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Abstract. This paper introduces the concept of the direct product of sets that involve Fermatean
neutrosophic (FN) elements in structures called INK-algebras. It defines terms like the direct
product of Fermatean neutrosophic INK-ideals (FNINK-Is) in INK-algebras and Fermatean neu-
trosophic sets (FNSs), FNINK-Is, and Fermatean neutrosophic closed INK-ideals (FNCINK-Is).
The proof of theorems illustrating the relationships between these ideas is included in the paper.
It also defines the INK-subalgebra embedded in an INK-algebra and gives a theorem elucidating
the connection between the direct product of FNINK-Is and the images of these subalgebras. In
essence, the paper investigates and establishes connections between different mathematical ideas
concerning INK-algebras and FNSs.
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1. Introduction

Zadeh [1] seminal work on fuzzy sets established the basis for fuzzy logic. Fuzzy sets
provide a more flexible representation of uncertainty by assigning degrees of membership
to elements. Atanassov [2] paper explores intuitionistic fuzzy sets, which include degrees
of membership and degrees of non-membership. This gives a more complete picture of
uncertainty in decision-making. Neutrosophic logic has been introduced by Smarandache
which involves various disciplines of philosophy and mathematics that studies indetermi-
nacy, uncertainty, and contradictions. Neutrosophic logic is a three-valued logic system
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that includes the truth values "true” and ”false,” as well as a third value termed indeter-
minate, which represents uncertain or ambiguous information. This method is especially
beneficial for dealing with difficulties involving inadequate or inconsistent data, which are
widespread in domains such as artificial intelligence, decision making, philosophy, and
cognitive science.

Abdel-Bassset et al. [3] present a decision-making framework for professional selec-
tion based on bipolar neutrosophic sets. The approach seeks to address uncertainty and
imprecision in decision-making processes, his work expands on intuitionistic fuzzy sets
to include neutrosophic sets, allowing for indeterminacy, uncertainty, and contradictory
information [4]. Jun [5] research on neutrosophic subalgebras in BCK/BClI-algebras ad-
vances our understanding of algebraic structures with neutrosophic elements. Kaviyarasu
et al. [6] investigates fuzzy subalgebras and fuzzy INK-ideals in INK-algebras, providing
insights into the integration of fuzzy logic in algebraic structures. Additionally, Kaviyarasu
and Indhira present a review of BCI/BCK-algebras and discuss their development, con-
tributing to the understanding of these specific algebraic structures [7], investigate fuzzy
p-ideals in INK-algebras [8], adding to the understanding of fuzzy ideals in the context
of specific algebraic structures. Jun et al.[9] collaboration aims to integrate neutrosophic
N-structures into BCK/BCl-algebras.

Jun et al.[10] investigate neutrosophic positive implicative N-ideals in the context of
BCK-algebras, advancing our understanding of neutrosophic structures in algebraic sys-
tems. Ozturk and Jun [11] investigates neutrosophic ideals in BCK/BCI algebras based
on neutrosophic points, broadening the application of neutrosophic concepts to algebraic
structures. Songsaeng and Iampan [12] introduce neutrosophic set theory to UP-algebra
and demonstrate its utility in a specific algebraic context.Kaviyarasu, Indhira and Chan-
drasekaran [[13], [14], [15]] investigate the direct product of intuitionistic fuzzy INK-ideals,
providing insights into the interaction of different algebraic structures; discuss intuitionistic
fuzzy translation in INK-Algebra, contributing to the understanding of translation oper-
ations in algebraic structures; and apply neutrosophic sets in INK-Algebra, extending the
study of neutrosophic concepts to a specific algebraic context. As an extension of partial
algebra, Smarandache [16] presents the theory of neutro algebra, which advances the devel-
opment of algebraic structures in addition to neutro and anti-algebraic structures, which
provide additional insights into mathematical structures. Abdel-Basset et al. proposed a
novel plithogenic model for supply chain problem solving, which incorporates neutrosophic
and plithogenic sets into optimization theory [17]. Making contributions to the fields of en-
vironmental technology and innovation, Mohamed and Abdel [[18], [19], [20]] introduce an
integrated plithogenic MCDM approach for assessing the financial performance of manu-
facturing industries, utilizing a combination of mathematical decision-making methods, as
well as a novel framework for assessing the innovation value proposition for smart product-
service systems. Neutrosophic Vague Binary BCK/BCl-algebra, which explores the use of
vague and neutrosophic notions in a binary algebraic framework, is covered by Remya and
Francina Shalini [21]. Muralikrishna and Manokaran [22] introduce MBJ- neutrosophic
B-ideals in B-algebras, which adds to the understanding of neutrosophic ideals in specific
algebraic structures. For more results on algebraic structures with uncertainty (see works
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by the authors of [23-27].

This paper presents a new concept based on two distinct sets, called FNSs, and inves-
tigates their direct product in the framework of INK-algebra. Specifically, it looks at the
relation between FNINK-Ss and FNINK-Is, as well as the conditions that hold for this
relation.

1.1. Motivation

e It aims to provide a new perspective on FN elements in mathematical structures.
e Ensures a systematic and coherent discussion of these mathematical concepts.

e Validating the proposed connections rigorously through theorems adds credibility
and reliability.

e Exploration of Substructures contributes to a more comprehensive understanding of
the intricate relationships within the algebraic framework.

1.2. Novelty

e The paper aims to present a novel mathematical framework by introducing the con-
cept of the direct product, which involves sets with FN elements within the domain
of INK-algebras.

e The goal is to create a precise mathematical language by defining terms like direct
product of FNINK-Is, FN-Ss and FNCINK-Is, which will improve discourse clarity.

e The study illuminates complex mathematical relationships through rigorous theorem
proofs, delving into interconnected ideas in INK-algebras and FN-Ss.

1.3. Structure of the paper

The paper begins with an introductory exploration of the novel concept of the di-
rect product within structures known as INK-algebras, which include sets enriched with
FN elements. It then defines key terms like the direct product of FNINKs, FN-Ss and
FNCINK-Is. The narrative then proceeds to provide a comprehensive exposition, including
proofs of theorems that intricately illustrate the relationships between these defined con-
cepts. Furthermore, it broadens its scope to define an INK-subalgebra embedded within
an INK-algebra, as well as a theorem that explains the relationship between the direct
product of FNINKs and the images of these sub algebras. In essence, the paper cul-
minates in a thorough investigation, establishing connections and interrelations between
diverse mathematical ideas concerning both INK-algebras.
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2. Basic Definitions

In the beginning the research, the definition and beneficial properties of INK-algebras
will be explained.

Definition 1 ([15]). An INK-algebra is a mathematical structure with specific rules; it is
represented by the notation (x,-,0). For any elements ¥,n,z € x

(1) ((0-n)-(9-2))-(z-1) =0,
(2) ((0-2)-(n-2))-(0-n) =0,
(3) (¥0-0) =0,
(4) (¥-n) =0 andn-9 =0 imply n ="1.
The operation - denotes a binary operation and 0 is a constant belonging to the set x.

Definition 2 ([6]). A non-empty subset S of a INK-algebra (x,-,0) is considered as an
INK-subalgebra of x, if for every elements 9 and n € x, the result of the operation (¥ -n)
is also an element of S.

Definition 3 ([6]). Let (x,-,0) be an INK-algebra. An ideal of x is defined as a nonempty
subset I of x such that it satisfies the following conditions, Y9, n € x

(1) 0 €S,
(2) (¥-n) €Y andn e imply I €3

Definition 4 ([6]). Let an INK-algebra x have a non-empty subset . If all of the following
hold for every 9,7,z € x, then S is called an INK-ideal of x.

(1) 0 € S,

(2) (z-9)-(z-m) €S and z € S imply U € .
Definition 5 ([22]). The structure of a FNS 9 defined on a nonempty set x can be
expressed as: M = {<19,p§ﬂ(19),pgﬂ(19),p§ﬁ(19)> |¥ € X}, where p* : x — [0,1] is a mem-

bership function p® : x — [0,1] is a indeterminate membership function and pS : x — [0,1]
is a non-membership function and these three functions are satisfying the inequalities; 0 <
(P (0))* + (P () < 1,0 < (p(0)) < 1 and 0 < (p5())° + (p3(9))° + (PB(@))° < 2.

Here, py,(9) and pgn(ﬁ) are dependent components and pg () is an independent com-
ponent.

Throughout the current research article, we shall use 9 = <p§n, pgﬁ, pgn> for the FNS
m = {<19,p§ﬁ(79), Pin(9), pgn(ﬁ)> [V e x} :

Definition 6 ([22]). If = {<p§z(19),pgﬂ(19), pgﬁ(m} and <N = {<p§(ﬁ),p;(ﬂ), pgt(ﬁ)>}
be two FNSs, then Vi € x
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(i) 3% = { (1= p5y(9),1 = pRu(9), 1 — (@) }

(ii) M N9 = { (min{p(0), p3(0)}, maz{p(0), 3, (9)}, maz{pf (9), p§(9)}) }

Definition 7. A FNS 9 of x obtains the title of FNINK-Ss by satisfying the requirements,
Vi,nex

(1) p*(9-n) < min{p*(9),p*(n)},
(2) p*(0-n) = maz {p*(9),p’(n)}

(3) p5(9 - m) > max {p5(9), p5(n)} .

Definition 8. A FNS 9 of x is considered as a FN-I if it meets the described conditions,
Vid,nex

Example 1. If x = {0,z,y, z} is a set with a binary operation - given by the following
Table:

Table 1: The operation -

Olz|y| =
0|10|xz|y| =
zlx|0|z|y
ylylz|0]|x
z|lz|lylx|0

Thus, (x.-,0) is an INK-algebra. Consider a FNS 9 in x, where pgﬁ(O) = 0.8, pgn(z) =

0.4, pin(y) = pin(2) = 0.2, pia(0) = 0.7, () = 0.5, pIy(y) = pam(2) = 0.3 and pl(0) =
0.1, pgﬁ(x) = pgﬁ(y) =0.4, pgn(z) =0.3. Then, M is a FN-I of x, which is easily verified.

Definition 9. A FNs 9 of x is considered as a FNINK-I of x if it meets the described
conditions, ¥V 9,n,z € x

(1) p*(0) < p*(9),p7(0) = p7 (1), p5(0) > p5(V),
(

N
(2) p*(V (-9

< min {p
(3) P’ (¥

) ((-9)
(9) = maz {p((= - )
(4) o5 (9) ((-9)

¥) > max {p
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3. Formation of Direct Product: FNINK-Ss and FNINK-Is
Definition 10. INK-algebras x1 and xo contain two FNSs, M and N. The structure
M XN = <P(gzmxm)v P?fmxm)’ P(Sarnxm)>
is defined as the direct product of FNSs M and N, specified by, ¥Y(I9,n) € x1 X X2
(1) Py (05 1) = min { pyy (9), p3() }
(2) Py (05 1) = maz { p3 (9), p(n) }
(3) Dy (9 1) = maz { p(9), o) }
Definition 11. The direct product of FNINK-Ss of x1 X x2 is a FNSs
MxN= <P(gzmxm)= ngmxm)a P(ganxm)>
of x1 and xz if, V(¥1,m), (¥2,m2) € x1 X X2

(1) Py (01:m1) - (92, 12)) < min {p(%ﬁxm)(ﬁl,m),pfmxm)(ﬁmm)} )
(2) Py (01:11) - (92, 12)) > maz {p?mxm) (91, ) Plopseony (192,772)} :

(3) Dy (01,1) - (D2,12)) = maaz { Ty o) (91,10): oy (920712) -

Definition 12. The direct product of FNINK-I of x1 X x2 is a FNSs
T J
M x N = <P(ngm)a Plomx) P(Smxm)>

of x1 and x2 if ,¥(V1,m), (V2,72), (¥3,m3) € X1 X X2

(1) p%fmxf)’[) (07 0) S p?ﬁmx‘ﬁ) (197 77)7 p:(jgmxm) (07 O) 2 pgﬁmxfﬁ) (197 77)7 p(gmxm) (07 0) 2 Pgnxm(ﬁa 77)7

(2) pigmxm (((1917771) < min pgﬁx‘n(((ﬂi’n 773) : (191, 771)) : ((1933"73) : (192a UZ)))apTgmxm (192a 772) )

( ) ( )

(3) Py (91, m) = maz {mem)(((%a%) - (01,m)) - (O3, m3) - (ﬁz»ﬁz)))af)?mm)(ﬁ%??z)} ;

(4) Py 01, m1) = maw { oy o) (W38 - (91,70)) - (W3, 18) - (92,712))s P cony (P2072) | -

Definition 13. The direct product of FNCINK-I of x1 X x2 is a FNSs

T 3
M XN = <P(zmxm)v Plomxon)> P(ga:nxm)>

of x1 and x2 if it meets ((2) ,(3) and (4) of Definition 12) and the following inequalities,
V(d,m) € x1 X x2
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(1) Py ((0,0) - (9,m)) < Pigmseomy (9 0),
(2) Plagsey ((0,0) - (9,m)) = Plamseomy (9 70),
(3) Pl ((0,0) - (0,0)) = Pl (9 m).

Theorem 1. Let M = <p§)ppgﬁ,p§ﬁ> and N = <p§,p§t,p§t> be two FNINK-Ss of x1 and
X2, respectively. Then, the direct product 9 x N, defined by

M x N = < Pimxa)» P(mxm)ap(gmxm)>7
is a FNINK-S of x1 X xa2-

Proof. Assume that 9t and 90 are two FNINK-Ss. Let (¢1,11), (J2,72) € x1 X Xa2.
Then,

Py (91,71 - (92,m2)) { ), (m - nz)}
= min { (V1 - V2), P - 772)}
< min {min { p5a(01), p5a(92) } min { o), pSa(m2) }}
— min {min { p5(91), p(m) | min { o3 (92), P52} }
= min {pmxm) (01,m); Pl (P2, 772)} ,

Plansony (91,m1) - (V2,72)) { n(V1 - 2), (771’772)}
ma { (01 92), PR (1 - 772)}
maz {maz { pa(91), pin(V2) } ,maz { ph(m), () } }
mm{ma { P (02), 0% (m) | ma { p3a(02). () | }
vt

Py (U1, m1) P(me)(ﬁ%m)}

I I\/ I

max

and
ooy (111) - (B2,12) = { (D1 - 92). (o)}
— maz {pgnwl -92), p(m '772)}
> max {max {pgnwl), pgn(ﬁz)} , max {pgz(m) ngz(m)}}
= max {mal‘ {pgﬁ(ﬁl), pg(m)} , mazx {pgn(%% qu(TI?)}}
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= max {p%:mxm) (/1917 T]l); p(%mxm) (7-927 772)} .

Hence, I x N = <p(I£me)7 /’?smxm)?p(gzmxm)> is a FNINK-S of x1 X x2.

Theorem 2. Let M = <p§ﬁ,p%1,p§ﬁ> and N = <p§t,pgt,p§3> be two FNINK-Is of x1 and
X2, respectively. Then, the direct product 9T x N, defined by

iy J
M x N = <p(9ﬁ><fﬁ)ap(9ﬂ><9’t)a P(ngxm)> )
is a FNINK-I of x1 X Xa2.

Proof. For any (9,n) € x1 X x2. We have

Pimcan) (0, 0) = min { p5(0), p5(0) |

< min {pgﬁ(ﬁ)a P%(Tl)}

and
Pron(0,0) = maz { p5,(0), p(0) }
> maz { p§(9), §(n) }
= Pgnxm(ﬁ» 77)'

Also, for any (J1,m), (¥2,m2), (¥3,13) € x1 X x2. We have
panxon(01,m) = min { o (01), p(m1) }
< min {min { p5((9s - 01) - (93 - 02)), p5a(02) | min { o5 ((ns - 1) - (05 - m2)). P (2) | }

{
min {min {pgﬁ((ﬁg 1) - (Vs - P2)), pgq((ﬁ?, -m) - (n3 - 772))} , AN {Pz%t(ﬁZ)’Pg?(U?)}}
{

min { pSpen(((9a,m5) - (91,7)), (Va,35) - (92,12))): P (P2:72) |

Panxon(P1,m) = maz {p%z(ﬁl)mgt(m)}
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> maw {maw { gy (9 - 01) - (95 92)). pin(V2) } s maz { pa((ns - 1) - (s - m2), (o) } |
= maz {maz { phy((95 - 01) - (95 92)), plCn - m) - (15 - m2)) b min { o3 (92), (o)} }
— maz { phen(((9,18) - (W91,m), (Fs,735) - (92,72))), Pdcon (2,72 }

and

Pron(V1:m) = maz { p§(91), o) |
> max {maw {Pgn((ﬁ?s -01) - (U3 - ¥2)), sz(ﬁz)} ,maz {pgﬁ((ns ) - (03 - 1m2)), p%(m)}}
— maz {maz {p§ (95 - 1) - (D - 92)), % (ns - m1) - (n5 - m2)) b mi { oy (92), p§i(m2) } }

= max {Pg;nxm(((ﬁ& n3) - (V1,m)), ((93,m3) - (V2,m2))), Pgnxsn(ﬁ% 772)}

Hence, M x N = <p(I£me)7 p?fmxm)?p(gzmxm» is a FNINK-I of x1 X xa2.

Theorem 3. Let M = <p§ﬁ,pgﬁ,p§ﬂ> and N = <p§t,pgt,p§1> be two FNCINK-Is of x1
and 2, respectively. Then, the direct product M x N, defined by

T J
M x N = <P(gmxm)ap(§mxm)a p;(;gmxm)> )
is a FNCINK-I of x1 X x2.

Proof. By applying Theorem 2, the FNS 9t x 91 = <pr(59nxm)7p?mxm)7p(gmxm)> is a
FNINK-I of x1 x x2. Now, V(3J,1) € x1 X x2, we have

P ((0,0) - (9,1)) < pauen((0- ), (0-))
= min {pgﬁ(() . ﬁ),ﬂ%{(o . 77)}
< min {p&(ﬁ),pgx(n)}

= pgﬁx‘)’t(ﬂv 77),

Peon((0,0) - (9,1)) = (0 -9), (0 1)
= maz { pfa(0 - 9), p(0 - m) }
> maz { pin(9), o)}
= Pgnxmww)
and

pgnxm((o, 0) . (19, 77)) > pgﬁx‘ﬂ((o ' 79)7 (0 ' 77))
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= mazx {pgn(() . ﬁ),pgq(() : 77)}
> max {pgn(ﬁ),p%(n)}

= P (V7).

Hence, I x 9N = <p(%nxm), p?me),p(gime)> is a FNCINK-TI of x1 X xa2.

Theorem 4. Let M = <p§ﬁ,pgn,p§ﬁ> and N = <p§,p&,p§t> be two FNINK-Is of x1 and
X2, respectively. Then, M x N = <p(mem)’p?mxm)7ﬁ(Imtxm)> is a FNINK-I of x1 X X2,

=% _ T
where Pimxon) = 1-— Pmxon):

Proof. According to Theorem 2. 9T x N = < p%mxm), p%me), p(%ﬁxm)> is a FNINK-I of
X1 X Xx2. Then,

Now, for any (91,m), (¥2,m2), (93,13) € x1 X Xx2. We have

Planxony (V1,m1) < min {Pgnxm(((ﬁ?n n3) - (V1,m)) - ((93,13) - (02,ﬁ2)))ap?mxm)(ﬁz,ﬁz)}
1 — planseon) (V1,m1) > 1 —min {P(mem)(((ﬁ&"??)) ~(01,m)) - (93,m3) - (V2,712))), Pl (P2, 772)}
Py (91,m1) > maz {1 = Pl (03,m3) - (F1.m)) - ((93,713) - (92,m2))), 1 — P?mxm)(ﬁ27U2)}

Py (91,m) > maz {ﬁ%mxm)(((ﬁ3an3) (01,m)) - (D3, m3) - (1927772)))7ﬁ($9ﬁ><91)(1927772)} :

Hence, 9 x N = { Py oy Aacony Pl ) 18 @ FNINK-T of 31 % ¥,

Theorem 5. Let M = <p§ﬁ,pgﬁ,p§n> and N = <p§,p§t,p§1> be two FNINK-Is of x1 and
X2, respectively. Then, 9T x I = <ﬁ(&mxm),p(jmxm),p§mxm)> 1s a FNINK-I of x1 X X2,

=5 _ 5
where Plonson) = 1- Plonxon)-

Proof. According to Theorem 2. 9T x 91 = <
X1 X x2. Then,

T 3 5 .
p(me)’ p(mxm)yp(gﬁxm)> 1S a FNINK—I Of
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anxm((), 0) < ﬁ(ggmxm) (29, 77)

Now, for any (¢1,m1), (¥2,m2), (93,713) € x1 X X2. We have

(1,m) > max {Pgixm(((%,ﬁ:s) ~(P1,m)) - (I3,m3) - (192,772)))ap(3mm)(192»772)}

1= Doy (@1m) < 1= maw { ol o0 (B3, 13) - (@1,m)) - (93, 13) - (D2, 12)), Pacon) (P2.72) }
(V1,m) < min {1 — Py (D3,m3) - (F1,m)) - (93,713) - (92,72))), 1 = p(ggmxm)(ﬁ%n?)}
(¥1,m) < min{

Ffmxm)(((ﬁ?»???)) (Y1,m)) - ((F3,m3) - (192,"72)))?(59;{@)(192;?72)} :

Hence, M x 9N = < Plonson): P ?me),p?me)> is a FNINK-TI of x1 X xa2.

Theorem 6. Let M = <p§ﬁ,pgﬁ,pgn> and N = <p§1,pg¢,p§t> be two FNINK-Is of x1 and

X2, respectively. Then, 9 x N = < (Simxm) p(me) p(mxm)> is a FNINK-I of x1 X X2,
=% —

where Plonyoy = 1 — P(mxm) and pj, Py = 1 — p(zmxm)‘

Proof. The proof is produced by using Theorem 4 and Theorem 5 together.

Theorem 7. Let M x N = <p‘(zmxm)’pgmxm)vp(&mxm)> be a FNINK-I of x1 X x32. Then,
(9 % N)* = { Pagcoyes Pl Py ) 38 @ FNINK-T of x1 % X

Proof. For any (9,7n) € x1 X x2. Then,

P(nﬁxm) (0, m)* }

=

e

gu

X

2

—

=

@)

= o
W

——

— =

p({mxin)s (197 T,)}

and
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{ Aoy (03, 715) - (D1,0)) - ((95,715) - (02, 10))) Py (02,72) }
P?mxm)(ﬁlﬂh)s} > max {P?mxm)(((ﬁ?nﬁs) ~(91,m)) - ((93,m3) - (1927772)))S7P?mxm)(1927"72)8}

P?zmxm)s(((1937 n3) - (V1,m)) - ((¥3,m3) - (Y, Uz))),p?mxm)s(ﬁz,m)}

{ Py @1} = mae { oy (W5, 3) - @01,00) - ((F,75) - (92, 72)), Py (P2:712) |
{p(&mxm)wl’"l)s} Z maz {P(gmxm)(((ﬁ?nﬁs) - (01,m)) - (93, m3) - (1927ﬁz)))saﬂfmxm)(ﬁz,m)s}

{p%:mxm)s (7917 771)} > max {p(ggmxm)s(((ﬂ& 773) : (19177]1)) : ((7937773) . (792a 772)))7p(§9ﬁ><m)s(1925772)} .
Hence, (M x N)* = <P(Ezmxm)s’p?9ﬁxm)s7p(Smefﬁ)S> is a FNINK-T of x1 X xa2.

Theorem 8. Let
M > N = <P(zzmxm)v Plamscan): P(gsmxm)>
and
DxE€= <P(T©xe)aﬂgme)ap(3©xe)>
be two FNINK-Is of x1 X x2. Then,

(MxN)N(Dx €)= <P?mxm)m(©x€)7p(jimxfn)m(@xeyp(gsnxm)m(i)xe)>

is a FNINK-I of x1 X x2.

Proof. Since M x N and D x € are two FNINK-Is of x1 x x2. Then, ¥(J,7) € x1 X xo,
we have

p((zimx‘ﬁ)ﬂ(ﬁxe) (07 0) = min {p(z‘.mx‘ﬂ) (0’ O)v p%@x@)(ov 0)}
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< min {p(zfmx‘ﬂ) (197 77)7 p%”DX@) (197 77)}

= p?i)ﬁx‘ﬂ)ﬂ(@x@) (9,n),

Plomn@xe)(0:0) = maw { ooy (0,0), o5 (0,0 }
> max {P(jfmxm) (J,n), p?@xe)(ﬁ, 77)}
= P?smxm)m(@xe) (19777)

and
3
p?ﬂﬁx%)ﬂ(@x@)(o’ 0) = mazx {p(gDﬁx‘ﬁ) (0,0), Pioxe) (0, 0)}

> max {P(gsmxm) (0, m), P?@x@) C 77)}

S
p(mtxm)m(@x@)w?”)’
Now, for any (91,m1), (¥2,m2) and (93,713) € x1 X X2, we have

p(%ﬁx‘ﬁ)ﬁ(@x@)(ﬁly m) = min {P((Imtxm) (J1,m), P(Tme) (V1, 771)}

< mm{mm {p?mxm(((ﬁs, n3) - (01,m)) - (93,13) - (92,712))); Plamscomy (P2, nz)} ,
min { oo e ((W3,15) - (91,m)) - (D3,15) - (92, 712))), PTp ) (V2 2) } }
_ mm{mm{p(fm)«(ﬁg,ns) @rm) - (O ) - (92,),
Pl (Va,5) - (91,m)) - (9o, ma) - wz,m)))},min{p%mw(m,nz),p?mwa,m)}}

= mm{P?mxm)m(me)(((ﬁ:s,773) ~(01,m)) - (U3, m3) - (1927772)))7P(5mxm)m(©xe)(1927772)},

~

Plmxon@xe) V1, M) = maz {szmxm) (91,m), p?@x@)(ﬁlv 771)}

> maﬂ?{max {P?mtxm)(((ﬁza, 13) - (01,m)) - ((93,73) - (92,12))), Plamseomy (V2 ’72)} ,
mazx {ngxe)(((ﬁ?),??:’)) (V1,m)) - ((93,m3) - (1927772)))7/’?@%)(1927772)} }

= maa:{max{p%mxm)(((ﬁs,??g) ~(U1,m)) - (93,m3) - (V2,m2))),
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Ploxe)(93,1) - (91,1m)) - (U3,93) - (D2,m2))) (oo (92, 12), Plo ey (02, m2)
(DxE) 3,73 1, 3,73 2,12 , max P(gmxrn) 2572 7P(@><@) 2,72

= max{ﬁgmtxm)n(me)(((ﬁs,773) ~(01,m)) - (U3, m3) - (192,772))%P?mzxm)m(me)(ﬁzmz)}

and
‘3 _ S 5
Planxon@xe) (V1,m) = mazx {p(gﬁxm) (V1,m), Plo ) (Y1, 771)}

> max{max Ly (3.7 - (91.70)) - (P.78) - 002,72))). o (2.2 }

maw { ol e ((03,m) - (91,00)) - (3,15) - (92, 12))), P ) (P2, 2) } }
_ max{mm{p?mxm(((ﬂg,ng) < (01,m) - (93,m5) - (9,m2))),

ey ((03,13) - (91,m)) - ((93,713) - (1927?72)))},maw{p(%nxm)(ﬂzmz),p(%xe)(ﬁg,772)}}
- max{pfmm)m(m@)(((ﬁg,ng) - (01,m)) - ((93,m3) - (192,772))),p‘fmxmm(gxe)(ﬂmm)}.

Hence, (M > 9) N (D x €) = <p(gmtxm)m(©xe)ap?zmxm)m(@xe)v P;(gmtxm)m(z)xe)> is a FNINK-I
of x1 X xa.

4. Comparison Analysis

A common ground between FNINK-Algebras and Neutrosophic INK-Algebras is INK-
algebra, which emphasizes the integration of non-membership, indeterminacy, and uncer-
tainty in algebraic structures. Both approaches are intended for complex system modelling
and analysis, where a high prevalence of imprecise and incomplete information exists.
Although both approaches provide useful tools for managing uncertainties in algebraic
structures, FNINK-Algebras are a better method because of their improved specificity and
precision. FNINK-algebras are a more sophisticated and elegant mathematical framework
because the incorporation of Fermatean features enables a more detailed representation of
indeterminacies and non-memberships. Specialized conditions for FNCINK-Is and direct
products add to the robustness and generalizability of the method in different fields. As
a result, FNINK-Algebras become the method of choice for accurately and completely
representing uncertainties in complex systems.
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5. Conclusion

The notion of the direct product of FNSs is used in this paper to discuss an INK-ideal
inside an INK-algebra. We present the direct product for FNCINK-Is and Fermatean
neutrosophic INK-algebras, examining a number of properties. The direct product of
FNSs is shown to satisfy certain requirements in order to be considered a direct product
of FNINK-Is inside an INK-algebra.
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