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Abstract. This work proposes a new definition of the nonlinear functional Volterra integral equa-
tion in two-dimensions (2D)of the second kind with continuous kernel. Furthermore, the work
is concerned with studying this new equation numerically. The existence of a unique solution
preposition by the equation is proven. In addition, the approximate solutions are obtained by two
powerful methods Adomian Decomposition method (ADM) and Block by block Method (BBM).
The given numerical examples showed the efficiency and accuracy of the introduced methods.
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1. Introduction

The nonlinear functional integral equation is the result of numerous viscoelastic ma-
terial issues in the theories of elasticity and hydrodynamics. The references edited by
Tricomi[9], Hochastadt [11] and Green [10] contain many different methods to give us
the way for solving functional integral equation analytically. In practice, approximate
methods are needed. There are different methods available to guide us towards obtaining
the numerical solution. The excellent expositions by Atkinson [5], Linz [16], Delves and
Mohamed [7], Kumar [15], [14] are recommended reading for the interested reader. The
authors examined a group of nonlinear functional integral equations in [18]. The adequate
conditions for the existence of the Lp-solution of a Volterra functional-integral problem
in a Banach space were examined by Aldona in [8]. The variational iteration method
was utilized by the authors in [6] to derive the numerical solution for the one-dimensional
functional integral equations. Certain conclusions for a Volterra—Hammerstein integral
equation were established by the authors in [17].The authors used a numerical technique
based on the radial basis function in [12] to get numerical solutions of the two-dimensional
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functional linear integral equations of Fredholm.AL-Bugami conducted a numerical study
of the two-dimensional integral equations in [3], [2]. The mixed integral equations with
continuous and singular kernels were examined by the authors in [1],[13], [4]. Using the
ADM and BBM, we investigate the novel equation for the nonlinear functional integral
equation in 2D in this work. Because it deals with the examination of numerical solutions
for NT-DFVIE, this work is noteworthy. Consider the NT-DFVIE.

wulz,y) = glz,y) + f@y, /0 ’ /0 Dbyt $)0(t 5, u(t, 5))dtds) 1)

The functionsy(, ), f(z,y,0(z,y) 20 0(z,y,u(z,y))are given analytical functions defined, respec-
tively, and,(, ¢ ) is the kernel of (1), ,,.1.s)>0, and u (x,y)is the solution to be deter-
mined, while the constant parameter pdefines the kind of the (1).

2. Existences and uniqueness of a solution

This section will examine and use the Picard method to demonstrate that, under certain
circumstances, there is a unique solution to (1).

We assume the following conditions to be satisfied:

1- f(z,y,v(x,y))and O(z,y,u(z,y)) n 0 <z <X, 0<y <Y < oo, such that

{/Ow{/oy |f @y, v(a, ) de} 2y} 2 < Ay o],

and

oy
] 10w day Ry 2 < ag fu.
2- The kernel ,,(, , ; s satisfies:
p(x,y,t,s) < C, (Cisa constant)

3- The two continuous function f(x,y,v (z,y))and O(x,y,u (x,y)) satisfy the Lipschitz
condition:

|f($,y7vl($,y)) - f(xvya/UQ(‘T)y)N < Bl |’U1 - 7)2| ;\V/'Ula’UZ € (7005 00)7
|9(5U7y,w1(337y)) - 9(30,9,?112(%.@))\ < Bs ‘wl - w2’ s Vwy, wa € (—OO, 00)7

where B,,B,are Lipchitz’s constants such that B, ByC=M<1.

We consider the existence and uniqueness of the solution for the (1). Also, the continuity
and the normality of the integral operator are proved. We define the nonlinear integral
operators Sample theorem with citation:

(Wu)(z.y) = f(z.y. / ' / (.1, $)0(t, 5, ut, 5))deds) (2)
And
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As for the normality of the nonlinear integral operator Wu, we see that

i = g / ’ Hf(x,y, / ' / !yt )00t 5, u(t,5))dtd)|

Applying condition (1), we obtain

W = Ay /
0

Then, we get

2
de| Yidy}:  (4)

o |2
p(z,y,t,s)0(t, s,u(t,s))dtds)| dx }%dy}% (5)

wal =l [ [t ) o, s it o) Paras)Patdo) bsa)t (0

Which can be adapted in the form

wal =l [ [ [ o) Psaryiayasyi [ 1066 ute, ) Pardsy )

(7)

If we use the boundary conditions (1), (2), we will have
Wl = A1 AC ||ul] = My [ull (8)
To demonstrate the integral operator’s continuation, take,, (z.), us(z,y)€ L2[0,2] x L2[0,y), b0 have:

-
_{fo{fo Hfa:y Jo Jd plx,y,t,5)0(t, s, ui(t, s))dtds) 9)
f@,y, Jo Jd plzy,t,8)0(t, s, ua(t, s))dtds)de2}2dy}2

Using the condition (3), we obtain

W~ Wl < 2o [ [

Then,

Y 2 1 1
p(z,y,t,8)[0(t,s,ui(t,s)) — 0(t, s, ua(t, 5))]‘ dx}2dy}2

(10)

Wy — Wl < Bi{{ /0 /0 /0 /0 (@, y.t, ) Y2100t 5, u1 (1, 5)~0(t, 5, ua(t, 5)) P} 2 dy ) 2
(11)

From the conditions (1), (3), we have
HWUI — V_VUQH < BlBQC Hu1 — UQH = M, Hu1 — UQH (M2 < 1). (12)

Hence, is a contraction operator and jj; has a unique fixed point, which is the unique
solution to (1), of course.
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3. Numerical methods for solving NT-DFVIE.

3.1. The ADM
This section uses ADM to handle NT-DFVIE of the second kind:

i) = )+ Fo [ [ pla.ts)0(e s, u(e s)dras),

The unknown solution is an infinite series of the following form:

€x y) = Zun(x7y)
n=0

In addition, the term g sy (z,5))in (13) is decomposed into an infinite series

0(t,s,u) ZA

Moreover, the following equation defines Adomian’s polynomial, denoted asA,,

1d” >

Ap = — quz A=0) n=0,1,2,..

Substituting from (15), (16) into(13), we get
u0<m7 y) = g(.f, y)

Ty
Uz(.ﬁ,y) = f(xa ya/ / p(xayata S)Ai—l(u()(ta 8)7 ceeey ui—l(ta 8))dtd8), i > 1
0 0

3.2. The BBM

Consider
T [y
uu(m,y)=g(x,y)+f(x,y,/0 /0 p(x,y,t,5)0(t, s, u(t, s))dtds)

Then, we get

Ty
Un(z, ) ~ ulea, y2) = 9(x,5) + f (@, v, /0 /O D(@2, yo, t, $)0(t, 5, ual(t, ))dtds)

or in the form

Ty
Us(z,y) ~ ulza, yo) = 9(x.) + f(z, 9, / / p(w2, yo,t, s)dtds)
0 0

1073

(16)

(19)

(20)

(21)
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Using Simpson’s rule to approximate the integrals

h
U2 = g(an yQ) +f($7y7 g{p(x% Y2, %0, Yo, UO) +4p($2, Y2,21, Y1, Ul) +p($27y27$27y27 UQ)})
(22)
where

Uo = g(z0, Yo)- (23)
Also, we get

Us(z,y) ~ u(es,y) = g(zn, ) + F(@, v, /O ' /0 D penynt s un(t s))deds)  (24)

h
Ur = g(z1,y1)+f(z,y, g{P(whyl,wo,ym Uo)+4p(x1, Y1, T1/2, Y12, Ury2)+p(w1, Y1, 71,91, U1) }
(25)

Therefore, we obtain:

3 3 1
Ui = gUO + ZUI - gUQ (26)

Substituting (26) into (25), we obtain:

U = glon,n) + 7@y, o {plan, 1, 70,0, Uo) + 4p(a, 1, waj2, sy 2V + SU1 — SU5)))

(27)
In general, consider (20), where0 <z <a, 0 <y <b. Let0 =29 <21 < - < xy =
a,0=yo<p<--<yn=b,

T2m+1 Y2m+1
Uosm+1(2,y) = u(Zoam+1, Yam+1) = g($2m+17y2m+1)+f(l“,y,/ / P(T2m+1, Y2m+1, 1, 8, u(t, s))dtds)
0 0
(28)
Or equivalently

T2m [Y2m

Usm+1(2,y) = 9(Tam+1, Yom+1) + (2,9, Jo " Jo " P(T2m+1, Yam+1, t, 5, u(t, 8))dtds)+
x m m
f(%% f02 i 03/2 i p(x2m+17y2m+17t787u(t7 8))dtd$)

(29)

Then,

Uz t1(2,y) = 9(ami1, yam+1) + £ (@, 4, 2[p(@2m 41, Yam+1, o, Yo, Uo)+

Ap(Tom+1, Y2m+1, T1, Y1, U1) + ..ot

h

P(T2m+1, Y2m+15 T2ms Y2ms Uzm)] + §2(T2m41, Y2am+1, T2m, Y2m, Uzm) (30)

+%p($2m+1, Yom+1, $2m+% ) y2m+%, %UZm

+2Usms1 — sUam+2) + Ep(Toms1, Yomt1: T2m+1s Yomt1, Uzms1))
Also,

T2m-+42 Y2m+2
Uosm+2(x,y) = g(T2m+2, Yom+2) + f(z, y,/ / P(T2m+2, Yom+2, t, s, u(t, s))dtds)
0 0
(31)
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Uzm+2 = 9(Tam+2, Yams2) + £ (2,9, 2{p(2m+2, Yom+2, To, yo, Uo)+
Ap(zam+2, Yam+2, 1, Y1, Ur) + ...
+ p(T2m+2, Y2m+2, Tam+2, Y2m+2, Uzm2)})

1.Consider

4. Numerical experiments and discussions

w(z,y) = g(e.9) + f(z,, /0 ) /0 ’ (wys)(ult, s))dtds

u(z,y) = zy is the exact solution. If we set k=1, in (33), one has

u(z,y) =gz, y) + f(z,y, /Om /Oy(wyS)U(t, s)dtds

1075

(33)

(34)

which is refereed to asLT-DFVIE, and if we set ¢(z)in (33), we obtained the integral
equation, may consider the suggestion is called the NT-DFVIE of the second kind. Ad-
ditionally, the associated errors are calculated for both the linear and nonlinear cases. We
solve (33) using ADM and BBM. In the following Tables (1)-(2) we present the exact
solution (upyec) and the approximate solutions (uapas , uppar), and the corresponding
errors (Errorap,Errorgp)) at N= 10.

Block-by- ADM UEract Y T
block method

Errorgpy | uppM Errorapn UAD M

0.00000 0.000000 0.00000000 0.0000000 | 0.0000000 | 0.0 0.0
0.6950x10~%| 0.0100000 0.277777x10~9 0.0100000 | 0.0100000 | 0.1 0.1
0.44804x 10~} 0.0400044 0.355560x10~9 0.0400003 | 0.0400000 | 0.2 0.2
0.00004059 | 0.09004059 | 0.607559x10~% 0.0900006 | 0.0900000 | 0.3 0.3
0.00024690 | 0.16024690 | 0.000045529 0.1600455 | 0.1600000 | 0.4 0.4
0.00179211 | 0.25179211 | 0.000217285 0.2502172 | 0.2500000 | 0.5 0.5
0.01059498 | 0.34940502 | 0.000780024 0.3607800 | 0.3600000 | 0.6 0.6
0.01366165 | 0.50366165 | 0.002303060 0.4923030 | 0.4900000 | 0.7 0.7
0.03285243 | 0.67285243 | 0.005902298 0.6459022 | 0.6400000 | 0.8 0.8
0.04750594 | 0.85750594 | 0.013603387 0.8236033 | 0.8100000 | 0.9 0.9
0.08797644 | 1.08797645 | 0.028908955 1.0289089 | 1.0000000 | 1.0 1.0

Table (1) Numerical results by using BBM and ADM, N=10,k=1.
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Fig. 1, the plot 3D errors for the value of errors by using BBM and ADM, N=10,

k=1.

Block-by- ADM UBzact Y T
block method

Errorgpum UBBM Errorapnm UADM

0.000000 0.0000000 0.000000 0.0000000 0.0000000 | 0.0 0.0
0.20760x10~7 | 0.01000002 0.16590x10~7 | 0.0100000 0.0100000 | 0.1 0.1
0.44804x107° | 0.04000448 | 0.20942x10~° | 0.0400020 0.0400000 | 0.2 0.2
0.000040593 | 0.09004059 | 0.000034949 | 0.0900349 0.0900000 | 0.3 0.3
0.000246903 | 0.16024690 | 0.000253147 | 0.1602531 0.1600000 | 0.4 0.4
0.001792115 0.25179211 0.001154385 0.2511543 0.2500000 | 0.5 0.5
0.010594983 0.34940501 0.003908646 0.3639086 0.3600000 | 0.6 0.6
0.013661652 0.50366165 0.010721293 0.5007212 0.4900000 | 0.7 0.7
0.032852435 0.67285243 0.025066934 0.6650669 0.6400000 | 0.8 0.8
0.047505948 0.85750594 0.051535161 0.8615351 0.8100000 | 0.9 0.9
0.087976455 1.08797645 0.094913086 1.0949130 1.0000000 | 1.0 1.0

Table(2) Numerical results by using BBM and ADM, N=10,k=2.
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Fig. 2, the plot 3D errors for the value of errors by using BBM and ADM, N=10, k=2.

2.Consider

x ry
) = a(e9) + 1oy [ [ @)ttt inas (35)
u(z,y) = zy/2 is the exact solution, if we set k=1, in (35), one has
oy
) = o) + Sy, [ [ @t sinas (36)
Block-by- ADM UBzact Y T
block method
Errorgpy | Upm Errorapm UADM
0.0000000 0.0000000 | 0.0000000 0.0000000 | 0.00000000 | 0.0 0.0
0.9793x10~8| 0.00500000 | 0.625003x10~7 0.0050000 | 0.00500000 | 0.1 0.1
0.224024x 10770.02000224 | 0.400040x10~% 0.0200040 | 0.02000000 0.2 0.2
0.000020296 | 0.04502029 | 0.000045585 0.0450455 | 0.04500000 0.3 0.3
0.000123451 | 0.08012345 | 0.000256410 0.0802564 | 0.08000000 0.4 0.4
0.000896057 | 0.12589605 | 0.000980387 0.1259803 | 0.12500000 0.5 0.5
0.0052974915| 0.17470250 | 0.002939725 0.1829397 | 0.18000000 0.6 0.6
0.006830862 | 0.25183082 | 0.00746423 0.2524642 | 0.24500000 0.7 0.7
0.016426217 | 0.33642621 | 0.01680854 0.3368085 | 0.32000000 | 0.8 0.8
0.023752974 | 0.42875297 | 0.03460287 0.4396028 | 0.40500000 | 0.9 0.9
0.043988227 | 0.54398822 | 0.06651660 0.5665166 | 0.50000000 1.0 1.0

Table (3) Numerical results by using BBM and ADM, N=10,k=1.



o.02] |}
0015
0.01

A. M. Al-Bugami / Eur. J. Pure Appl. Math, 17 (2) (2024), 1070-1081

00355
003 I
0.025
0.024
0.015]
0.011

1078

Fig. 3, the plot 3D errors for the value of errors by using BBM and ADM, N=10, k=1.

Block-by- ADM UEzact Y T
block method

Errorgpy Upnvm Errorapn UADM

0.00000000 0.00000000 | 0.0000000 0.0000000 0.00000000 0.0 0.0
0.9793x10~7 | 0.004999902 0.12456x10~% | 0.00500012 0.00500000 0.1 0.1
0.747110x1079 0.020007471 0.789017x1079 0.02000789 0.02000000 0.2 0.2
0.0000357169 | 0.045035716 0.000088335 0.04508833 0.04500000 0.3 0.3
0.0001830350 | 0.080183035 0.000484473 0.08048447 | 0.08000000 0.4 0.4
0.0011159424 | 0.126115942 0.001791559 0.12679155 0.12500000 0.5 0.5
0.0149879842 | 0.165012015 0.005149897 | 0.18514989 | 0.18000000 | 0.6 0.6
0.012010961 0.257010961 0.012413373 | 0.25741337 | 0.24500000 | 0.7 | 0.7
0.027208265 | 0.347208265 0.026247589 | 0.34624759 | 0.32000000 | 0.8 0.8
0.048275031 0.453275031 0.050109867 0.45510986 0.40500000 0.9 0.9
0.097513263 0.597513263 0.088059093 0.58805909 0.50000000 1.0 1.0

Table (4) Numerical results by using BBM and ADM, N=10,k=2.
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Fig. 4, the plot 3D errors for the value of errors by using BBM and ADM, N=10,
k=2.

5. The conclusion

he new definition of the Functional Volterra Integral Equation in T'wo-Dimensional
(NT-DFVIE) was presented in this study. Effective numerical techniques are also sug-
gested in order to solve this equation. Error analysis and some numerical examples show
the accuracy and performance of the methods. Based on the preceding examples and
tables (1)-(4), we observe that:
1- As x andy are increasing in each interval [0, 1], the errors values for BBM, and ADM
are also increasing.
2- The error results by using ADM is smaller than the error results by using BBM. So,
the ADM is better than theBBM for solving nonlinear NT-DFVIE.
3- The error result by using ADM for linear case is larger than the nonlinear case, and by
using BBM the error results for nonlinear case is larger than the linear case.

Additional Points
Future Work. Other methods, such as the homotopyperturbation approach, homotopy

analysis method, Runge-Kutta method and the variational iterationapproach, will be used
to solve the the nonlinear functional Volterra integral equation in two-dimension.
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