrate the application of algorithm to solving the equation (1). Exact soliton
solution of the equation (1) can be defined explicitly for exact values of h1(t) = t, h2(t) = t,
ω(t) = t, λ = 1, µ = 1. According to (21), we obtain q0(t), q1(t), a(t) and b(t):

q0(t) = 0, q1(t) = 3, a(t) = 3t2, b(t) = 3. (27)

In this case, the soliton solution of the equation (1) has the form

u1(x, t) =

√
9e6(t2+x)

1− e6(t2+x)
. (28)

This solution of the equation (1) have been checked and using mathematical software
Matlab and three-dimensional graphics of the obtained solutions have been shown. Solitary
wave solutions represent an important type of solutions for nonlinear partial differential
equations as many nonlinear partial differential equations have been found to have a variety
of solitary wave solutions.

Figure 1: Soliton wave solution of the equation (1) for h1(t) = t, h2(t) = t, ω(t) = t, λ = 1, µ = 1.

We illustrate the application of algorithm to solving the equation (1). Exact soliton
solution of the equation (1) can be defined explicitly for exact values of h1(t) = 2t, h2(t) =

t
t2+1

, ω(t) = −8t, λ = 32, µ = 8
3 . According to (24), we obtain q0(t), q1(t), a(t) and b(t):

q0(t) =
1

t2 + 1
, q1(t) =

1√
t2 + 1

, a(t) = ln(t2 + 1) + t2, b(t) =
1

4
. (29)

In this case, the soliton solution of the equation (1) has the form

u2(x, t) =
1

t2 + 1
+
√

t2 + 1

√√√√ e2(t
2+ 1

4
x)

1− (t2 + 1)2e2(t
2+ 1

4
x)
. (30)

This solution of the equation (1) have been checked and using mathematical software
Matlab and three-dimensional graphics of the obtained solutions have been shown. Solitary
wave solutions represent an important type of solutions for nonlinear partial differential
equations as many nonlinear partial differential equations have been found to have a variety
of solitary wave solutions.
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Figure 2: Soliton wave solution of the equation (1) for h1(t) = 2t, h2(t) =
t

t2+1
, ω(t) = −8t, λ = 32, µ = 8

3
.

5. Conclusion

This paper discusses several traveling wave solutions of the modified Burgers equation
with additional time-dependent variable coefficient by the functional variable method.
The main advantage of the proposed method over other methods is that it provides more
new exact traveling wave solutions. We have found soliton solutions of this equation and
three dimensional graphics of the obtained solutions have been drawn by using the Matlab
program. After visualizing the graphs of the soliton solutions wave solutions, the use of
distinct values of random parameters is demonstrated to better understand their physical
features. It is known that the parameters included in the solutions have a deep connection
with the amplitudes and velocities. In this regard, we can explore some of the nonlinear
phenomena that take place in physics, applied mathematics and technology. We conclude
that the exact solutions have its great importance to reveal the internal mechanism of the
physical phenomena.
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