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Abstract. Viscous Burger’s equation is one of the most celebrated models with immense applica-
tions cutting across all aspects of mathematical physics. Thus, the present communication makes
use of the non-central formula infused in the method of lines coupled with Runge-Kutta spatial
discretization to computationally and efficiently treat the coupled system of viscous Burger’s equa-
tions. Further, we numerically tested the derived schemes of the governing model amidst suitable
initial and boundary data. In fact, we eventually analyzed the effectiveness of the method via
L2 and L∞ norms on some test problems and found it to be robust; indeed, a comparison of the
current scheme with some notable approaches in the literature has been established, which are
realized to be in perfect agreement.
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1. Introduction

Viscous Burger’s equation is among the most celebrated models with immense rele-
vance in many science and engineering processes, including fluid dynamics, optics, wave
scattering, shocks, and shallow water waves to list a few. In particular, a coupled variant
of Burger’s equation was devised as the coupled viscous Burger’s equation, which was
utilized in modeling the transmission of poly-dispersion in sedimentation processes; read
Esipov [8]. More so, in line with the abundant applications of the coupled model, several
researchers have in the past and present times deployed dissimilar computational ap-
proaches in search of an optimal numerical solution for the governing model. For instance,
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Mubaraki et al [1] examined the special class of a generalized reaction-advection-diffusion
dynamical model that is called the system of coupled Burger’s equations by employing two
promising analytical integration schemes. Also, Rashid and Ismail [2] utilized the Fourier
pseudo-spectral analysis method to effectively derive a universal computational scheme
for treating the coupled one-dimensional Burger’s equation. El-Shiekh and Al-Nowehy
[20] applied the symmetry group method to obtain similarity reductions for generalized
symmetric coupled Burgers-type equations. Abazari and Borhanifar [16] used the differ-
ential transformation technique on the class of Burger’s and coupled Burger’s equations to
acquire some interesting semi-numerical results. Moreover, one can equally find the appli-
cation of finite difference numerical method on the acquisition of optimal computational
solution for the coupled (2+1)-dimensional Burger’s equation in Srivaslava et. al [22–24].
In addition, other numerical methods that were used on the coupled Burger’s equation
include the higher-order trigonometric B-spline [6], semi-Lagrangian method [21], quartic
B-spline approach [27], and the quintic B-spline coupled with adaptive time integrator
method [26] to mention a few. To see more related work, we refer the reader to see
[10, 13, 28].

However, the key aim of the present study is to come up with an effective numerical
scheme for the complete treatment of the coupled system of Burger’s equations in mathe-
matical physics. In the proposed method, we improve the method of lines (MOL) by using
a non-central formula instead of the classical schemes of the first and second derivatives
to get a more accurate result. This technique focuses on converting a partial differential
equation (PDE) into an ordinary differential equation (ODE), since several methods can
used to solve the ODE. In fact, the non-central formula in the method of lines (MOL) with
an infusion of time-discretization via the Runge-Kutta numerical method will be deployed
for the derivation of the scheme. Besides, the classical MOL has been used by several
authors to find efficient numerical solutions for different partial differential equations, in-
cluding for instance, the Korteweg-de Vries (KdV) equations [25], the one-dimensional
wave propagation problem [9], the KdV-Burger’s equation [17] and the system of coupled
elastic beam equations [15], to mention but just a few. Additionally, Sharaf and Bakodah
[4] introduced a reliable spatial discretization in MOL for the computational treatment of
a class of partial differential equations. Further, other related studies have made use of
the same approach, given as in [4], alongside the non-central formula to successfully tackle
the regularized-long wave [14] and the equal-width wave [12] equations, respectively; read
also the good work of Bakodah [11], which made use of the 7-point formula infused in the
spatial-discretization via MOL to solve various forms of Burgers’ equations.

More precisely, the current study would devise an appropriate spatial-discretization in
the MOL for the coupled system of viscous Burger’s equations. In addition, this approach
sets to convert the coupled model endowed with sufficient auxiliary conditions to a coupled
system of ordinary differential equations (ODEs). What is more, the unfailing fourth-order
Runge-Kutta numerical method will further be sought to numerically treat the resulting
ODEs, as against the most widely used finite difference method, which was proven to be
superior in the literature; read the computational efficiency of the fourth-order Runge-
Kutta numerical method that was reported in [11, 12, 14] and some of the references
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therewith. Lastly, the manuscript is arranged as follows: Section 2 features the central
coupled model, Section 3 gives the delineation of the MOL, and Section 4 gives the resulting
numerical experiments and discussion; while Section 5 gives some finishing notes.

2. Coupled system for viscous Burger’s equation

The coupled nonlinear system of viscous Burger’s equation, which is extensively used in
modeling turbulent fluids, theory of shock waves, and stochastic processes among others, is
a nonlinear evolution equation, or precisely a nonlinear partial differential equation (PDE)
that reads as follows [7, 8]

ut = uxx − ηuux − γ(vu)x,

vt = vxx − ηvvx − ξ(vu)x,

c < x < d, t > 0,

(1)

where γ, ξ and η are real constants, η is an arbitrary constant depending on the system
parameters, more so, the first two constants γ, ξ depend on the parameters of the system,
like the Brownian diffusivity, Stokes velocity, and Peclet number, to mention a few. In
addition, the celebrating coupled model in Eq.(1) admits broad relevance in various areas
of mathematical physics, including, the nonlinear acoustic, fluid mechanics, traffic flow,
and gas dynamics to mention but just a few. Furthermore, for a successful deployment
and further implementation of the aiming computational approach, it is imperative to
prescribe appropriate initial data. Thus, we make consideration of the initial data as
follows

u(x, 0) = f(x), v(x, 0) = g(x), c ≤ x ≤ d.

Once more, we restate here that we would devise an appropriate spatial discretization
in the MOL to solve the above initial-value problem for the coupled system of viscous
Burgers’ equations. Above and beyond, other recent methods applied to the model can
be found in [16] that used the differential transformation method, and [19] that utilized
finite-difference scheme among others.

3. Methodology

This section delineates the methodology of interest; the MOL coupled with an infusion
of a reliable spatial discretization via finite difference method for the computational treat-
ment of a class of PDE, the coupled system of viscous Burger’s equations. Specifically,
the present section starts off the methodology by converting the coupled model, which is
endowed with sufficient auxiliary conditions to a coupled system of ODEs; in addition to
the deployment of the consistent fourth-order Runge-Kutta technique for the numerical
solution of the resulting ODEs. Accordingly, to begin with, we portray the spatial dis-
cretization by considering the spatial variable x, and discretize it into N + 1 uniformly
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spaced grid points as follows

xi = xi−1 +∆x, i = 1, 2, 3, ..., N,

where ∆x = xi − xi−1 = 1/N is a constant spacing, x0 and xN are the two end-points
(specifically, the boundary points), while x′is for i = 2, 3, 4, ..., (N − 1) are the interior
points. Next, upon making use of the non-central difference 5-point scheme [4], the con-
cerning first- and second-order derivatives are thus approximated as follows

dui
dx

=
1

4!(∆x)
[ui−2 − 8ui−1 + 8ui+1 − ui+2] ,

d2ui
dx2

=
1

4!(∆x)2
[−ui−2 + 16ui−1 − 30ui + 16ui+1 − ui+2] .

(2)

dvi
dx

=
1

4!(∆x)
[vi−2 − 8vi−1 + 8vi+1 − vi+2] ,

d2vi
dx2

=
1

4!(∆x)2
[−vi−2 + 16vi−1 − 30vi + 16vi+1 − vi+2] .

(3)

Additionally, on using the approximations expressed above in Eq. (1), where uux = 1
2(u

2)x,
and vvx = 1

2(v
2)x, the following coupled system of first-order ODEs is thus revealed
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U̇1 =
1

4(∆x)2
[35U0 − 104U1 + 114U2 − 56U3 + 11U4]

− η

2(4!)(∆x)

[
−25U2

0 + 48U2
1 − 36U2

2 + 16U2
3 − 3U2

4

]
− γ

4!(∆x)
(U1 [−25V0 + 48V1 − 36V2 + 16V3 − 3V4]− V1 [−25U0 + 48U1 − 36U2 + 16U3 − 3U4]) ,

U̇2 =
1

4(∆x)2
[11U1 − 20U2 + 6U3 + 4U4 − 1U5]

− η

2(4!)(∆x)

[
−3U2

1 − 10U2
2 + 18U2

3 − 6U2
4 + 1U2

5

]
− γ

4!(∆x)
(U2 [−3V1 − 10V2 + 18V3 − 6V4 + 1V5]− V2 [−3U1 − 10U2 + 18U3 − 6U4 + 1U5]) ,

U̇i =
1

4!(∆x)2
[−Ui−2 + 16Ui−1 − 30Ui + 16Ui+1 − Ui+1]

− η

2(4!)(∆x)

[
U2
i−2 − 8U2

i−1 + 8U2
i+1 − U2

i+2

]
− γ

4!(∆x)
(Ui [Vi−2 − 8Vi−1 + 8Vi+1 − Vi+2]− Vi [Ui−2 − 8Ui−1 + 8Ui+1 − Ui+2]) ,

U0 = U(x0), Ui = U(xi), for i = 3(1)N − 3,

U̇N−2 =
1

4!(∆x)2
[−UN−5 + 4UN−4 + 6UN−3 − 20UN−2 + 11UN−1]

− η

2(4!)(∆x)

[
−U2

N−5 + 6U2
N−4 − 18U2

N−3 + 10U2
N−2 + 3U2

N−1

]
− γ

4!(∆x)
(UN−2 [−VN−5 + 6VN−4 − 18VN−3 + 10VN−2 + 3VN−1]

− VN−2 [−UN−5 + 6UN−4 − 18UN−3 + 10UN−2 + 3UN−1]),

U̇N−1 =
1

4!(∆x)2
[11UN−4 − 56UN−3 + 114UN−2 − 104UN−1 + 35UN ]

− η

2(4!)(∆x)

[
3U2

N−4 − 16U2
N−3 + 36U2

N−2 − 48U2
N−1 + 25U2

N

]
− γ

4!(∆x)
(UN−1 [3VN−4 − 16VN−3 + 36VN−2 − 48VN−1 + 25VN ]

− VN−1 [3UN−4 − 16UN−3 + 36UN−2 − 48UN−1 + 25UN ]),

(4)
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V̇1 =
1

4(∆x)2
[35V0 − 104V1 + 114V2 − 56V3 + 11V4]

− η

2(4!)(∆x)

[
−25V 2

0 + 48V 2
1 − 36V 2

2 + 16V 2
3 − 3V 2

4

]
− ξ

4!(∆x)
(U1 [−25V0 + 48V1 − 36V2 + 16V3 − 3V4]− V1 [−25U0 + 48U1 − 36U2 + 16U3 − 3U4]) ,

V̇2 =
1

4(∆x)2
[11V1 − 20V2 + 6V3 + 4V4 − 1V5]

− η

2(4!)(∆x)

[
−3V 2

1 − 10V 2
2 + 18V 2

3 − 6V 2
4 + 1V 2

5

]
− ξ

4!(∆x)
(U2 [−3V1 − 10V2 + 18V3 − 6V4 + 1V5]− V2 [−3U1 − 10U2 + 18U3 − 6U4 + 1U5]) ,

V̇i =
1

4!(∆x)2
[−Vi−2 + 16Vi−1 − 30Vi + 16Vi+1 − Vi+1]

− η

2(4!)(∆x)

[
V 2
i−2 − 8V 2

i−1 + 8V 2
i+1 − V 2

i+2

]
− ξ

4!(∆x)
(Ui [Vi−2 − 8Vi−1 + 8Vi+1 − Vi+2]− Vi [Ui−2 − 8Ui−1 + 8Ui+1 − Ui+2]) ,

V0 = V (x0), Vi = V (xi), for i = 3(1)N − 3,

V̇N−2 =
1

4!(∆x)2
[−VN−5 + 4VN−4 + 6VN−3 − 20VN−2 + 11VN−1]

− η

2(4!)(∆x)

[
−V 2

N−5 + 6V 2
N−4 − 18V 2

N−3 + 10V 2
N−2 + 3V 2

N−1

]
− ξ

4!(∆x)
(UN−2 [−VN−5 + 6VN−4 − 18VN−3 + 10VN−2 + 3VN−1]

− VN−2 [−UN−5 + 6UN−4 − 18UN−3 + 10UN−2 + 3UN−1]),

V̇N−1 =
1

4!(∆x)2
[11VN−4 − 56VN−3 + 114VN−2 − 104VN−1 + 35VN ]

− η

2(4!)(∆x)

[
3V 2

N−4 − 16V 2
N−3 + 36V 2

N−2 − 48V 2
N−1 + 25V 2

N

]
− ξ

4!(∆x)
(UN−1 [3VN−4 − 16VN−3 + 36VN−2 − 48VN−1 + 25VN ]

− VN−1 [3UN−4 − 16UN−3 + 36UN−2 − 48UN−1 + 25UN ]).

(5)

Therefore, to numerically solve the coupled system of ODEs outlined in Eqs. (4)-(5),
we then deploy the reliable fourth-order Runge-Kutta method. In fact, we re-express these
equations in a more compact form as follows

U̇i = F (Ui, Vi), i = 1, 2, ..., N − 1, (6)
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V̇i = F (Ui, Vi), i = 1, 2, ..., N − 1. (7)

Moreover, the implementation of MOL begins with the replacement of the involving spatial
derivatives, which arise from the governing coupled Burger’s model with discretized alge-
braic approximations. In light of this, explicit representation of the spatial derivatives is
not realistic. Hence, a coupled system of ODEs is revealed and further solved numerically,
which then gives the approximation of the novel PDE.

3.1. MOL via the fourth-order Runge-Kutta method

Here, the approach starts by deploying the fourth-order Runge-Kutta method to solve
the resulting ODEs [19], in Eqs. (4)-(5), which were revealed independently with the help
of spatial discretization of the finite difference approach. Certainly, in trying to incorporate
the application of MOL, it is pertinent to recall that highly accurate computational results
are achieved when deploying multistep approaches, as against the use of one-step methods,
where the intermediate values of the solutions and the related derivatives are produced
and utilized at each computational stage.

At first, the following definition

Un =
[
Un
1 , U

n
2 , ..., U

n
N−1

]t
, and V n =

[
V n
1 , V n

2 , ..., V n
N−1

]t
,

is considered; then followed by the definition of the Runge-Kutta method in the following
pattern

Un+1 = Un +
1

6
[K11 + 2K12 + 2K13 +K14] , (8)

V n+1 = V n +
1

6
[K21 + 2K22 + 2K23 +K24] , (9)

where,

K11 = ∆tF (Un, V n) , (10)

K21 = ∆tG (Un, V n) , (11)

K12 = ∆tF

(
Un +

K11

2
, V n +

K21

2

)
, (12)

K22 = ∆tG

(
Un +

K11

2
, V n +

K21

2

)
, (13)

K13 = ∆tF

(
Un +

K12

2
, V n +

K22

2

)
, (14)

K23 = ∆tG

(
Un +

K12

2
, V n +

K22

2

)
, (15)

K14 = ∆tF (Un +K13, V
n +K23) , (16)

K24 = ∆tG (Un +K13, V
n +K23) , (17)
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with ∆t representing the temporal step size. In addition, and without further delay, the
application of the Runge-Kutta method requires the evaluation of eight vector functions
at every computational time step; thus, we only report the resulting numerical results in
the subsequent section to suppress the length of the paper.

4. Numerical experiments and discussion

The present section considers certain test models to portray the compliance and compe-
tence of the devised scheme on the initial-value problem of the coupled system of Burger’s
equations. However, to assess the accuracy of the proposed numerical results, we resort
to the engagement of the norm two L2 and norm infinity L∞ error estimators, which take
the following explicit definitions

L2(u) =

√√√√[
h

N−1∑
i=1

|uni − Un
i |

2

]
, (18)

L∞(u) = max
1≤i≤N−1

|uni − Un
i | . (19)

In addition, we are set to establish a comparative assessment between the obtained/proposed
computational results, via the devised approach with the available exact solutions in the
literature. Moreover, we will be assessing the proposed scheme with other numerical
schemes that were once proposed for the governing model. Lastly, all the computational
simulations of the study will be performed with the aid of Maple 17.

Example 1. Let us make consideration of the governing coupled system of Burger’s equa-
tion (1) with η = 2, while generalized values for γ and ξ are assumed. In fact, the exact
hyperbolic solution of the coupled equation is reported by Soliman [3] as follows

u(x, t) = D (1− tanh(B(x− 2Bt))) ,

v(x, t) = D

(
2ξ − 1

2γ − 1
− tanh(B(x− 2Bt))

)
,

(20)

with D = 0.05 and B = D(4γξ − 1)/(4γ − 2). Moreover, sufficient initial (at t = 0) and
boundary (at x = c and x = d) data follow accordingly from the above exact solution.

Hence, we have established in Tables 1 and 2, a comparative analysis between the
proposed solution via the devised approach, and that obtained by the Chebyshev spectral
collocation method [5]. Moreover, the earlier stated error norm estimators are deployed for
the present assessment, which are, L2 and L∞; while fixing D = 0.05 at two different time
levels, that is, t = 0.5 and t = 1.0, respectively. Indeed, it can be noted from these tables
that the obtained results through the proposed approach outperformed the challenging
methodology.

Additionally, the numerical solution obtained by 5-point non-central MOL and the
exact solution of u(x, t) and v(x, t) for a fixed time t = 0.5 and for various values of h are
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γ ξ t L2 L∞
Present Ref [5]

0.1 0.3 0.5 6.35232 ×10−6 4.49177 ×10−6 4.16×10−5

1 1.019395×10−5 7.20821×10−6 8.23×10−5

0.3 0.03 0.5 6.38257 ×10−6 4.51316×10−6 4.59×10−5

1 4.105386×10−5 2.902946×10−5 9.16×10−5

Table 1: Comparison of error norms for the solution pair u(x, t) when N = 10, c = −10, d = 10, ∆t = 0.1,
and D = 0.05 of Example 1.

γ ξ t L2 L∞
Present Ref [5]

0.1 0.3 0.5 1.49091 ×10−6 1.05423×10−6 4.99×10−5

1 1.019395×10−5 7.20821×10−6 9.92×10−5

0.3 0.03 0.5 3.513746 ×10−5 2.484593 ×10−5 1.81×10−4

1 4.105384 ×10−5 2.902945×10−5 3.62×10−4

Table 2: Comparison of error norms for the solution pair v(x, t) when N = 10, c = −10, d = 10, ∆t = 0.1,
and D = 0.05 of Example 1.

given in Tables 3 and 4. Moreover, Tables 5 and 6 further made use of L∞ as an error norm
estimator to establish a comparative study between the present computational results and
those obtained using various approaches, including the Fourier pseudo-spectral method
(FPM) [2], Chebyshev spectral collocation (CSC) [5], and the cubic B-spline collocation
(CBC) [18]. Indeed, among all the comparing methods, the currently devised approach
happens to proffer better results with high accuracy in contrast with the aforementioned
approaches in [2, 5, 18]. In addition, we have shown in figures 1 and 2 the graphical display
of the obtained computational and exact solution fields u(x, t) and v(x, t), while fixing the
following values: N = 10, ∆t = 0.1, t = 0.5, γ = 1, ξ = 2, and D = 0.1.

∆t t h u(x, t)
L∞present Exact

0.1 0.5 2 0.0527592618 0.0527547700 4.4918×10−6

1 0.0581890811 0.0581832978 5.7833×10−6

0.6666666667 0.0599622104 0.0599560894 6.1209×10−6

0.5714285714 0.0604642722 0.0604580646 6.2076×10−6

0.5 0.0608393804 0.0608331108 6.2696×10−6

0.3921568627 0.0614032873 0.0613969292 6.3581×10−6

Table 3: Comparison between MOL and exact solutions for the solution pair u(x, t) when c = −10, d = 10,
γ = 0.1, ξ = 0.3, and D = 0.05 using various mesh sizes of Example 1.
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∆t t h v(x, t)
L∞present Exact

0.1 0.5 2 0.02775582427 0.0277547700 1.0542×10−6

1 0.0331857077 0.0331832978 2.4100×10−6

0.6666666667 0.034958886 0.0349560894 2.7965×10−6

0.5714285714 0.0354609639 0.0354580646 2.8993×10−6

0.5 0.0358360849 0.0358331108 2.9742×10−6

0.3921568627 0.0364000124 0.0363969291 3.0833×10−6

Table 4: Comparison between MOL and exact solutions for the solution pair v(x, t) when c = −10, d = 10,
γ = 0.1, ξ = 0.3, and D = 0.05 using various mesh sizes of Example 1.

Method t γ ξ L∞

Present (RK4) 0.5 0.1 0.3 4.49177 ×10−6

0.3 0.03 4.51316×10−6

1 0.1 0.3 7.20821×10−6

0.3 0.03 2.902946×10−5

FPM [2] 0.5 0.1 0.3 9.619×10−4

0.3 0.03 4.310×10−4

1 0.1 0.3 1.153×10−3

0.3 0.03 1.268×10−3

CSC [5] 0.5 0.1 0.3 4.38×10−5

0.3 0.03 4.58×10−5

1 0.1 0.3 8.66×10−5

0.3 0.03 9.16×10−5

CBC [18] 0.5 0.1 0.3 4.16×10−5

0.3 0.03 4.59×10−5

1 0.1 0.3 8.25×10−5

0.3 0.03 9.18×10−5

Table 5: Comparison of norm L∞ errors for various approaches at different times for the solution pair u(x, t)
of Example 1.
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Method t γ ξ L∞

Present (RK4) 0.5 0.1 0.3 1.05423×10−6

0.3 0.03 2.48459 ×10−5

1 0.1 0.3 7.2082×10−6

0.3 0.03 2.90294×10−5

FPM [2] 0.5 0.1 0.3 3.33×10−4

0.3 0.03 1.14×10−3

1 0.1 0.3 1.16×10−3

0.3 0.03 1.63×10−3

CSC [5] 0.5 0.1 0.3 4.99×10−5

0.3 0.03 1.81×10−4

1 0.1 0.3 9.92×10−5

0.3 0.03 3.62×10−4

CBC [18] 0.5 0.1 0.3 1.48×10−4

0.3 0.03 5.72×10−4

1 0.1 0.3 4.77×10−5

0.3 0.03 3.61×10−4

Table 6: Comparison of norm L∞ errors for various approaches at different times for the solution pair v(x, t)
of Example 1.

Figure 1: Numerical and exact solutions for u(x, t) of Example 1 when N = 10, ∆t = 0.1, γ = 1, ξ = 2, and
D = 0.1.
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Figure 2: Numerical and exact solutions for v(x, t) of Example 1 when N = 10, ∆t = 0.1, γ = 1, ξ = 2, and
D = 0.1.
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• We compare use 3-point formula, 5-point formula, and 7-point formula results.

(i) The effect of increasing points formulas .

∆t = 0.01, t = 0.1, N = 50

Z-point formula
u(x, t)

L2 L∞
3-point formula 1.25330 ×10−6 1.98163 ×10−6

5-point formula 3.7714 ×10−7 5.9630×10−7

7-point formula 1.21805 ×10−6 1.92591 ×10−6

Table 7: Influence of increasing points formulas for the solution pair u(x, t) of Example 1 when
γ = 0.1, ξ = 0.3.

∆t = 0.01, t = 0.1, N = 50

Z-point formula
v(x, t)

L2 L∞
3-point formula 8.2861×10−7 1.31015×10−6

5-point formula 1.6555 ×10−7 2.6176×10−7

7-point formula 7.9487 ×10−7 1.25680×10−6

Table 8: Influence of increasing points formulas for the solution pair v(x, t) of Example 1 when
γ = 0.1, ξ = 0.3.

Finally, we conclude that the results obtained by using the proposed method are better
than other methods introduced in Tables 1-6 at different values of time. Furthermore, from
Table 7 and Table 8, we observe that the accuracy of the numerical solutions at each field
u(x, t), v(x, t) with the 5-point formula is more efficient.

Example 2. Let us again make consideration of the governing coupled system of Burgers’
equation (1) when η = −2, and γ = ξ = 5

2 . In addition, the exact solution of the coupled
model for 0 ≤ x ≤ 1 was analytically reported as follows [16]

u(x, t) = v(x, t) = µ [1− tanh (1.5µ(40(x− 0.5)− 3µt))] (21)

where µ is a constant, which is indeed arbitrary. More so, the related initial and boundary
data follow accordingly from the above analytical solution.

Accordingly, we have reported in Table 9 the acquired computational results for
different fixed values of µ. In addition, we have shown in figures (3) and (4) the comparison
between the acquired computational solution through MOL and the analytical solution,
on the other hand, using the following data µ = 0.05, 0.1 and ∆t = 0.005 at t = 0.05.
Notably, it can be observed from Table 9 that a decrease in the value of µ increases the
accuracy. Besides, it is also noted that the error gets smaller as time grows.
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t u(x, t) = v(x, t) Absolute Error
Numerical results Exact

µ = 0.05 0.005 0.0693850254 0.0693855034 5.7161 ×10−5

0.01 0.0129083018 0.0129085548 5.6108 ×10−5

µ = 0.1 0.005 0.1674079059 0.1674103611 8.1566 ×10−4

0.01 0.0042990998 0.0042990998 1.3146×10−4

Table 9: Numerical solution with the exact solution of Example 2 when γ = ξ = 5
2
, µ = 0.05, 0.10, N = 11,

c = 0, d = 1, and ∆t = 0.001.

Figure 3: The behavior of the numerical and analytical solution for the 5-point formula of Example 2 for N = 11,
∆t = 0.005, t = 0.005, γ = ξ = 5

2
.
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Figure 4: The behavior of the numerical and analytical solution for the 5-point formula of Example 2 for N = 11,
∆t = 0.005, t = 0.005, γ = ξ = 5

2
.

• 3-point formula

(i) The effect of increasing node points N .

∆t = 0.001, t = 0.005

N
u(x, t)=v(x, t)

Absolute Error
Numerical results Analytical results

11 0.0693318373 0.0693855034 5.36661×10−5

21 0.0863297722 0.0864966205 1.668483 ×10−4

31 0.0901130213 0.0902545100 1.414887 ×10−4

51 0.0925043358 0.0926179683 1.136325 ×10−4

61 0.0930218434 0.0931283850 1.065417 ×10−4

71 0.0933731026 0.0934746418 1.015391 ×10−4

Table 10: The effect of increasing node points N of the numerical and analytical solution with
µ = 0.05 of Example (2).
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(ii) The effect of increasing time.

∆t = 0.01, N = 51

t
u(x, t)=v(x, t)

L2 L∞

0.010 6.306876×10−5 4.5040103×10−4

0.050 1.5838520×10−4 1.13109658×10−3

0.1 4.7700242 ×10−4 3.40647865×10−3

0.2 1.91607952×10−3 0.01368354479

Table 11: The effect of increasing time when µ = 0.1 of the numerical and analytical solution of
Example (2).

• We compare by using 3-point formula, 5-point formula, and 7-point formula results.

(i) The effect of increasing points formulas .

∆t = 0.001, t = 0.050

Z-point formula
u(x, t) = v(x, t)

L2 L∞
3-point formula 6.26752 ×10−6 4.475902×10−5

5-point formula 5.02258 ×10−6 3.586836×10−5

7-point formula 2.89533 ×10−5 2.067682 ×10−4

Table 12: Influence of increasing points formulas of Example (2) when µ = 0.1, N = 51.

It can be seen that the accuracy of the numerical solutions with the 5-point
formula is more efficient. But when N = 11 and t = 0.009, the 5-point formula
will be the best also:

∆t = 0.001, t = 0.009

Z-point formula
u(x, t) = v(x, t)

L2 L∞
3-point formula 9.365749 ×10−5 3.1062676 ×10−4

5-point formula 9.192620 ×10−5 3.0488472×10−4

7-point formula 1.3584093 ×10−3 4.5053339×10−3

Table 13: Influence of increasing points formulas of Example (2) when µ = 0.1, N = 11.
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5. Conclusions

In conclusion, a coupled system of one-dimensional viscous Burger’s equation has been
computationally tackled through the application of the 5-point non-central formulas in-
corporated in MOL. The devised approach was further assessed by considering two test
models of interest. Further, the obtained computational results when compared with their
exact counterparts were found to be in perfect agreement. Indeed, the values of L2 and
L∞ norms that were utilized as error estimators were discovered to be negligible; meaning,
the devised scheme was reliable and effective. Based on the results, it is noted that in
some cases the 5-point formula effect in significant improvement over the 3- and 7- points
formulas. Notably, the acquired computational scheme concerning the proposed scheme
was found to be better with the non-central point, as against the central point that gave
results with relatively higher errors. As a result, we suggest that the proposed methods
should be applied to other types of viscous Burger’s equations. Furthermore, we will
address a higher order of viscous Burger’s equations in our future work.
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