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Abstract. This work presents a new five-dimensional fractional-order chaotic system that includes
a feedback memristor. A Lorenz-Stenflo-based fractional-order chaotic system with five dimensions
that contains feedback memristor dynamics is used to do this. This work focuses on chaotic models
through the ABC fractional derivative, a concept we rigorously examine. We designed and used
sophisticated numerical algorithms to model fractional-order dynamics with the utmost precision
to understand this system’s complex characteristics. These numerical approaches excel at non-
integer order differentiation, which standard numerical methods struggle with. Our research uses
fractional calculus to increase the system’s complexity and robustness, revealing its hyperchaotic
nature. We demonstrate that the system is chaotic and stable over fractional orders using eigen-
values, Lyapunov exponents, Kaplan-Yorke dimensions, maximal exponents, phase portraits, and
equilibrium points. Our conclusions are strengthened by using these numerical systems, intended
for this work, and analytical tools. We improve our understanding of fractional-order chaotic
systems with our research. It illuminates how to improve electrical integrations and create more
sophisticated nonlinear dynamical systems. This work establishes the approach and insights for
future research, guiding the development of new systems with enhanced dynamical features
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1. Introduction

The history of non-integer order systems in science and technology,which has been
heavily influenced by fractional derivatives, has had a significant impact on the emer-
gence of chaotic systems [37].Fractional derivatives are used to explain and resolve inte-
gral equations as well as ordinary and partial differential equations as an extension of
classical derivatives. Atangana-Baleanu, Caputo, Letnikov, Hadamard, Marchaud, Weyl,
and Coimbra are just a few of the well-known definitions of fractional derivatives[38].
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Fractional derivatives also have a wide range of multidisciplinary applications. The conse-
quences of the modified Chua’s system explored by Tom et al. using fractional derivatives
are only one example of the various current contributions of fractional derivatives in the
field of fractional index chaotic systems[18].Recently, chaos dynamics control has been
more well-liked due to a new trend of studying chaotic systems utilizing various mathe-
matical and physical models, such as the Chen system with fractional order investigated by
Chunguang and Guanrong[29].The study of chaotic regimes and the creation of low-power
systems with rapid processing units both heavily rely on digital/analogue electronics and
fractional index systems. We provide digital systems and their component viewpoints for
a cubic nonlinear resistor system’s fractional index, including adaptive controllers with
FPGA implementation. The novel chaotic system introduced in this work is ingeniously
built upon the rich foundation provided by the Lorenz-Stenflo model, a model that holds a
prestigious place in the annals of chaos theory for its profound insights into the dynamics
of complex systems. The original Lorenz system, from which the Lorenz-Stenflo model
evolved, emerged as a cornerstone in the study of atmospheric convection, unveiling the
intricate dance of determinism and unpredictability that characterises chaotic systems.
This model’s fame stems from its vivid illustration of the ”butterfly effect,” a metaphor
that captures the essence of chaos, where minute variations in initial conditions can lead
to dramatically divergent outcomes, underscoring the inherent unpredictability of certain
natural systems. Expanding upon the groundwork laid by references [36], our investigation
enriches the Lorenz-Stenflo framework by integrating the concept of fractional calculus, a
mathematical approach that extends the notion of derivatives and integrals to non-integer
orders. This extension into fractional-order systems introduces a new dimension of com-
plexity and flexibility, allowing for a more nuanced exploration of dynamical behaviours
that are closer to those observed in natural phenomena. Specifically, we employ a gener-
alised Liouville-Caputo-type fractional derivative operator, marking a significant departure
from traditional integer-order models. Through a meticulously formulated system of five
fractional-order differential equations, we unveil a novel chaotic system that not only in-
herits the sensitive dependence on initial conditions characteristic of its predecessors but
also exhibits a rich tapestry of dynamical features unique to fractional-order systems. This
innovative approach to modelling chaos through fractional calculus opens up a plethora of
possibilities for capturing the subtleties of real-world systems, where the effects of memory
and hereditary properties are paramount. By venturing into the domain of fractional-order
chaotic systems, we aim to bridge the gap between theoretical models and the complex
dynamics observed in nature, providing a more accurate and versatile framework for un-
derstanding and harnessing the potential of chaos. This extended introduction sets the
stage for a comprehensive exploration of the proposed system, highlighting its theoretical
significance, practical implications, and the pioneering contributions it aims to make to
the field of chaos theory and its applications. The integration of chaotic dynamics into the
Lorenz-Stenflo model represents a significant stride in the exploration of complex systems
within the realm of nonlinear dynamics and chaos theory. The Lorenz-Stenflo model, orig-
inally derived to describe atmospheric convection and later adapted to various physical
phenomena, serves as a foundational framework for studying the intricate behaviour of
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dynamical systems. Recent advancements have focused on augmenting this classic model
with memristive components and fractional-order calculus to introduce novel chaotic sys-
tems that exhibit a wider spectrum of dynamical behaviors. This fusion not only enriches
the model’s capability to mimic real-world processes with higher fidelity but also opens
new avenues for applications in secure communications, computational neuroscience, and
adaptive control systems. Studies leveraging the Lorenz-Stenflo model as a base have
revealed that the incorporation of memristors and fractional derivatives can significantly
enhance system complexity, leading to the discovery of unique attractors, bifurcation phe-
nomena, and enhanced sensitivity to initial conditions. These contributions highlight the
model’s versatility and its potential for pioneering research in chaos theory, demonstrating
a growing interest in developing more sophisticated and applicable chaotic systems. In the
exploration of nonlinear dynamics and chaos theory, the integration of chaotic dynamics
into established models like Lorenz-Stenflo has opened new avenues for understanding the
intricate behaviours of complex systems. Recent studies have significantly contributed
to this field by introducing memristive components and fractional-order calculus, thereby
expanding the traditional frameworks used to describe such phenomena. For instance, re-
search documented in [20, 22] delves into the applications of fractional calculus to enhance
the dynamical range of chaotic systems. Similarly, the works represented by [8, 10], along
with notable contributions from Hasan et al. [24] in the International Journal of Mathe-
matical Engineering and Management Sciences and further studies by Abdoon et al. [2] in
Mathematical Modelling of Engineering Problems, highlight the advanced mathematical
techniques for solving nonlinear differential equations and their pivotal roles in chaos the-
ory. These references collectively underscore the evolving complexity of modelling chaotic
systems and the ongoing quest for models that more accurately reflect the multifaceted
nature of the universe, thus paving the way for groundbreaking applications in science and
engineering.

In this research, novel chaotic attractors that are both in excellent agreement with one
another and numerically represented using 2D phase portrait diagrams are described. Dif-
ferent mathematical techniques were used to examine the system dynamics for various val-
ues of the fractional order q. The system’s stability is examined using equilibrium points,
Eigenvalues, the Routh-Hurwitz stability criterion, Lyapunov exponents, and the Kaplan-
Yorke dimension. The results reveal that the system is chaotic in nature and capable of
producing random numbers. Additionally, phase portraits and three-dimensional graphs
are used to graphically represent the system’s characteristic curves.Finally,Lyapunov spec-
tra and bifurcation graphs are shown, correspondingly, for the time domain and system
parameters. The unique system was implemented in a circuit after a thorough mathemat-
ical examination of the system.

In the pursuit of advancing the study of chaotic systems, this research aims to delin-
eate the unique characteristics and behaviours of a novel five-dimensional fractional-order
chaotic system. This system distinguishes itself by incorporating the dynamics of a feed-
back memristor based on the Lorenz-Stenflo model. The primary objective of our investi-
gation is to dissect the complexities introduced by fractional calculus in chaotic systems,
thereby unveiling the hyperchaotic nature that emerges from such intricate dynamics. The
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introduction of fractional calculus not only intensifies the complexity but also augments
the robustness against perturbations, offering a richer tapestry of dynamical behaviours to
explore. The novelty of our approach lies in the integration of fractional calculus within
the five-dimensional framework, a method not extensively explored in contemporary liter-
ature. This innovative melding of concepts is poised to yield insights into the stability and
chaotic behaviour of higher-dimensional systems when subjected to fractional orders. By
deploying a combination of analytical and numerical tools—specifically tailored for this
research—we aim to thoroughly scrutinize the system’s eigenvalues, Lyapunov exponents,
Kaplan-Yorke dimension, maximal Lyapunov exponents, phase portraits, and equilibrium
points. The detailed examination of these aspects under various fractional orders will con-
tribute significantly to the understanding of the system’s stability and chaos. This study
is not merely an academic exercise but a step towards practical applications. By demon-
strating the chaotic characteristics and stability of the system, we lay the groundwork
for future advancements in electronic integration and the conception of more intricate
nonlinear dynamical systems. As such, the outcomes of this research are anticipated
to catalyse innovation in the realm of chaos theory and its applications across diverse
scientific and engineering disciplines. One of the primary challenges lies in the compu-
tational domain. Future work could address these challenges by exploring the following
avenues: The development of more advanced numerical algorithms that can reduce ap-
proximation errors and enhance the efficiency of simulations, making them more suitable
for high-dimensional systems and real-time analysis, In-depth exploration of the interac-
tions between memristive properties and fractional-order dynamics, potentially through
the lens of other non-integer derivatives or through the adoption of alternative memristor
models, Investigating the impact of system parameters on the robustness and sensitivity of
the chaotic behaviours observed to better control and harness these dynamics for practical
applications see [1, 3, 4, 26–28].

2. Basic Principles

Definition 1. The Riemann Liouville integral (RLI) order of 0 < α < 1 and y(τ) is
provided by [30]:

Dαy∗ (t) =
1

Γ(n− ζ)

∫ t

0
(t− τ)n−ζ−1y∗n (τ) dτ = In−ζy∗n (t) , t > 0. (1)

Definition 2. The Riemann-Liouville fractional integral of order ζ > 0, given by [6]:

Iζa+y
∗(t) =

1

Γ(ζ)

∫ t

a
(t− s)ζ−1y(s)ds, t > a. (2)

Definition 3. For a function y (τ) Caputo derivative of order 0 < ζ < 1 is given by [19]:

Iζy (t) =
1

Γ (ζ)

∫ t

0
(t− τ)ζ−1 y (τ) dτ , t > 0. (3)
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Definition 4. The Mittag-Leffler function can be expressed as follows [13]:

E∗
α (t) =

∞∑
k=0

tk

Γ(ζk + 1)
. (4)

Definition 5. The Lagrange’s polynomial interpolation is defined by [17] as

P ∗
n(x) =

n∑
i=0

f (x∗i )Li(x),

where

Li (x
∗) =

n∏
j=0,j ̸=i

x∗ − x∗i
x∗i − x∗j

.

Definition 6. The ABC operator, y (t) in the RLI is given by [16]:

ABC
0 Dζ

t y (t) =
B (ζ)

1− ζ

d

dt

∫ t

0
y∗ (τ)Eζ

(
ζ

1− ζ
(t− τ)α

)
dτ, 0 < ζ < 1. (5)

Where B∗ (ζ) satisfies the condition B∗ (1) = B∗ (0) = 1.

Definition 7. The memristor emulator is applied to our novel system which has a current,
voltage relation as,

I = W ∗ (v∗0) v
∗ = [A−B tanh (v∗0)] v

∗. (6)

3. Numerical scheme for ABC

The goal of this section is to investigate chaotic models in the sense of the ABC
fractional derivative. Central to this research is the rigorous examination of chaotic models
through the lens of the ABC fractional derivative. To this end, we have developed and
employed specialized numerical schemes capable of simulating the nuanced behaviors of
our proposed fractional-order chaotic system with high fidelity. The numerical methods
selected for this study are designed to address the non-integer order differentiation inherent
to fractional calculus, which standard numerical approaches may not handle adequately.

These methods, including the ABC operator approach and the two-step Lagrange poly-
nomial algorithm its renowned for their precision and stability when dealing with fractional
differential equations. The former provides a direct discretization of the fractional deriva-
tive, while the latter offers an iterative refinement that ensures convergence to the true
solution.

Moreover, the analysis of the system’s dynamics is bolstered by the use of robust an-
alytical tools. Eigenvalue analysis serves as the cornerstone for assessing the stability
of the equilibrium points, offering a clear view of the system’s response to infinitesimal
perturbations. Concurrently, Lyapunov exponents provide a quantitative measure of the
exponential divergence or convergence of nearby trajectories, a hallmark of chaotic be-
havior. The maximal Lyapunov exponent, in particular, is indicative of the presence of



G. A. Ahmed / Eur. J. Pure Appl. Math, 17 (2) (2024), 835-851 840

chaos when it is positive, while a spectrum of Lyapunov exponents gives a broader picture
of the system’s dynamical stability. These analytical instruments are invaluable for the
characterization of chaos, as they allow for a detailed exploration of the system’s response
under varying initial conditions and parameter values.

The combination of these carefully chosen numerical schemes and analytical tools con-
stitutes a robust framework for capturing the dynamic complexities of the proposed chaotic
system. Through this dual approach, the study not only ensures the accurate portrayal
of the system’s behavior but also underscores the intricate interplay between stability and
chaos in fractional-order environments, To expand on the given statement and provide
more detail as requested, you might consider the following elaboration:

ABC
0 Dζ

0v
∗ (t) = f (t, v∗ (t)) ,

v∗ (0) = v∗0.
(7)

A fractional integral equation can be derived from the equation above

v∗(t)− v∗(0) =
(1− ζ)f(t, v∗(t))

ABC(ζ)
+

ζ

Γ(ζ + 1)×ABC(ζ)

∫ t

0
f(τ, v∗(τ))(t− τ)ζ−1dτ, (8)

where n = 0, 1, 2, 3 . . ., reformulated as

v∗(tn+1)− v∗(0) =
(1− ζ)f(tn, v

∗(tn))

ABC(ζ)

+
ζ

ABC(ζ)× Γ(ζ + 1)

∫ tn+1

0
g (τ, v∗ (τ)) (tn+1 − τ)ζ−1 dτ

=
(1− ζ)g(tn, v

∗(tn))

ABC(ζ)

+
ζ

ABC(ζ)× Γ(ζ)

n∑
k=0

∫ tk+1

tk

g(τ, v∗(τ)) (tn+1 − τ)ζ−1 dτ.

(9)

The following can be approximated using two-step Lagrange polynomial interpolation:

P ∗
k (τ) =

(τ − tk−1)f (tk, v
∗ (tk))

tk − tk−1
− (τ − tk)f (tk−1, v

∗ (tk−1))

tk − tk−1

=
f (tk, v

∗ (tk)) (τ − tk−1)

h
− f (tk−1, v (tk−1)) (τ − tk)

h

≃
f (tk, v

∗
k) (τ − tk−1)

h
−

f
(
tk−1, v

∗
k−1

)
(τ − tk)

h
,

(10)

v∗n+1 = v∗0 +
(1− ζ)

ABC(ζ)
g(tn, v

∗(tn))

+
ζ

ABC(α)× Γ(ζ)

n∑
k=0

(
f(tk, v

∗
k)

h

∫ tk+1

tk

(τ + tk−1t)(tn+1 − τ)ζ−1dτ

−
f(tk−1, v

∗
k−1)

h

∫ tk+1

tk

(τ − tk)(tn+1 − τ)ζ−1dτ

)
.

(11)
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For simplicity

A∗
ζ,k,1 =

∫ tk+1

tk

(τ − tk−1)(tn+1 − τ)ζ−1dτ, (12)

A∗
ζ,k,2 =

∫ tk+1

tk

(τ − tk)(tn+2 − τ)ζ−1dτ

A∗
ζ,k,1 = hζ+1 (n+ 1− k)ζ(n− k + 2 + ζ)− (n− k)ζ(n− k + 2 + 2ζ)

ζ(ζ + 1)

A∗
ζ,k,2 = (hζ+1)

(n+ 1− k)ζ+1 − (n− k)ζ(n− k + 1 + ζ)

ζ(ζ + 1)
.

(13)

By combining equations (12) and (13) and substituting in (11),

v∗n+1 = v∗(1) +
(1− ζ)

ABC(ζ)
f (tn, v

∗ (tn)) +
ζ

ABC(ζ)
n∑

j=0

(
hζf (tk, v

∗
k)

Γ(ζ + 1)

(
(1 + n− j)ζ (2 + ζ + n− k) + (j − n)ζ(2 + n− k + 2ζ)

)

−
hζf

(
tj−1, v

∗
j−1

)
Γ(1 + ζ)

(
(n− j + 1)ζ+1 + (j − n)ζ(n− j + 1 + ζ)

) .

(14)

4. Model of a novel chaotic system

The created system mainly consists of a five-dimensional system with eleven terms and
the following state variables:



ABC
0 Dζ

t η1(t) = k (α+ β tanh η5) η2 + a(η2 + η1) + rη4,
ABC
0 Dζ

t η2(t) = cη1 − η2 − η1η3,
ABC
0 Dζ

t η3(t) = η1η2 − bη3,
ABC
0 Dζ

t η4(t) = −η1 − aη4,
ABC
0 Dζ

t η5(t) = η2,

(15)

with initial conditions:
η1 (0) = 0.2, η2 (0) = 0.2, η3 (0) = 0.2, η4 (0) = 0.2, η5 (0) = 0.2
here, the values of constants are a = 1, α = 20, β = 0.02, c = 23, b = 0.7, ρ = 1.5, k = 4

5. Analysis of a nonlinear chaotic dynamical system

In this section, we delve into the meticulous evaluation of equilibrium points for sys-
tem (5) by considering varying fractional order values. This exploration is critical as
equilibrium points serve as the cornerstone for understanding the long-term behavior of
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dynamical systems. By setting the right-hand side of the equation to zero, we embark
on a systematic journey to solve the system, revealing the complex interplay between the
system’s inherent properties and the fractional order values.
Theorem.1 The equilibrium point E0of the system(15) is LAS if all the eigenvaluesλ of
the matrix JE satisfy.

α <
2

π
| arg(λm)|,m = 1, . . . , n, (16)

Another basic lemma for the stability of fractional-order system(15)is also given as.
Lemma.1 Assume that defines continuous and differentiable function.Let t be a specific
instant of time,then for any then



0 = k (α+ β tanh η5) η2 +A(η2 + η1) + rη4,

0 = cη1 − η2 − η1η3,

0 = η1η2 − bη3,

0 = −η1 − aη4,

0 = η2,

(17)

Solving above gives us the equilibrium points for integer and non integer or der i.e.,
E (η∗1, η

∗
2, η

∗
3, η

∗
4, η

∗
5), where all the calculated values of equilibrium points for different α

values . Further the Jacobian matrix of (18) for equilibrium point α = 1 is presented
which is:

JE =


A 2 +A 0 r 0
c −1 0 0 0
0 0 −b 0 0
−1 0 0 −a 0
0 1 0 0 0

 (18)

The calculated characteristic equation of Jacobian matrix at E is

A0λ
5 +A1λ

4 +A2λ
3 +A3λ

2 +A4λ+A5 = 0, (19)

From Eq.(19), the coeficients of the polynomial can be obtained, which are

A0 = 2, A1 = a,A2 = −3.0561A+ 4c+ 6.1591,

A3 = 2.5646ab+ 4Ac+ 15.095A+ 117.8545b+ 9.2433c+ 11.8625,

A4 = 464.610Ab+ 19.835Ac+ 14.674A+ 422.890b+ 20.7693c

+ 6.3831, A5 = 0.

From (19), the calculated Eigenvalues are λ1 = 0, λ2,3 = 4.044±8.156j. λ4 = −9.1137 and
λ5 = −5.247 and the Jacobian matrix analysis for system (3.3) reveals three negative, one
zero, and two complex eigenvalues, indicating the equilibrium points P1 as unstable saddle-
focus points. Utilizing the Routh-Hurwitz criterion for a deeper stability assessment, this
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mathematical approach bypasses direct eigenvalue calculation to confirm the system’s
instability, showcasing the blend of theoretical insight and analytical rigor in examining
dynamical stability.

∆1 = a1,∆2 =

∣∣∣∣ A1 A3

A0 A2

∣∣∣∣ ,∆3 =

∣∣∣∣∣∣
A1 A3 A5

A0 A2 A4

0 A1 A3

∣∣∣∣∣∣ ,

∆4 =

∣∣∣∣∣∣∣∣
A1 A3 A5 A7

A0 A2 A4 A6

0 A1 A3 A5

0 A0 A2 A4

∣∣∣∣∣∣∣∣ ,∆5 =

∣∣∣∣∣∣∣∣∣∣
A1 A3 A5 A7 A9

A0 A2 A4 A6 A8

0 A1 A3 A5 A7

0 A0 A2 A4 A6

0 0 A1 A3 A5

∣∣∣∣∣∣∣∣∣∣
.

When the parameters a = 9, b = 1.5, c = 11 and d = 4 are plugged in Eq.(4.4) to calculate
the Eq.(4.5) determinants, we get some negative and some positive values. The criterion
suggests that if ∆1,∆2,∆3,∆4, and ∆5 all eigenvalues are positive, the system is stable
with no chaos. A negative eigenvalue, however, indicates potential for chaotic behavior.

5.1. Lyapunov exponent

The determination of a system’s Lyapunov exponents (LEs) is of paramount impor-
tance in discerning the presence of chaos inside the system.The Jacobian approach is
among the methodologies used in the computation of Lyapunov exponents.Methods for
computing time series-based Lyapunov exponents (LEs), such as Wolf’s technique, may
be used to determine the rate of divergence of nearby trajectories in a dynamical system.
[15].The use of other methods is often seen in the computation of Lyapunov exponents for
systems characterized by both integer and fractional orders.[39]. In this study, we used
Wolf’s algorithm to calculate LEs.

The Lyapunov exponents are calculated for system (5) with integer and fractional order
ζ = 1 and ζ = 0.99 respectively. The values at integer order ζ = 1 are 0.0796, 0,−0.838 and
at ζ = 0.99 the values are 0.0520,−0.05266,−0.92940. Lyapunov exponents are presented
in Fig. 10a–b.

Figure 10a shows the Lyapunov exponents for ζ = 1 while Fig. 10b illustrates the
Lyapunov exponents for ζ = 0.99. LEs at ζ = 1 and ζ = 0.99 show that the system (4)
is chaotic because each of them consists of one positive, one negative and one which is
almost zero.
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Figure 1: exponents of the system (4)

.

6. The implementation of a circuit for a chaotic system

This segment of our research extends into the practical domain by detailing the in-
tricate process of constructing analog circuits that embody our chaotic system, thereby
allowing for empirical verification. Initially, beginning with the theoretical foundations
laid out by system (1), we embarked on a methodical transformation of these abstract
equations into tangible circuit representations. This translation from mathematical mod-
els to physical circuits necessitates meticulous consideration of the system’s dynamical
properties, ensuring that the resultant hardware not only captures the essence of the the-
oretical model but also faithfully reproduces its chaotic behavior. The conversion process
involves selecting appropriate electronic components that mirror the system’s parameters
and operational amplifiers that enforce the nonlinearity central to chaotic dynamics. By
doing so, we aim to bridge the gap between simulation and real-world application, provid-
ing a robust platform for observing and analyzing the nuanced behaviors of the chaotic
system within a controlled experimental environment. In this part of the process, the
analog circuits are constructed such that the system can be verified (1). In the first step
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of this process, we started with the system (1) and transformed it into circuit equations.

D0.95η1 =
1

R1C
η2 −

1

R2C
η1 +

1

R3C
η4 +

1

R4C

(
R13

R14
+

R13

R15
η25

)
η2

D0.95η2 =
1

R5C
η1 −

1

R6C
η1 −

1

R7C
xη1

D0.95η3 =
1

R8C
η1η2 −

1

R9C
η3

D0.95η4 = − 1

R10C
η1 −

1

R11C
η4

D0.95η5 =
1

R12C
η5

(20)

Figure 2: Circuit Realization of Chaotic System.
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Figure 3: Circuit Realization of Chaotic System

Figure 4: Numerical simulated and circuital gen-
erated results for system α=0.99.

Figure 5: Numerical simulated and circuital gen-
erated results for system α=0.99.

Figure 6: Numerical simulated and circuital gen-
erated results for system α=0.99.
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Figure 7: Numerical simulated and circuital gen-
erated results for system α=0.98.

Figure 8: Numerical simulated and circuital gen-
erated results for system α=0.99.

In Figures 2 through 5, we delve into the intricate dynamics of a chaotic system through
both circuit realization and numerical simulations, specifically focusing on the system with
α = 0.99. Figure 2 showcases the physical circuitry that underpins the chaotic behavior,
serving as a tangible foundation for the theoretical models. Subsequently, Figures 2 to 5
present a detailed examination of the system’s behavior through numerical simulations that
corroborate the circuit-generated outcomes, illustrating the system’s response at α = 0.99.
These figures collectively highlight the consistency between theoretical predictions and ex-
perimental observations, demonstrating the robustness of the chaotic system under study.
The nuanced differences in the simulated results, despite the same α value, underline the
sensitivity to initial conditions—a hallmark of chaotic systems. This alignment between
experimental and simulated data not only validates our approach but also offers insights
into the practical implementation and potential applications of such chaotic systems in
real-world scenarios.

7. Conclusion

The exploration into a memristor fused five-dimensional fractional-order chaotic sys-
tem delineates a significant advancement in the study of chaotic systems. Incorporating
fractional calculus, this research unveils a more intricate and robust hyperchaotic behav-
ior, verified through comprehensive simulations and analytical validations. The findings
affirm the potential of fractional-order systems in enhancing the dynamics and stability of
chaotic systems, as evidenced by the alignment between the circuit and numerical simu-
lations. The study not only deepens the understanding of chaotic systems but also paves
the way for future innovations in electronic circuit design and the broader application of
chaos theory. As we embark on the next phase of research, the focus will shift towards
the deployment and electronic integration of this innovative system, promising new av-



REFERENCES 848

enues for exploration in the field of nonlinear dynamical systems. This work lays the
groundwork for future research, highlighting the potential for further advancements in the
domain of fractional-order chaotic systems and their practical applications.We proposed
to compare numerical solutions with other ways [5, 33, 35] and use this method to solve
novel fractional issues [7, 9, 11, 12, 14, 21, 23, 25, 31, 32, 34]
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