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Abstract. In this paper we establish the existence of a common fixed point from a pair of set-
valued mappings. By utilizing the concept of convergence of set-valued mappings’ sequences, both
ordinary and pointwise convergence, we establish a common fixed point theorem. This our newly
result is a generalization of common fixed point theorem of set-valued mappings on partial metric
spaces. Further, we establish newly common fixed point theorem under ϕ-contraction on partial
metric spaces.
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1. Introduction

Discussions regarding Banach’s principle of contraction often appear in various refer-
ences. Many generalizations are also given for which a comparative study of these gener-
alizations is given by Rhoades [18]. One of the generalizations of the Banach contraction
principle that is also quite widely discussed is in the set-valued mapping. Various results
of the generalization of Banach’s contraction principle can be found in [8, 13, 14, 17, 20]
and reference therein. Further results on the general fixed point of the set-valued map-
ping of the contractive type may be found in Kubiak [12] and Singh [19]. On the other
hand a generalization of the principle of Banach contraction for single-valued mapping
on partial metric spaces can be seen in [2, 5, 10, 11] and reference therein. Furthermore,
a generalization of the Banach contraction principle for set-valued mappings in partial
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metric spaces can be found in [1, 4, 6]. This generalization builds upon the Banach con-
traction principle for set-valued mappings, which was initially introduced by Nadler [16].
And further results on the general fixed point of the set-valued mapping on partial metric
space be found in Aydi et. al. [7] and Ahmad et. al. [3]. In this paper, we will generalize
some results of Aydi et. al.[7] and Ahmad et. al. [3]. Referring to Kubiak [12], we will
use the common fixed point existence of a sequence of set-valued mappings to derived on
a pair of set-valued mappings so that the existence of a common fixed point is guaranted.
Furthermore, referring to Singh [19] we will use some functions that he has defined to give
a new generalization of the contraction of Banach’s principle for set-valued mappings on
partial metric spaces. By using this contraction we obtain the common fixed points of a
pair of set-valued mappings.

2. Preliminaries

Let (X, p) be a partial metric spaces. Suppose that CBp(X) be class of all nonempty,
closed and bounded subsets of X. Let mapping Hp : X → CBp(X) define

Hp(A,B) = max{sup{p(x,B) : x ∈ A}, sup{p(y,A) : y ∈ B}},

for each A,B ∈ X and p(x,B) = inf{p(x, y) : y ∈ B}. The mapping Hp is p-Pompeiu-
Hausdorff (partial Pompeiu Hausdorff) metric, and the pairs (CBp(X), Hp) is called p-
Pompeiu-Hausdorff metric spaces. (The use of the term Pompeiu-Hausdorf refers to [9]).
Some properties of metric Hp can be found in [6, 7, 15].

Definition 1. [15] Let (CBp(X), Hp) be a p-Pompeiu-Hausdorff metric spaces. A se-
quence (Fn) in CBp(X) converges to set F ∈ CBp(X) if

lim
n→∞

Hp(Fn, F ) = Hp(F, F ).

Definition 2. [15] Let (CBp(X), Hp) be a p-Pompeiu-Hausdorff metric spaces. A se-
quence (Fn) in CBp(X) is said to a Cauchy sequence if

lim
n,m→∞

Hp(Fn, Fm)

exists and finite.

Sequence (Fn) is Cauchy sequence if the sequence Hp(Fn, Fm) tends to some λ ∈ R
as n,m approach to infinity, that is, limn,m→∞Hp(Fn, Fm) = λ < ∞, i.e. for each ε > 0
there exists N ∈ N such that

|Hp(Fn, Fm)− λ| < ε,

for all n,m ≥ N.
Furthermore, lets consider the properties of Cauchy sequence (Fn) in (CBp(X), Hp).
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Theorem 1. [15] A sequence (Fn) in p-Pompeiu-Hausdorff metric spaces (CBp(X), Hp)
is Cauchy if and only if for all ε > 0 there exists N ∈ N such that

Hp(Fn, Fm)−Hp(Fm, Fm) < ε,

for every n,m ≥ N .

Definition 3. [15] A p-Pompeiu-Hausdorff metric spaces (CBp(X), Hp) is called complete
if every Cauchy sequences Fn ∈ CBp(X) converges to F ∈ CBp(X) and

lim
n→∞

Hp(Fn, F ) = Hp(F, F ).

One of the relationships between the partial metric space (X, p) and the p-Pompeiu-
Hausdorff metric space (CBp(X), Hp) can be seen in its completeness. This is shown in
the following Theorem 2.

Theorem 2. [15] If (CBp(X), Hp) be a complete partial metric spaces then (CBp(X), Hp)
is complete.

For set-valued mapping F : X → CBp(X), a point x ∈ X is called a fixed point of F
if x ∈ F (x). Analogously, for F and G set-valued mappings from X into CBp(X), a point
x ∈ X is called as a common fixed point of F and G if x ∈ F (x) and x ∈ G(x).

3. Main Results

In the following discussion, we assume that (X, p) is a complete partial metric space.

Theorem 3. Let (CBp(X), Hp) be a p-Pompeiu-Hausdorff metric spaces. Suppose that
Fn, Gn : X → CBp(X), n ∈ N be sequence of set-valued mappings on CBp(X), there exists
κ where 0 ≤ κ < 1 such that

Hp(Fm(x), Gn(y)) ≤ κmax

{
p(x, y), p(x, Fm(x)), p(y,Gn(y)),

1

2
(p(x,Gn(y)) + p(y, Fm(x)))

}
,

for each m,n ∈ N and x, y ∈ X, then (Fn) and (Gn) have a common fixed point, i.e. there
exist a point x ∈ X such that x ∈ Fm(x) and x ∈ Gn(x) for each m,n ∈ N.

Proof. Let we consider that 0 ≤ κ < 1. For the first we assume that κ = 0. Suppose
that x0 ∈ X and x1 ∈ F1(x0), then for all n ∈ N we have

p(x1, Gn(x1) ≤ Hp(F1(x0), Gn(x1)) = 0.

It means p(x1, Gn(x1)) = 0. Since Gn are closed for each n then x1 ∈ Gn(x1). In the
similar way, we can obtain that for x0 ∈ X and x1 ∈ G1(x0), then for all n ∈ N we have

p(x1, Fn(x1)) ≤ Hp(G1(x0), Fn(x1)) = 0,
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i.e., p(x1, Fn(x1)) = 0, then x1 ∈ Fn(x1). From this result, it can be seen that x1 is the
common fixed point of Fn and Gn.
Next we assume that κ ̸= 0. Suppose that x0 ∈ X and x1 ∈ F1(x0). Furthermore, define
the sequence (xn) where x2n ∈ Gn(x2n−1) and x2n−1 ∈ Fn(x2n−2) are such that

p(x2n−1, x2n) ≤
1√
κ
Hp(Fn(x2n−2), Gn(x2n−1))

p(x2n, x2n+1) ≤
1√
κ
Hp(Fn(x2n), Gn(x2n−1)),

for n = 1, 2, 3, . . . .
Suppose that xn ̸= xn+1 for all n ∈ N. For n being even, we have x2n ∈ Fn+1(x2n) thus
for each m ∈ N

p(x2n, Gm(x2n)) ≤ Hp(Fn+1(x2n), Gm(x2n))
≤ κmax{p(x2n, x2n), p(x2n, Fn+1(x2n)), p(x2n, Gm(x2n)),

1
2(p(x2n, Fn+1(x2n)) + p(x2n, Gm(x2n))}

≤ κp(x2n, Gm(x2n)).

Since 0 < κ < 1 then p(x2n, Gm(x2n) = 0. Therefore, we have x2n ∈ Gm(x2n) for each
m ∈ N. Similarly, for n being odd numbers, we have x2n+1 ∈ Gn+1(x2n+1), and for every
m implies

p(x2n+1, Fm(x2n+1)) ≤ Hp(Gn+1(x2n+1), Fm(x2n+1))
≤ κmax{p(x2n+1, x2n+1), p(x2n+1, Gn+1(x2n+1)),

p(x2n+1, Fm(x2n+1)),
1
2(p(x2n+1, Fm(x2n+1))

+p(x2n+1, Gn+1(x2n+1))}
≤ κp(x2n+1, Fm(x2n+1)).

Analogous to n is even, it can be concluded that p(x2n+1, Fm(x2n+1)) = 0, it means
x2n+1 ∈ Fm(x2n+1).
For the next step, we will show that (xn) is Cauchy sequence in (X, p). Let we consider

p(x2n, x2n+1)) ≤ 1√
κ
Hp(Fn+1(x2n), Gn(x2n−1))

≤ 1√
κ
κmax{p(x2n, x2n−1), p(x2n, Fn+1(x2n)), p(x2n−1, Gn(x2n−1)),

1
2(p(x2n, Gn(x2n−1)) + p(x2n−1, Fn+1(x2n))}

≤
√
κmax{p(x2n, x2n−1), p(x2n, x2n+1), p(x2n−1, x2n),

1
2(p(x2n, x2n+1) + p(x2n−1, x2n))}

≤
√
κmax{p(x2n−1, x2n), p(x2n, x2n+1)},

when p(x2n, x2n+1) is the maximum then we have x2n = x2n+1. Since xn ̸= xx+1 for each n
thus we get a contradiction. Therefore, we have the maximum is p(x2n−1, x2n). It implies

p(x2n, x2n+1) ≤
√
κp(x2n−1, x2n).
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In the similar way, we have

p(x2n+1, x2n+2) ≤
√
κp(x2n, x2n+1).

Therefore, we obtain

p(x2n, x2n+1)) ≤
√
κp(x2n−1, x2n)

≤
√
κ
√
κp(x2n−2, x2n−1) = (

√
κ)2p(x2n−2, x2n−1)

≤ (
√
κ)2

√
κp(x2n−3, x2n−2) = (

√
κ)3p(x2n−3, x2n−2)

...
≤ (

√
κ)2np(x0, x1)

= κnp(x0, x1).

And also we have p(x2n+1, x2n+2)) ≤ κnp(x1, x2).
Let t(x0) := max{p(x0, x1), p(x1, x2)}, then for m > n w have

p(xm, xn)) ≤
m−(n+1)∑

i=0

p(xn+i, xn+1+i)

≤
m−(n+1)∑

i=0

hn+it(x0)

= t(x0)

m−(n+1)∑
i=0

hn+i

= thn
m−(n+1)∑

i=0

hi

≤ t(x0)hn

1−h

Since t(x0)hn

1−h → 0 as n → ∞, it means we are already shown that (xn) is a Cauchy
sequence in X. Since (X, p) is complete partial metric space then there exists x ∈ X such
that xn → x whereas n → ∞. Let we observe the following condition

p(x2n−1, Gm(x)) ≤ Hp(Fn(x2n−2), Gm(x))
≤ κmax{p(x2n−2, x), p(x2n−2, Fn(x2n−2)), p(x,Gm(x)),

1
2(p(x2n−2, Gm(x)) + p(x, Fn(x2n−2)))}

≤ κmax{p(x2n−2, x), p(x2n−2, x2n−1), p(x,Gm(x)),
1
2(p(x2n−2, Gm(x)) + p(x, x2n−1)))}

by taking n → ∞ we obtain

p(x,Gm(x)) ≤ κmax

{
p(x, x), p(x, x), p(x,Gm(x)),

1

2
(p(x,Gm(x)) + p(x, x))

}
,

for each m. Therefore, we have

p(x,Gm(x)) ≤ κp(x,Gm(x)).
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Since 0 ≤ κ < 1 then p(x,Gm(x)) = 0. It implies that x ∈ Gm(x) because Gm(x) is closed.
Similarly, we can show that x ∈ Fn(x) for each n. So, we obtain x ∈ Gm(x) and x ∈ Fn(x)
for each m,n. It means x is common fixed point of Gm and Fn for every m and n. This
complete the proof.

In Theorem 3 above, we have the principle of contraction on set-valued mapping se-
quences as follows:

Hp(Fn(x), Gn(y)) ≤ κmax

{
p(x, y), p(x, Fn(x)), p(y,Gn(y)),

1

2
(p(x,Gn(y)) + p(y, Fn(x)))

}
,

for each n ∈ N and x, y ∈ X and κ ∈ [0, 1).
By looking at the sequences Fn and Gn in Theorem 3 respectively as constant se-

quences, Corollary 1 can be obtained as follows. This Corollary 1 is a generalization of
the result [12] on the partial metric space.

Corollary 1. Let (CBp(X), Hp) be a p-Pompeiu-Hausdorff metric spaces. Suppose that
F,G : X → CBp(X) with the following condition

Hp(F (x), G(y)) ≤ κmax

{
p(x, y), p(x, F (x)), p(y,G(y)),

1

2
(p(x,G(y)) + p(y, F (x)))

}
,

(1)
for each x, y ∈ X where 0 ≤ κ < 1, then F and G have a common fixed point.

By utilizing the concept of pointwise convergence of set-valued sequences, we can also
investigate the existence of a common fixed point of set-valued mappings. Let see on the
following theorem.

Theorem 4. Let (CBp(X), Hp) be a p-Pompeiu-Hausdorff metric spaces. Suppose that
Fn, Gn : X → CBp(X) sequences in CBp(X). Sequences Fn, Gn converging pointwise to
F,G : X → CBp(X) respectively. If the following condition holds

Hp(Fn(x), Gn(y)) ≤ κmax

{
p(x, y), p(x, Fn(x)), p(y,Gn(y)),

1

2
(p(x,Gn(y)) + p(y, Fn(x)))

}
,

(2)
for every x, y ∈ X and n ∈ N where 0 ≤ κ < 1 then F and G have a common fixed point.

Proof. Take any point x, y ∈ X. Let u ∈ Fn(x) and v ∈ F (x), then we have

p(y, u) ≤ p(y, v) + p(v, u)− p(v, v)
≤ p(y, v) + p(v, u)
≤ p(y, F (x)) + p(u, F (x)).

Consequently p(y, Fn(x)) ≤ p(y, F (x)) +Hp(Fn(x), F (x)). On the other side we also have
the following condition

p(y, v) ≤ p(y, u) + p(u, v)− p(u, u)
≤ p(y, u) + p(u, v)
≤ p(y, Fn(x)) + p(v, Fn(x)).
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It implies p(y, F (x)) ≤ p(y, Fn(x)) +Hp(F (x), Fn(x)). Therefore, we have

|p(y, Fn(x))− p(y, F (x))| ≤ Hp(Fn(x), F (x)). (3)

On the similar way we can also show that

|p(x,Gn(y))− p(x,G(y))| ≤ Hp(Gn(y), G(y)). (4)

Furthermore, by using inequality (3) and (4) and also the continuity of Hp then by taking
n → ∞ in inequality (2) we obtain

Hp(F (x), G(y)) ≤ κmax

{
p(x, y), p(x, F (x)), p(y,G(y)),

1

2
(p(x,G(y)) + p(y, F (x)))

}
,

These conditions show that the set-valued mapping F and G satisfies the hypothesis on
Corollary 1. Thus, based on corollary 1 it can be concluded that F and G have a common
fixed point. This complete the proof.

Let we consider that for any positive real numbers s and t holds

1

2
(s+ t) ≤ max{s, t}.

It implies for any positive real numbers p, q, r, s and t we have

max

{
p, q, r,

1

2
(s+ t)

}
≤ max{p, q, r, s, t}. (5)

Therefore, we can derive a generalization of contractions that the theorem uses as well as
the corollary on the previous discussion. In corollary 1, which indicates the existence of
a common fixed point of set-valued mapping, by utilizing inequality (5) we can obtain a
generalization of contractions (1) as follows

Hp(F (x), G(y)) ≤ κmax {p(x, y), p(x, F (x)), p(y,G(y)), p(x,G(y)), p(y, F (x))} . (6)

On the other sides, Singh has given a definition of a function in generalizing the
principle of contraction of several references therein (Definition 2.1 in [19]) as follows.

Definition 4. Suppose that ϕ : [0,∞) → [0,∞) a function that satisfy the following
conditions:

(i) ϕ is non-decreasing upper semi-continuous,

(ii) ϕ(2u) < u for each u > 0.

Using this definition, Singh established the existence of common fixed points of set-
valued mappings (Theorem 2.2 in [19]). Referring to these results, we will generalize the
theorem to a more general metric space, which is a partial metric space.
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Theorem 5. Let (CBp(X), Hp) be a p-Pompeiu-Hausdorff metric spaces. Suppose that
F,G : X → CBp(X) be set-valued mappings that satisfy the following conditions

Hp(F (x), G(y)) ≤ ϕ(max{p(x, y), p(x, F (x)), p(y,G(y)), p(x,G(y)), p(y, F (x))}), (7)

for each x, y ∈ X where ϕ : R+ → R+ such that ϕ be a non-decreasing upper semi-
continuous and ϕ(2u) < u for u > 0, then set-valued mappings F and G have a unique
common fixed point.

Proof. Take any x0 ∈ X, but fixed. Let x0 /∈ F (x0) and take x1 ∈ F (x0), then from
(7) we obtain

p(x1, G(x1)) ≤ Hp(F (x0), G(x1))
≤ ϕ(max{p(x0, x1), p(x0, F (x0)), p(x1, G(x1), p(x0, G(x1)), p(x1, F (x0))})
≤ ϕ(max{p(x0, x1), p(x1, G(x1))})
≤ ϕ(p(x0, x1) + p(x1, G(x1))).

Consider that: if p(x0, x1) < p(x1, G(x1)) then

p(x1, G(x1)) ≤ ϕ(p(x0, x1) + p(x1, G(x1)))
< ϕ(p(x1, G(x1)) + p(x1, G(x1)))
= ϕ(2p(x1, G(x1)))
< p(x1, G(x1).

This condition shows a contradiction, then it must be p(x0, x1) ≥ p(x1, G(x1)). Therefore,
we have

p(x1, G(x1)) ≤ ϕ(p(x0, x1) + p(x0, x1))
= ϕ(2p(x0, x1))
< p(x0, x1).

Furthermore, we can take x2 ∈ G(x1) such that p(x1, x2) ≤ p(x0, x1). Thus, by using
inequality (7) we have

p(x2, F (x2)) ≤ Hp(G(x1), F (x2))
≤ ϕ(max{p(x1, x2), p(x1, G(x1)), p(x2, F (x2), p(x1, F (x2)), p(x2, G(x1))})
≤ ϕ(max{p(x1, x2), p(x2, F (x2))})
≤ ϕ(p(x1, x2) + p(x2, F (x2))).

Let’s observe, when p(x1, x2) < p(x2, F (x2)) then we obtain

p(x2, F (x2)) ≤ ϕ(p(x1, x2) + p(x2, F (x2)))
< ϕ(p(x2, F (x2)) + p(x2, F (x2)))
= ϕ(2p(x2, F (x2)))
< p(x2, F (x2).

Thus, we found a contradiction. It must holds p(x1, x2) ≥ p(x2, F (x2)). Therefore, we
obtain

p(x2, F (x2)) ≤ ϕ(p(x1, x2) + p(x1, x2))
= ϕ(2p(x1, x2))
< p(x1, x2).
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In the similar line, we can choose x3 ∈ F (x2), then we will have p(x2, x3) ≤ p(x1, x2). If
this process is continued then a sequence (xn) in X is obtained with the form as follows

x2n+1 ∈ F (x2n),

and
x2n+2 ∈ G(x2n+1),

and also
p(xn, xn+1) ≤ p(xn−1, xn). (8)

Furthermore, we defined pn = p(xn, xn+1). From inequality (8) then we obtain

pn ≤ pn+1.

This means that pn is a non-decreasing sequences of real numbers and is bounded below
by zero. Therefore pn is a convergent sequences. Suppose that

limn→∞pn = q.

Let q > 0, consider that p(xn, xn+1) ≤ ϕ(2p(xn−1, xn)) < p(xn−1, xn), thus

p(xn) ≤ ϕ(2pn−1) < pn−1. (9)

Take n → ∞ on inequality (9) then we obtain

q ≤ ϕ(2q) < q.

Therefore, we have a contradiction. Hence, q = 0, i.e.,

limn→∞pn = limn→∞p(xn, xn+1) = 0.

Furthermore, we will show that (xn) is a Cauchy sequences. Based on the construction of
sequence (xn), in showing that sequence (xn) is a Cauchy can be done by showing that
(x2n) is a Cauchy sequence. As for the proof using contradiction, that is, if (x2n) is not
a Cauchy sequence then there exist ε > 0 such that for every positive integer 2t there is
sequence (2mt) and (2nt) where t < nt < mt and we have

p(x2nt , x2mt) > ε, t = 1, 2, 3, . . . (10)

Suppose that 2mt is the smallest integer that greater than 2nt and satisfies the inequality
(10) then we have

p(x2nt , x2mt−2) ≤ ε.

Hence
ε ≤ p(x2nt , x2mt)

≤ p(x2nt , x2mt−2) + p(x2mt−2, x2mt)− p(x2mt−2, x2mt−2)
≤ p(x2nt , x2mt−2) + p(x2mt−2, x2mt)
≤ ε+ p(x2mt−2, x2mt).
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Let we consider that p(x2mt−2, x2mt) → 0 as mt → ∞, then we have ε ≤ p(x2nt , x2mt) ≤ ε.
Consequently,

limnt,mt→∞p(x2nt , x2mt) = ε.

It is noted that

p(x2nt+1, x2mt) ≤ Hp(F (x2nt), G(x2mt−1))
≤ ϕ(max{p(x2nt , x2mt−1), p(x2nt , F (x2nt)), p(x2mt−1, G(x2mt−1)),

p(x2nt , G(x2mt−1)), p(x2mt−1, F (x2nt))})
≤ ϕ(max{p(x2nt , x2mt−1), p(x2mt−1, G(x2mt−1))})
≤ ϕ(p(x2nt , x2mt−1) + p(x2mt−1, G(x2mt−1)))
≤ ϕ(p(x2nt , x2mt−1) + p(x2mt−1, x2nt) + p(x2nt , G(x2mt−1))

−p(x2nt , x2nt))
≤ ϕ(p(x2nt , x2mt−1) + p(x2mt−1, x2nt) + p(x2nt , G(x2mt−1))
≤ ϕ(p(x2nt , x2mt−1) + p(x2mt−1, x2nt)
≤ ϕ(2p(x2nt , x2mt−1))
≤ ϕ(2ε)

Therefore, we have

p(x2nt , x2mt) ≤ p(x2nt , x2nt+1) + p(x2nt+1, x2mt)
≤ p(x2nt , x2nt+1) +Hp(F (x2nt), G(x2mt−1))
≤ p(x2nt , x2nt+1) + ϕ(2ε)

Thus for nt,mt → ∞ we have ε ≤ ϕ(2ε). Since ϕ(2ε) < ε then we have a contradiction.
Therefore, it can be concluded that (xn) is Cauchy sequences inX. Since (X, p) is complete
partial metric space, then there exist x ∈ X such that limn→∞xn = x. Furthermore, we
will establish that x is common fixed point of F and G.
Let p(x, F (x)) > 0. Let we consider that

p(x2n, F (x)) ≤ Hp(F (x), G(x2n−1))
≤ ϕ(max{p(x, x2n−1), p(x, F (x)), p(x2n−1, G(x2n−1)),

p(x,G(x2n−1)), p(x2n−1, F (x))})
(11)

Taking n → ∞ on the inequality (11) above, we obtain

p(x, F (x)) ≤ ϕ(max{p(x, F (x)), p(x, F (x))})
≤ ϕ(p(x, F (x)) + p(x, F (x)))
= ϕ(2p(x, F (x)))
< p(x, F (x)).

Then we have a contradiction. Hence, p(x, F (x)) = 0, i.e., x ∈ F (x). In the similar way it
can be shown that p(x,G(x)) = 0, i.e., x ∈ G(x). It means, x is a common fixed point of
set-valued mapping F and G. Furthermore, we will show the uniqueness of this common
fixed points.
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Suppose that v is another common fixed point of set-valued mappings F and G such that
v ∈ F (v) and v ∈ G(v). Let p(x, v) > 0 then

Hp(F (x,G(v)) ≤ ϕ(max{p(x, v), p(x, F (x)), p(v,G(v)), p(x,G(v)), p(v, F (x))})
≤ ϕ(p(x, v), p(x,G(v)), p(v, F (x)))
≤ ϕ(p(x, v), p(v, F (x)))
≤ ϕ(p(x, v), p(v, x))
≤ ϕ(2p(x, v))

Since p(x, v) ≤ Hp(F (x,G(v)) ≤ ϕ(2p(x, v)) < p(x, v), thus we have a contradiction.
Hence p(x, v) = 0, i.e., x = v. Therefore, we can conclude that common fixed point x is
unique. This complete the proof.

Further, we have

Corollary 2. Let (CBp(X), Hp) be a p-Pompeiu-Hausdorff metric spaces. Suppose that
F : X → CBp(X) be set-valued mappings which satisfy

Hp(F (x), F (y)) ≤ ϕ(max{p(x, y), p(x, F (x)), p(y, F (y)), p(x, F (y)), p(y, F (x))}), (12)

for each x, y ∈ X and ϕ as defined in Theorem 5, then set-valued mappings F has a unique
fixed point.

The existence of a common fixed point of set-valued mapping that satisfies the con-
traction as in inequality (6) is the consequence of Theorem 5. For ϕ(βu) = βu where
β ∈ [0, 12) in Theorem 5 then we have Corollary 3 below.

Corollary 3. Let (CBp(X), Hp) be a p-Pompeiu-Hausdorff metric spaces. Suppose that
F,G : X → CBp(X) be set-valued mappings which satisfy the contraction as in inequality
(6),

Hp(F (x), G(y)) ≤ κmax {p(x, y), p(x, F (x)), p(y,G(y)), p(x,G(y)), p(y, F (x))} ,

for each x, y ∈ X and κ ∈ [0, 1), then set-valued mappings F and G have a unique common
fixed point.

4. Conclusion

In this manuscript, we have established several theorems concerning common fixed
points for set-valued mappings. These theorems introduce novel forms of contraction,
which extend the Banach contraction principle to set-valued mappings. Among them are
contractions for sequences of set-valued mappings, indicating the existence of a common
fixed point for the sequence. This common fixed point is then utilized to infer shared
fixed points of the set-valued mappings through sequence convergence. Furthermore, we
present a new, more general contraction principle. This principle employs a non-decreasing
upper semi-continuous ϕ function to construct a contraction mapping which is then used
to ensure the existence of common points for the set-valued mappings.
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