EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 17, No. 2, 2024, 996-1008 ISSN 1307-5543 – ejpam.com Published by New York Business Global

On Common Fixed Point for Contractive Mappings in *p*-Pompeiu-Hausdorff Metric Spaces

Arta Ekayanti^{1,2,*}, Marjono Marjono¹, Mohamad Muslikh¹, Sa'adatul Fitri¹

 ¹ Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Veteran Road, Malang 65145, Indonesia
 ² Department of Mathematics Educations, Faculty of Teacher Training and Education, Universitas Muhammadiyah Ponorogo, Ponorogo, East Java 63471, Indonesia

Abstract. In this paper we establish the existence of a common fixed point from a pair of set-valued mappings. By utilizing the concept of convergence of set-valued mappings' sequences, both ordinary and pointwise convergence, we establish a common fixed point theorem. This our newly result is a generalization of common fixed point theorem of set-valued mappings on partial metric spaces. Further, we establish newly common fixed point theorem under ϕ -contraction on partial metric spaces.

2020 Mathematics Subject Classifications: 47H10, 26E25

Key Words and Phrases: common fixed point, set-valued mappings, contractive mappings, partial metric spaces, *p*-Pompeiu-Hausdorff Metric Spaces

1. Introduction

Discussions regarding Banach's principle of contraction often appear in various references. Many generalizations are also given for which a comparative study of these generalizations is given by Rhoades [18]. One of the generalizations of the Banach contraction principle that is also quite widely discussed is in the set-valued mapping. Various results of the generalization of Banach's contraction principle can be found in [8, 13, 14, 17, 20] and reference therein. Further results on the general fixed point of the set-valued mapping of the contractive type may be found in Kubiak [12] and Singh [19]. On the other hand a generalization of the principle of Banach contraction for single-valued mapping on partial metric spaces can be seen in [2, 5, 10, 11] and reference therein. Furthermore, a generalization of the Banach contraction principle for set-valued mappings in partial

DOI: https://doi.org/10.29020/nybg.ejpam.v17i2.5152

https://www.ejpam.com

© 2024 EJPAM All rights reserved.

^{*}Corresponding author.

Email addresses: arta_ekayanti@ub.ac.id (A. Ekayanti), marjono@ub.ac.id (Marjono), mslk@ub.ac.id (M. Muslikh), saadatulfitri@ub.ac.id (S. Fitri)

metric spaces can be found in [1, 4, 6]. This generalization builds upon the Banach contraction principle for set-valued mappings, which was initially introduced by Nadler [16]. And further results on the general fixed point of the set-valued mapping on partial metric space be found in Aydi et. al. [7] and Ahmad et. al. [3]. In this paper, we will generalize some results of Aydi et. al.[7] and Ahmad et. al. [3]. Referring to Kubiak [12], we will use the common fixed point existence of a sequence of set-valued mappings to derived on a pair of set-valued mappings so that the existence of a common fixed point is guaranted. Furthermore, referring to Singh [19] we will use some functions that he has defined to give a new generalization of the contraction of Banach's principle for set-valued mappings on partial metric spaces. By using this contraction we obtain the common fixed points of a pair of set-valued mappings.

2. Preliminaries

Let (X, p) be a partial metric spaces. Suppose that $CB^p(X)$ be class of all nonempty, closed and bounded subsets of X. Let mapping $H^p: X \to CB^p(X)$ define

$$H^{p}(A, B) = \max\{\sup\{p(x, B) : x \in A\}, \sup\{p(y, A) : y \in B\}\},\$$

for each $A, B \in X$ and $p(x, B) = \inf\{p(x, y) : y \in B\}$. The mapping H^p is p-Pompeiu-Hausdorff (partial Pompeiu Hausdorff) metric, and the pairs $(CB^p(X), H^p)$ is called p-Pompeiu-Hausdorff metric spaces. (The use of the term Pompeiu-Hausdorf refers to [9]). Some properties of metric H^p can be found in [6, 7, 15].

Definition 1. [15] Let $(CB^p(X), H^p)$ be a p-Pompeiu-Hausdorff metric spaces. A sequence (F_n) in $CB^p(X)$ converges to set $F \in CB^p(X)$ if

$$\lim_{n \to \infty} H^p(F_n, F) = H^p(F, F).$$

Definition 2. [15] Let $(CB^p(X), H^p)$ be a p-Pompeiu-Hausdorff metric spaces. A sequence (F_n) in $CB^p(X)$ is said to a Cauchy sequence if

$$\lim_{n,m\to\infty}H^p(F_n,F_m)$$

exists and finite.

Sequence (F_n) is Cauchy sequence if the sequence $H^p(F_n, F_m)$ tends to some $\lambda \in \mathbb{R}$ as n, m approach to infinity, that is, $\lim_{n,m\to\infty} H^p(F_n, F_m) = \lambda < \infty$, i.e. for each $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$|H^p(F_n, F_m) - \lambda| < \varepsilon,$$

for all $n, m \geq N$.

Furthermore, lets consider the properties of Cauchy sequence (F_n) in $(CB^p(X), H^p)$.

Theorem 1. [15] A sequence (F_n) in p-Pompeiu-Hausdorff metric spaces $(CB^p(X), H^p)$ is Cauchy if and only if for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$H^p(F_n, F_m) - H^p(F_m, F_m) < \varepsilon_1$$

for every $n, m \geq N$.

Definition 3. [15] A p-Pompeiu-Hausdorff metric spaces $(CB^p(X), H^p)$ is called complete if every Cauchy sequences $F_n \in CB^p(X)$ converges to $F \in CB^p(X)$ and

$$\lim_{n \to \infty} H^p(F_n, F) = H^p(F, F).$$

One of the relationships between the partial metric space (X, p) and the *p*-Pompeiu-Hausdorff metric space $(CB^p(X), H^p)$ can be seen in its completeness. This is shown in the following Theorem 2.

Theorem 2. [15] If $(CB^p(X), H^p)$ be a complete partial metric spaces then $(CB^p(X), H^p)$ is complete.

For set-valued mapping $F: X \to CB^p(X)$, a point $x \in X$ is called a fixed point of F if $x \in F(x)$. Analogously, for F and G set-valued mappings from X into $CB^p(X)$, a point $x \in X$ is called as a common fixed point of F and G if $x \in F(x)$ and $x \in G(x)$.

3. Main Results

In the following discussion, we assume that (X, p) is a complete partial metric space.

Theorem 3. Let $(CB^p(X), H^p)$ be a p-Pompeiu-Hausdorff metric spaces. Suppose that $F_n, G_n : X \to CB^p(X), n \in \mathbb{N}$ be sequence of set-valued mappings on $CB^p(X)$, there exists κ where $0 \leq \kappa < 1$ such that

$$H^{p}(F_{m}(x), G_{n}(y)) \leq \kappa \max\left\{p(x, y), p(x, F_{m}(x)), p(y, G_{n}(y)), \frac{1}{2}\left(p(x, G_{n}(y)) + p(y, F_{m}(x))\right)\right\},$$

for each $m, n \in \mathbb{N}$ and $x, y \in X$, then (F_n) and (G_n) have a common fixed point, i.e. there exist a point $x \in X$ such that $x \in F_m(x)$ and $x \in G_n(x)$ for each $m, n \in \mathbb{N}$.

Proof. Let we consider that $0 \le \kappa < 1$. For the first we assume that $\kappa = 0$. Suppose that $x_0 \in X$ and $x_1 \in F_1(x_0)$, then for all $n \in \mathbb{N}$ we have

$$p(x_1, G_n(x_1) \le H^p(F_1(x_0), G_n(x_1)) = 0.$$

It means $p(x_1, G_n(x_1)) = 0$. Since G_n are closed for each n then $x_1 \in G_n(x_1)$. In the similar way, we can obtain that for $x_0 \in X$ and $x_1 \in G_1(x_0)$, then for all $n \in \mathbb{N}$ we have

$$p(x_1, F_n(x_1)) \le H^p(G_1(x_0), F_n(x_1)) = 0,$$

i.e., $p(x_1, F_n(x_1)) = 0$, then $x_1 \in F_n(x_1)$. From this result, it can be seen that x_1 is the common fixed point of F_n and G_n .

Next we assume that $\kappa \neq 0$. Suppose that $x_0 \in X$ and $x_1 \in F_1(x_0)$. Furthermore, define the sequence (x_n) where $x_{2n} \in G_n(x_{2n-1})$ and $x_{2n-1} \in F_n(x_{2n-2})$ are such that

$$p(x_{2n-1}, x_{2n}) \le \frac{1}{\sqrt{\kappa}} H^p(F_n(x_{2n-2}), G_n(x_{2n-1}))$$
$$p(x_{2n}, x_{2n+1}) \le \frac{1}{\sqrt{\kappa}} H^p(F_n(x_{2n}), G_n(x_{2n-1})),$$

for $n = 1, 2, 3, \ldots$

Suppose that $x_n \neq x_{n+1}$ for all $n \in \mathbb{N}$. For n being even, we have $x_{2n} \in F_{n+1}(x_{2n})$ thus for each $m \in \mathbb{N}$

$$p(x_{2n}, G_m(x_{2n})) \leq H^p(F_{n+1}(x_{2n}), G_m(x_{2n})) \\ \leq \kappa \max\{p(x_{2n}, x_{2n}), p(x_{2n}, F_{n+1}(x_{2n})), p(x_{2n}, G_m(x_{2n})), \\ \frac{1}{2}(p(x_{2n}, F_{n+1}(x_{2n})) + p(x_{2n}, G_m(x_{2n}))) \\ \leq \kappa p(x_{2n}, G_m(x_{2n})).$$

Since $0 < \kappa < 1$ then $p(x_{2n}, G_m(x_{2n}) = 0$. Therefore, we have $x_{2n} \in G_m(x_{2n})$ for each $m \in \mathbb{N}$. Similarly, for *n* being odd numbers, we have $x_{2n+1} \in G_{n+1}(x_{2n+1})$, and for every *m* implies

$$p(x_{2n+1}, F_m(x_{2n+1})) \leq H^p(G_{n+1}(x_{2n+1}), F_m(x_{2n+1}))$$

$$\leq \kappa \max\{p(x_{2n+1}, x_{2n+1}), p(x_{2n+1}, G_{n+1}(x_{2n+1})), p(x_{2n+1}, F_m(x_{2n+1})), \frac{1}{2}(p(x_{2n+1}, F_m(x_{2n+1}))) + p(x_{2n+1}, G_{n+1}(x_{2n+1}))\}$$

$$\leq \kappa p(x_{2n+1}, F_m(x_{2n+1})).$$

Analogous to n is even, it can be concluded that $p(x_{2n+1}, F_m(x_{2n+1})) = 0$, it means $x_{2n+1} \in F_m(x_{2n+1})$.

For the next step, we will show that (x_n) is Cauchy sequence in (X, p). Let we consider

$$p(x_{2n}, x_{2n+1})) \leq \frac{1}{\sqrt{\kappa}} H^p(F_{n+1}(x_{2n}), G_n(x_{2n-1})) \\ \leq \frac{1}{\sqrt{\kappa}} \kappa \max\{p(x_{2n}, x_{2n-1}), p(x_{2n}, F_{n+1}(x_{2n})), p(x_{2n-1}, G_n(x_{2n-1})), \\ \frac{1}{2}(p(x_{2n}, G_n(x_{2n-1})) + p(x_{2n-1}, F_{n+1}(x_{2n}))) \\ \leq \sqrt{\kappa} \max\{p(x_{2n}, x_{2n-1}), p(x_{2n}, x_{2n+1}), p(x_{2n-1}, x_{2n}), \\ \frac{1}{2}(p(x_{2n}, x_{2n+1}) + p(x_{2n-1}, x_{2n})) \\ \leq \sqrt{\kappa} \max\{p(x_{2n-1}, x_{2n}), p(x_{2n}, x_{2n+1})\}, \end{cases}$$

when $p(x_{2n}, x_{2n+1})$ is the maximum then we have $x_{2n} = x_{2n+1}$. Since $x_n \neq x_{x+1}$ for each n thus we get a contradiction. Therefore, we have the maximum is $p(x_{2n-1}, x_{2n})$. It implies

$$p(x_{2n}, x_{2n+1}) \le \sqrt{\kappa} p(x_{2n-1}, x_{2n}).$$

In the similar way, we have

$$p(x_{2n+1}, x_{2n+2}) \le \sqrt{\kappa} p(x_{2n}, x_{2n+1}).$$

Therefore, we obtain

$$p(x_{2n}, x_{2n+1})) \leq \sqrt{\kappa} p(x_{2n-1}, x_{2n}) \\ \leq \sqrt{\kappa} \sqrt{\kappa} p(x_{2n-2}, x_{2n-1}) = (\sqrt{\kappa})^2 p(x_{2n-2}, x_{2n-1}) \\ \leq (\sqrt{\kappa})^2 \sqrt{\kappa} p(x_{2n-3}, x_{2n-2}) = (\sqrt{\kappa})^3 p(x_{2n-3}, x_{2n-2}) \\ \vdots \\ \leq (\sqrt{\kappa})^{2n} p(x_0, x_1) \\ = \kappa^n p(x_0, x_1).$$

And also we have $p(x_{2n+1}, x_{2n+2}) \le \kappa^n p(x_1, x_2)$. Let $t(x_0) := \max\{p(x_0, x_1), p(x_1, x_2)\}$, then for m > n w have

$$p(x_m, x_n)) \leq \sum_{\substack{i=0\\m-(n+1)}}^{m-(n+1)} p(x_{n+i}, x_{n+1+i})$$
$$\leq \sum_{\substack{i=0\\m-(n+1)\\m-(n+1)}}^{m-(n+1)} h^{n+i}$$
$$= th^n \sum_{\substack{i=0\\m-(n+1)\\i=0\\k}}^{m-(n+1)} h^i$$
$$\leq \frac{t(x_0)h^n}{1-h}$$

Since $\frac{t(x_0)h^n}{1-h} \to 0$ as $n \to \infty$, it means we are already shown that (x_n) is a Cauchy sequence in X. Since (X, p) is complete partial metric space then there exists $x \in X$ such that $x_n \to x$ whereas $n \to \infty$. Let we observe the following condition

$$p(x_{2n-1}, G_m(x)) \leq H^p(F_n(x_{2n-2}), G_m(x))$$

$$\leq \kappa \max\{p(x_{2n-2}, x), p(x_{2n-2}, F_n(x_{2n-2})), p(x, G_m(x)), \frac{1}{2}(p(x_{2n-2}, G_m(x)) + p(x, F_n(x_{2n-2})))\}$$

$$\leq \kappa \max\{p(x_{2n-2}, x), p(x_{2n-2}, x_{2n-1}), p(x, G_m(x)), \frac{1}{2}(p(x_{2n-2}, G_m(x)) + p(x, x_{2n-1})))\}$$

by taking $n \to \infty$ we obtain

$$p(x, G_m(x)) \le \kappa \max\left\{p(x, x), p(x, x), p(x, G_m(x)), \frac{1}{2}(p(x, G_m(x)) + p(x, x))\right\},\$$

for each m. Therefore, we have

$$p(x, G_m(x)) \le \kappa p(x, G_m(x)).$$

Since $0 \le \kappa < 1$ then $p(x, G_m(x)) = 0$. It implies that $x \in G_m(x)$ because $G_m(x)$ is closed. Similarly, we can show that $x \in F_n(x)$ for each n. So, we obtain $x \in G_m(x)$ and $x \in F_n(x)$ for each m, n. It means x is common fixed point of G_m and F_n for every m and n. This complete the proof.

In Theorem 3 above, we have the principle of contraction on set-valued mapping sequences as follows:

$$H^{p}(F_{n}(x), G_{n}(y)) \leq \kappa \max\left\{p(x, y), p(x, F_{n}(x)), p(y, G_{n}(y)), \frac{1}{2}\left(p(x, G_{n}(y)) + p(y, F_{n}(x))\right)\right\}$$

for each $n \in \mathbb{N}$ and $x, y \in X$ and $\kappa \in [0, 1)$.

By looking at the sequences F_n and G_n in Theorem 3 respectively as constant sequences, Corollary 1 can be obtained as follows. This Corollary 1 is a generalization of the result [12] on the partial metric space.

Corollary 1. Let $(CB^p(X), H^p)$ be a p-Pompeiu-Hausdorff metric spaces. Suppose that $F, G: X \to CB^p(X)$ with the following condition

$$H^{p}(F(x), G(y)) \leq \kappa \max\left\{ p(x, y), p(x, F(x)), p(y, G(y)), \frac{1}{2}(p(x, G(y)) + p(y, F(x))) \right\},$$
(1)

for each $x, y \in X$ where $0 \le \kappa < 1$, then F and G have a common fixed point.

By utilizing the concept of pointwise convergence of set-valued sequences, we can also investigate the existence of a common fixed point of set-valued mappings. Let see on the following theorem.

Theorem 4. Let $(CB^p(X), H^p)$ be a p-Pompeiu-Hausdorff metric spaces. Suppose that $F_n, G_n : X \to CB^p(X)$ sequences in $CB^p(X)$. Sequences F_n, G_n converging pointwise to $F, G : X \to CB^p(X)$ respectively. If the following condition holds

$$H^{p}(F_{n}(x), G_{n}(y)) \leq \kappa \max\left\{p(x, y), p(x, F_{n}(x)), p(y, G_{n}(y)), \frac{1}{2}\left(p(x, G_{n}(y)) + p(y, F_{n}(x))\right)\right\}$$
(2)

for every $x, y \in X$ and $n \in \mathbb{N}$ where $0 \leq \kappa < 1$ then F and G have a common fixed point.

Proof. Take any point $x, y \in X$. Let $u \in F_n(x)$ and $v \in F(x)$, then we have

$$\begin{array}{rcl} p(y,u) &\leq & p(y,v) + p(v,u) - p(v,v) \\ &\leq & p(y,v) + p(v,u) \\ &\leq & p(y,F(x)) + p(u,F(x)). \end{array}$$

Consequently $p(y, F_n(x)) \leq p(y, F(x)) + H^p(F_n(x), F(x))$. On the other side we also have the following condition

$$\begin{array}{rcl} p(y,v) &\leq & p(y,u) + p(u,v) - p(u,u) \\ &\leq & p(y,u) + p(u,v) \\ &\leq & p(y,F_n(x)) + p(v,F_n(x)). \end{array}$$

It implies $p(y, F(x)) \leq p(y, F_n(x)) + H^p(F(x), F_n(x))$. Therefore, we have

$$|p(y, F_n(x)) - p(y, F(x))| \le H^p(F_n(x), F(x)).$$
(3)

1002

On the similar way we can also show that

$$|p(x, G_n(y)) - p(x, G(y))| \le H^p(G_n(y), G(y)).$$
(4)

Furthermore, by using inequality (3) and (4) and also the continuity of H^p then by taking $n \to \infty$ in inequality (2) we obtain

$$H^{p}(F(x), G(y)) \leq \kappa \max\left\{p(x, y), p(x, F(x)), p(y, G(y)), \frac{1}{2}\left(p(x, G(y)) + p(y, F(x))\right)\right\},$$

These conditions show that the set-valued mapping F and G satisfies the hypothesis on Corollary 1. Thus, based on corollary 1 it can be concluded that F and G have a common fixed point. This complete the proof.

Let we consider that for any positive real numbers s and t holds

$$\frac{1}{2}\left(s+t\right) \leq \max\{s,t\}.$$

It implies for any positive real numbers p, q, r, s and t we have

$$\max\left\{p,q,r,\frac{1}{2}(s+t)\right\} \le \max\{p,q,r,s,t\}.$$
(5)

Therefore, we can derive a generalization of contractions that the theorem uses as well as the corollary on the previous discussion. In corollary 1, which indicates the existence of a common fixed point of set-valued mapping, by utilizing inequality (5) we can obtain a generalization of contractions (1) as follows

$$H^{p}(F(x), G(y)) \leq \kappa \max\left\{p(x, y), p(x, F(x)), p(y, G(y)), p(x, G(y)), p(y, F(x))\right\}.$$
 (6)

On the other sides, Singh has given a definition of a function in generalizing the principle of contraction of several references therein (Definition 2.1 in [19]) as follows.

Definition 4. Suppose that $\phi : [0, \infty) \to [0, \infty)$ a function that satisfy the following conditions:

- (i) ϕ is non-decreasing upper semi-continuous,
- (ii) $\phi(2u) < u$ for each u > 0.

Using this definition, Singh established the existence of common fixed points of setvalued mappings (Theorem 2.2 in [19]). Referring to these results, we will generalize the theorem to a more general metric space, which is a partial metric space.

Theorem 5. Let $(CB^p(X), H^p)$ be a p-Pompeiu-Hausdorff metric spaces. Suppose that $F, G: X \to CB^p(X)$ be set-valued mappings that satisfy the following conditions

$$H^{p}(F(x), G(y)) \leq \phi(\max\{p(x, y), p(x, F(x)), p(y, G(y)), p(x, G(y)), p(y, F(x))\}),$$
(7)

for each $x, y \in X$ where $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ such that ϕ be a non-decreasing upper semicontinuous and $\phi(2u) < u$ for u > 0, then set-valued mappings F and G have a unique common fixed point.

Proof. Take any $x_0 \in X$, but fixed. Let $x_0 \notin F(x_0)$ and take $x_1 \in F(x_0)$, then from (7) we obtain

$$p(x_1, G(x_1)) \leq H^p(F(x_0), G(x_1)) \\ \leq \phi(\max\{p(x_0, x_1), p(x_0, F(x_0)), p(x_1, G(x_1), p(x_0, G(x_1)), p(x_1, F(x_0))\}) \\ \leq \phi(\max\{p(x_0, x_1), p(x_1, G(x_1))\}) \\ \leq \phi(p(x_0, x_1) + p(x_1, G(x_1))).$$

Consider that: if $p(x_0, x_1) < p(x_1, G(x_1))$ then

$$p(x_1, G(x_1)) \leq \phi(p(x_0, x_1) + p(x_1, G(x_1))) < \phi(p(x_1, G(x_1)) + p(x_1, G(x_1))) = \phi(2p(x_1, G(x_1))) < p(x_1, G(x_1).$$

This condition shows a contradiction, then it must be $p(x_0, x_1) \ge p(x_1, G(x_1))$. Therefore, we have

$$p(x_1, G(x_1)) \leq \phi(p(x_0, x_1) + p(x_0, x_1)) \\ = \phi(2p(x_0, x_1)) \\ < p(x_0, x_1).$$

Furthermore, we can take $x_2 \in G(x_1)$ such that $p(x_1, x_2) \leq p(x_0, x_1)$. Thus, by using inequality (7) we have

$$p(x_2, F(x_2)) \leq H^p(G(x_1), F(x_2)) \\ \leq \phi(\max\{p(x_1, x_2), p(x_1, G(x_1)), p(x_2, F(x_2), p(x_1, F(x_2)), p(x_2, G(x_1))\}) \\ \leq \phi(\max\{p(x_1, x_2), p(x_2, F(x_2))\}) \\ \leq \phi(p(x_1, x_2) + p(x_2, F(x_2))).$$

Let's observe, when $p(x_1, x_2) < p(x_2, F(x_2))$ then we obtain

$$p(x_2, F(x_2)) \leq \phi(p(x_1, x_2) + p(x_2, F(x_2))) < \phi(p(x_2, F(x_2)) + p(x_2, F(x_2))) = \phi(2p(x_2, F(x_2))) < p(x_2, F(x_2).$$

Thus, we found a contradiction. It must holds $p(x_1, x_2) \ge p(x_2, F(x_2))$. Therefore, we obtain

$$p(x_2, F(x_2)) \leq \phi(p(x_1, x_2) + p(x_1, x_2)) \\ = \phi(2p(x_1, x_2)) \\ < p(x_1, x_2).$$

In the similar line, we can choose $x_3 \in F(x_2)$, then we will have $p(x_2, x_3) \leq p(x_1, x_2)$. If this process is continued then a sequence (x_n) in X is obtained with the form as follows

$$x_{2n+1} \in F(x_{2n})$$

and

$$x_{2n+2} \in G(x_{2n+1}),$$

and also

$$p(x_n, x_{n+1}) \le p(x_{n-1}, x_n).$$
(8)

Furthermore, we defined $p_n = p(x_n, x_{n+1})$. From inequality (8) then we obtain

$$p_n \le p_{n+1}$$

This means that p_n is a non-decreasing sequences of real numbers and is bounded below by zero. Therefore p_n is a convergent sequences. Suppose that

$$\lim_{n\to\infty} p_n = q$$

Let q > 0, consider that $p(x_n, x_{n+1}) \le \phi(2p(x_{n-1}, x_n)) < p(x_{n-1}, x_n)$, thus

$$p(x_n) \le \phi(2p_{n-1}) < p_{n-1}.$$
(9)

Take $n \to \infty$ on inequality (9) then we obtain

$$q \le \phi(2q) < q.$$

Therefore, we have a contradiction. Hence, q = 0, i.e.,

$$\lim_{n \to \infty} p_n = \lim_{n \to \infty} p(x_n, x_{n+1}) = 0.$$

Furthermore, we will show that (x_n) is a Cauchy sequences. Based on the construction of sequence (x_n) , in showing that sequence (x_n) is a Cauchy can be done by showing that (x_{2n}) is a Cauchy sequence. As for the proof using contradiction, that is, if (x_{2n}) is not a Cauchy sequence then there exist $\varepsilon > 0$ such that for every positive integer 2t there is sequence $(2m_t)$ and $(2n_t)$ where $t < n_t < m_t$ and we have

$$p(x_{2n_t}, x_{2m_t}) > \varepsilon, t = 1, 2, 3, \dots$$
 (10)

Suppose that $2m_t$ is the smallest integer that greater than $2n_t$ and satisfies the inequality (10) then we have

$$p(x_{2n_t}, x_{2m_t-2}) \le \varepsilon.$$

Hence

1004

Let we consider that $p(x_{2m_t-2}, x_{2m_t}) \to 0$ as $m_t \to \infty$, then we have $\varepsilon \leq p(x_{2n_t}, x_{2m_t}) \leq \varepsilon$. Consequently,

$$lim_{n_t,m_t\to\infty}p(x_{2n_t},x_{2m_t})=\varepsilon.$$

It is noted that

$$\begin{aligned} p(x_{2n_t+1}, x_{2m_t}) &\leq H^p(F(x_{2n_t}), G(x_{2m_t-1})) \\ &\leq \phi(\max\{p(x_{2n_t}, x_{2m_t-1}), p(x_{2n_t}, F(x_{2n_t})), p(x_{2m_t-1}, G(x_{2m_t-1})), \\ p(x_{2n_t}, G(x_{2m_t-1})), p(x_{2m_t-1}, F(x_{2n_t}))\}) \\ &\leq \phi(\max\{p(x_{2n_t}, x_{2m_t-1}), p(x_{2m_t-1}, G(x_{2m_t-1}))\}) \\ &\leq \phi(p(x_{2n_t}, x_{2m_t-1}) + p(x_{2m_t-1}, G(x_{2m_t-1}))) \\ &\leq \phi(p(x_{2n_t}, x_{2m_t-1}) + p(x_{2m_t-1}, x_{2n_t}) + p(x_{2n_t}, G(x_{2m_t-1}))) \\ &- p(x_{2n_t}, x_{2m_t-1}) + p(x_{2m_t-1}, x_{2n_t}) + p(x_{2n_t}, G(x_{2m_t-1}))) \\ &\leq \phi(p(x_{2n_t}, x_{2m_t-1}) + p(x_{2m_t-1}, x_{2n_t}) + p(x_{2n_t}, G(x_{2m_t-1}))) \\ &\leq \phi(p(x_{2n_t}, x_{2m_t-1}) + p(x_{2m_t-1}, x_{2n_t})) \\ &\leq \phi(2p(x_{2n_t}, x_{2m_t-1})) \\ &\leq \phi(2\varepsilon) \end{aligned}$$

Therefore, we have

$$p(x_{2n_t}, x_{2m_t}) \leq p(x_{2n_t}, x_{2n_t+1}) + p(x_{2n_t+1}, x_{2m_t}) \\ \leq p(x_{2n_t}, x_{2n_t+1}) + H^p(F(x_{2n_t}), G(x_{2m_t-1})) \\ \leq p(x_{2n_t}, x_{2n_t+1}) + \phi(2\varepsilon)$$

Thus for $n_t, m_t \to \infty$ we have $\varepsilon \leq \phi(2\varepsilon)$. Since $\phi(2\varepsilon) < \varepsilon$ then we have a contradiction. Therefore, it can be concluded that (x_n) is Cauchy sequences in X. Since (X, p) is complete partial metric space, then there exist $x \in X$ such that $\lim_{n\to\infty} x_n = x$. Furthermore, we will establish that x is common fixed point of F and G. Let p(x, F(x)) > 0. Let we consider that

$$p(x_{2n}, F(x)) \leq H^{p}(F(x), G(x_{2n-1})) \\ \leq \phi(\max\{p(x, x_{2n-1}), p(x, F(x)), p(x_{2n-1}, G(x_{2n-1})), p(x, G(x_{2n-1})), p(x_{2n-1}, F(x))\})$$
(11)

Taking $n \to \infty$ on the inequality (11) above, we obtain

$$p(x, F(x)) \leq \phi(\max\{p(x, F(x)), p(x, F(x))\}) \\ \leq \phi(p(x, F(x)) + p(x, F(x))) \\ = \phi(2p(x, F(x))) \\ < p(x, F(x)).$$

Then we have a contradiction. Hence, p(x, F(x)) = 0, i.e., $x \in F(x)$. In the similar way it can be shown that p(x, G(x)) = 0, i.e., $x \in G(x)$. It means, x is a common fixed point of set-valued mapping F and G. Furthermore, we will show the uniqueness of this common fixed points.

1005

Suppose that v is another common fixed point of set-valued mappings F and G such that $v \in F(v)$ and $v \in G(v)$. Let p(x, v) > 0 then

$$\begin{aligned} H^{p}(F(x,G(v)) &\leq & \phi(\max\{p(x,v), p(x,F(x)), p(v,G(v)), p(x,G(v)), p(v,F(x))\}) \\ &\leq & \phi(p(x,v), p(x,G(v)), p(v,F(x))) \\ &\leq & \phi(p(x,v), p(v,F(x))) \\ &\leq & \phi(p(x,v), p(v,x)) \\ &\leq & \phi(2p(x,v)) \end{aligned}$$

Since $p(x,v) \leq H^p(F(x,G(v)) \leq \phi(2p(x,v)) < p(x,v)$, thus we have a contradiction. Hence p(x,v) = 0, i.e., x = v. Therefore, we can conclude that common fixed point x is unique. This complete the proof.

Further, we have

Corollary 2. Let $(CB^p(X), H^p)$ be a p-Pompeiu-Hausdorff metric spaces. Suppose that $F: X \to CB^p(X)$ be set-valued mappings which satisfy

$$H^{p}(F(x), F(y)) \le \phi(\max\{p(x, y), p(x, F(x)), p(y, F(y)), p(x, F(y)), p(y, F(x))\}), \quad (12)$$

for each $x, y \in X$ and ϕ as defined in Theorem 5, then set-valued mappings F has a unique fixed point.

The existence of a common fixed point of set-valued mapping that satisfies the contraction as in inequality (6) is the consequence of Theorem 5. For $\phi(\beta u) = \beta u$ where $\beta \in [0, \frac{1}{2})$ in Theorem 5 then we have Corollary 3 below.

Corollary 3. Let $(CB^p(X), H^p)$ be a p-Pompeiu-Hausdorff metric spaces. Suppose that $F, G: X \to CB^p(X)$ be set-valued mappings which satisfy the contraction as in inequality (6),

 $H^{p}(F(x), G(y)) \leq \kappa \max \left\{ p(x, y), p(x, F(x)), p(y, G(y)), p(x, G(y)), p(y, F(x)) \right\},\$

for each $x, y \in X$ and $\kappa \in [0, 1)$, then set-valued mappings F and G have a unique common fixed point.

4. Conclusion

In this manuscript, we have established several theorems concerning common fixed points for set-valued mappings. These theorems introduce novel forms of contraction, which extend the Banach contraction principle to set-valued mappings. Among them are contractions for sequences of set-valued mappings, indicating the existence of a common fixed point for the sequence. This common fixed point is then utilized to infer shared fixed points of the set-valued mappings through sequence convergence. Furthermore, we present a new, more general contraction principle. This principle employs a non-decreasing upper semi-continuous ϕ function to construct a contraction mapping which is then used to ensure the existence of common points for the set-valued mappings.

Acknowledgements

Research Supporting Project number 1130.3/UN10.C10/TU/2023 dated 19 June 2023 Directorate General of Research and Development, The Ministry of Education, Culture, Research, and Technology, Indonesia.

Funding

This research is being funded by Directorate General of Research and Development, The Ministry of Education, Culture, Research, and Technology via Doctoral Dissertation Research.

References

- M Abbas, B Ali, and C Vetro. A suzuki type fixed point theorem for a generalized multivalued mapping on partial hausdorff metric spaces. *Topol. Appl.*, 160:553–563, 2013.
- [2] T Abdeljawad. Fixed points for generalized weakly contractive mappings in partial metric spaces. Math. Comput. Modelling, 54:2923–2927, 2011.
- [3] J Ahmad, A Azam, and M Arshad. Fixed points of multivalued mappings in partial metric spaces. *Fixed Point Theory and Applications*, 316, 2013.
- [4] J Ahmad, C D Bari, Y J Cho, and M Arshad. Some fixed point results for multi-valued mappings in partial metric spaces. *Fixed Point Theory Appl.*, 175, 2013.
- [5] I Altun, F Sola, and H Simsek. Generalized contractions on partial metric spaces. *Topology Appl.*, 157(18):2778–2785, 2010.
- [6] H Aydi, M Abbas, and C Vetro. Partial hausdorff metric and nadler's fixed point theorem on partial metric spaces. *Topol. Appl.*, 159:3234–3242, 2012.
- [7] H Aydi, M Abbas, and C Vetro. Common fixed points for multi-valued generalized contractions on partial metric spaces. *Rev. R. Acad. Cienc. Exactas Fis. Nat., Ser.* A Mat., 108:483–501, 2013.
- [8] M Berinde and V Berinde. On a general class of multi-valued weakly picard mappings. J. Math. Anal. Appl, 326:772–782, 2007.
- [9] V Berinde and M Păcurar. Why pompeiu-hausdorff metric instead of hausdorff metric? CREAT. MATH. INFORM., 31(1):33–41, 2022.
- [10] D Ilić, V Pavlović, and V Rakocević. Some new extensions of banach's contraction principle to partial metric space. *Appl. Math. Lett.*, 24:1326–1330, 2011.

- [11] E Karapınar. Weak φ-contraction on partial metric spaces. J. Comput. Anal. Appl., 14, 2011.
- [12] T Kubiak. Fixed point theorems for contractive type multivalued mappings. Math Japonica, 30(1):89–101, 1985.
- [13] J T Markin. A fixed point theorem for set-valued mappings. Bull. Am. Math. Soc, 74:639–640, 1968.
- [14] N Mizoguchi and W Takahashi. Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl, 141:177–188, 1989.
- [15] M Muslikh. Partial metric on space of subsets. Global Journal of Pure and Applied Mathematics, 11(5):2719–2734, 2015.
- [16] S B Nadler. Multi-valued contraction mappings. Pacific Journal of Mathematics, 30(2), 1969.
- [17] S V R Naidu. Fixed point theorems for a broad class of multimaps. Nonlinear Anal., 52:961–969, 2003.
- [18] B E Rhoades. A comparison of various definitions of contractive mappings. Trans, Amer, Math. Soc., 226:257–290, 1977.
- [19] Ph R Singh. A common fixed point theorem for contractive multi-valued mappings. Int. J. Contemp. Math. Sciences, 9(6):253–256, 2014.
- [20] C K Zhang, J Zhu, and P H Zhao. An extension of multi-valued contraction mappings and fixed points. Proc. Am. Math. Soc., 128:2439–2444, 2000.