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Abstract. The paper focuses on the Lotka-Volterra function in its discrete form. The purpose
of the study was to determine the fixed points of the function. The study employs the Banach
Fixed Point Theorem and Contraction Mapping in Metric Space on the function to demonstrate
the uniqueness of the fixed points and its continuous stability after several iterations, using the

fixed points as the initial conditions. The study has shown that (0, 0),
(
0, α−1

β

)
,
(
1+γ
δ , 0

)
and(

1+γ
δ , α−1

β

)
are the fixed points of the function, with the initial pair serving as a trivial one and

the other three solely depending on the parameter values for the behavior of the function. The
outcome of the limit points of the function as the fixed points after several iterations forms a fixed
orbit structure of the function, irrespective of the value of the parameter. The study also showed
the uniqueness of the fixed points, demonstrating the stability and continuity of the function in its
steady state.
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1. Introduction

Many researchers have studied about fixed point theorem. All their definitions seem to
have one idea. That is fixed point theorem is where each fixed point of a function G
must exist, x ∈ X such that G(x) = x. [9] wrote a brief historical survey on fixed point
theorem. Many papers were cited in that paper. Many interesting results on fixed point
theorem were also given like generalization and extension of fixed point theorem through
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different types of mappings. Suppose T represent a self-map on set X. A fixed point of
the mapping T is referred to as an element x in X such that Tx = x. One of the most
important theorems in fixed point theorem is the L.E. Brouwer’s fixed point theorem in
which it is said that each continual self-mapping of the sealed unit in the n− dimensional
Euclidean spaces Rn, possess a fixed point[5]. Advanced fixed point theorem for internal
mapping by employing a known Ky Fan type outcome in a Hilbert space setting.[10] For
two species (prey and predators) to exist, there is an equation which model the struggle.
This model was brought up by two scientists: Lotka and Volterra.The Scientists came to
a conclusion based on the problem they had in 1920 by Lotka and 1926 by Volterra. The
conclusion was the same, that the interaction of the two species would give rise to periodic
Oscillation in their populations.[2]
Many works have been done on the fixed-point theorem and the Lotka Volterra function,
but our focus is on the determination of the fixed point of the Lotka Volterra function,
applying the Banach fixed point theorem, and the contraction mapping on the Lotka
Volterra function to find the fixed point of the Lotka Volterra function.

2. Preliminaries

Definition 1. A fixed point is a point that remains the same after applying a map system
of differential equations, etc. A point x0 is referred to as a function’s fixed point, if
g (x0) = x0 , [11].

Definition 2. The fixed point theorem in general term is stated as an outcome of a function
having at least a fixed point under a certain condition [11]

Definition 3. Let U be a non-empty set. Then, the real function d (distance function)
that assign any ordered pair d(u, v) of element u, v and w ∈ U is a metric space, if the
following properties are satisfied:

1. d(u, v) ≥ 0 and d(u, v) = 0 if and only if u = v

2. d(u, v) = d(v, u)

3. d(u, v) + d(v, w) ≥ d(u,w).
A function d satisfying the conditions (1)− (3) is a metric on U [8]

Definition 4. A dynamic system is one in which a function explains how a point’s re-
lationship to time changes with a given environment. Examples are the mathematical
formulas that explain how water moves through a pipe, how many fish spawn in a lake
each springtime etc.[4]

Definition 5. A steady state of ẋ = f(x) is a point x ∈ U as to which f(x) = 0.
A steady state x∗ is said to be Lyapunov stable if for any ε > 0, there exist δ > 0 this
way for all x0 with |x∗ − x0| < δ we have |φ (x0, t)− x∗| < ε for all t ≥ 0, [3].

Definition 6. An equilibrium x is said to be globally asymptotically stable in the set of
all positive solutions.[7]
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Definition 7 (Lotka-Volterra Equations).

Xn+1 = αxn − βxnyn (1)

Yn+1 = δxnyn − γyn (2)

Where n = 0, 1, 2, . . . , x is the quantity of preys, y is the quantity of predators, xn+1 and
yn+1 are the two population growth rates and α, β, δ, γ are positive real parameters
defining the interaction between the two species [2].

Definition 8 (Population Equilibrium). The model reaches population equilibrium when
none of the population levels is shifting. When both derivatives equal 0, that is when it
occurs.

xn (α− βyn) = 0 (3)

yn (γ − δxn) = 0 (4)

Hence, there are two solutions to the equations or the systems.

{yn = 0, xn = 0} and
{
yn = α

β xn = γ
δ

}
, Hence, there are two equilibria.[7]

Theorem 1 (Banach Contraction Principle). Suppose(P, d) is a complete metric space and
H : P → P is a mapping of contractions using the Lipschitz constant k < 1. Then, the fixed
point ω ∈ P , for all x ∈ P is a unique point in H. That is; limn+∞Hn(x) = ω.Moreover,
for each x ∈ P, we have d(Hn(x), ω) ≤ kn

1−kd(H(x), x) . [1]

Theorem 2. Given (P, d) as a complete metric space, and a mapping H : P → P for
which HN is a contraction mapping for N ≥ 1. As a result, H has a distinct fixed point.
In general, it is unclear if H has a fixed point whenever HN has a fixed point. The term
“periodic points of H” also applies to fixed point of HN .[1].

3. Main Work

Under this part we look for the main solutions of the Lotka Volterra function and also
determine the fixed point of the function.

3.1. The zeros of the Lotka Volterra function

In this section, we look for the roots, or zeros, of the function. In determining the zeros or
roots of the function, let Xn+1 = 0, from equation (1), thus Xn+1 = αxn−βxnyn becomes

αxn − xnβyn = 0 (5)

xn(α− βyn) = 0 (6)

It implies that xn = 0 and α− βyn = 0 then yn = α
β

Hence, the root of Xn+1 = αxn − βxnyn thus (xn, yn) is
(
0, αβ

)



M. O. Fokuoet al. / Eur. J. Pure Appl. Math, 17 (2) (2024), 1294-1305 1297

Also, let yn+1 = 0 then from equation (2) thus, Yn+1 = δxnyn − γyn also becomes

δxnyn − γyn = 0 (7)

yn(δxn − γ) = 0 (8)

Then yn = 0 and δxn − γ = 0 implies xn = γ
δ

Similarly, the root of Yn+1 = δxnyn − γyn thus (xn, yn) is
(γ
δ , 0

)
Therefore, the roots are (0, 0) ,

(
0, αβ

)
,
(γ
δ , 0

)
, and

(
γ
δ ,

α
β

)
3.2. The solutions of the Lotka Volterra function

This section is mainly about the solutions of the function. Let

Xn+1 = xn (9)

Yn+1 = yn (10)

Equating equation (1) and equation (9) becomes

αxn − xnβyn = xn

αxn − xnβyn − xn = 0

implies xn(α− βyn − 1) = 0

Then xn = 0 and α− βyn − 1 = 0
βyn = α− 1
Therefore, yn = α−1

β
Also equating equation (2) and equation (10) becomes

δxnyn − γyn = yn (11)

Then δxnyn − γyn − yn = 0
yn(δxn − γ − 1) = 0
Then yn = 0 and δxn − γ − 1 = 0
δxn = 1 + γ
therefore, xn = 1+γ

δ

Hence, the solutions of the function are
(
0, α−1

β

)
and

(
1+γ
δ , 0

)
3.3. Determination of the fixed point of the Lotka Volterra function

In this section, we will consider the two definitions of the function. That is; xn+1 =
αxn − xnβyn and yn+1 = δxnyn − γyn and then work out for the fixed point of the

function using the solutions, (0, 0),
(
0, α−1

β

)
,
(
1+γ
δ , 0

)
, and

(
1+γ
δ , α−1

β

)
. We then apply

the idea and the definition of the theorem of fixed points and fixed point. That is; a
function G is fixed point theorem having a minimum of one fixed point x ∈ X such that
G(x) = x. A point x0 is the fixed point of a function g(x), such that g (x0) = x0.
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1) Determining the fixed point of Xn+1 = αxn − xnβyn
At (0, 0)
Xn+1 = α(0)− (0)β(0)
Implies Xn+1 = 0− 0
Xn+1 = 0
Hence, (0, 0) is one of the fixed points but trivial.
Also, at(
1+γ
δ , α−1

β

)
Xn+1 = α

(
1+γ
δ

)
−

(
1+γ
δ

)
β
(
α−1
β

)
implies Xn+1 =

(α+αγ
δ

)
−
(
1+γ
δ

)
(α− 1)

=
(α+αγ

δ

)
−
[(α+αγ

δ

)
−
(
1+γ
δ

)]
=

(α+αγ
δ

)
−
(α+αγ

δ

)
+
(
1+γ
δ

)
=

(
1+γ
δ

)
Again,

(
1+γ
δ , α−1

β

)
is also a fixed point but its existence will depend on the values

of the parameter of the function.

2) Determining the fixed point of Yn+1 = δxnyn − γyn
Then at (0, 0)
Yn+1 = δ(0)(0)− γ(0)
Yn+1 = 0− 0
Yn+1 = 0

Also, at
(
1+γ
δ , α−1

β

)
Yn+1 = δ

(
1+γ
δ

)(
α−1
β

)
− γ

(
α−1
β

)
implies Yn+1 = (1 + γ)

(
α−1
β

)
− γ

(
α−1
β

)
= (1 + γ)

(
α−1
β

)
− γ

(
α−1
β

)
=

(
α−1
β

)
+
(
γα−γ

β

)
−
(
γα−γ

β

)
=

(
α−1
β

)
Hence, (0, 0),

(
0, α−1

β

)
,
(
1+γ
δ , 0

)
and

(
1+γ
δ , α−1

β

)
are the fixed points of the function.

Final Results

In this section we impose the contraction mapping on the Lotka Volterra to see the outcome
of its behaviour[6].

Definition 9 (Contraction Mapping in Metric Space). Given (M,d) a metric space, a
function T : M → M is said to be a contraction mapping if there is a constant a constant
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q with q < 1 such that for all x, y ∈ M

d(T (x), T (y)) ≤ q · d(x, y)

Applying the Banach fixed point theorem and the contraction mapping on the Lotka
Volterra functions. Using Banach fixed point theorem to find the fixed point of Lotka
Volterra functions.
From the definition of Banach fixed theorem, let (M, d) be a complete metric space then
every contraction has a unique fixed point.

If T (x) = x, T (y) = y
then
d(x, y) = d(T (x), T (y))
≤ q · d(x, y)
q < 1 so d(x, y) = 0 or x = y

To show that a fixed point exists, pick any x ∈ M . Setting x ∈ x0, we define a sequence
{xi}i∈z+ by setting xn+1 = T (xn) xn+1 = αT (xn)−βT (xn) (yn) xn+1 = (α−β(yn))T (xn)
Rewriting the contraction formula we have

xn+1 = (α− β(yn))T (xn)

d(xn+2, xn+1) ≤ (α− β(yn))qd(xn+1, xn)

d(xn+2, xn+1) ≤ (α− βyn)qd(xn+1, xn)

d (xn+1, xn) ≤ (α− βyn) q
nd (x1, x0)

d (xn+1, xn) ≤ αqnd (x1, x0)− βqnynd (x, x0)

≤ qn[αd (x1, x0)− βynd (x1, x0)]

d(xn+1, xn) ≤ qn[(α− β)ynd (x1, x0)]

Assuming n < m

d (xm, xn) ≤ d (xm, xm−1) + d (xm−1, xm−2) + . . .+ (xn+1, xn)

d (xm, xn) ≤
(
qm−n−1 + qm−n−2 + . . .+ q + 1

)
d (xn+1, xn)

≤
(
1− qm−n

1− q

)
d (xn+1, xn)

≤
(
1− qm−n

1− q

)
qn (α− βyn) d (x1, x0)

since qm=n < 1

d(xm, xn) <
qn

1− q
(α− βyn)d(x1, x0)

Thus {xi} is Cauchy.

This shows that (xn) is Cauchy sequence in X.

Hence, (xn) must be convergent, say lim
n→+∞

xn = x
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Since T is continuous, we have Tx = T

(
lim

n→+∞
xn

)
= lim

n→+∞
T (xn)

= lim
n→+∞

xn+1

Since the limit of xn+1 is the same as that of (xn)

Thus, x is a fixed point of T.

ILLUSTRATION 1

Xn+1 = g(xn, yn) = αxn − xnβyn

Then, by considering the coordinate of y, that is yn =
α− 1

β

lim
yn→α−1

β

g(xn, yn) = lim
yn→α−1

β

β(αxn − xnβyn)

= xn lim
yn→α−1

β

(α− βyn) where n = 0, 1, 2, . . .

implies lim
yn→α−1

β

g(xn, yn) = xn

[
lim

yn→α−1
β

(α)− lim
yn→α−1

β

βyn

]
= xn[α− β(α− 1)]

= xn × 1

= xn

Hence, lim
yn→α−1

β

Xn+1 = lim
yn→α−1

β

g(xn) = xn irrespective of the values of the parameters.

This implies: when n = 0, x1 = g(x0) = x0.

When n = 1, X2 = g(x1) = x1.

When n = 2, X3 = g(x2) = x2.

Hence, the orbit {x0, x1 = g(x0) = x0, x2 = g(x1) = x1, x3 = g(x2) = x2, . . .}

Serve as the fixed points of the function since it is a repeated point that is unique and
asymptotically stable throughout the iteration process.

Example 1. Given f(xn, yn) = αxn − xnβyn. Let γ > 1, δ > 1, α > 1, and β > 1. At
γ = 1.1, δ = 2.1, α = 1.2, and β = 2.5.(

1 + γ

δ
,
α− 1

β

)
implies (xn, yn)

Then, lim
yn→α−1

β

f(xn, yn) = lim
yn→α−1

β

(αxn − xnβyn)
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At α = 1.2, β = 2.5

Implies lim
yn→α−1

β

f(xn, yn) = xn lim
yn→α−1

β

(1.2− 2.5yn)

When n = 0, x0 =
1 + γ

δ
=

1 + 1.1

2.1
= 1,

y0 =
α− 1

β
=

1.2− 1

2.5
= 0.08

Implies (x0, y0) = (1, 0.08)

impliesX1 = lim
yn→α−1

β

f(x0, y0) = lim
y0→0.08

f(x0, y0) = lim
y0→0.08

f(1, 0.08)

= x0 lim
y0→0.08

(1.2− 2.5y0)

= 1[1.2− 2.5(0.08)]

This implies X1 = x0 = 1

Now for X2, we iterate the function again using x1 = 1 and use different values for the
parameters for y coordinate, that is;α = 10, β = 12 at n = 1

That is lim
y1→α−1

β

f(x1, y1) = x1 lim
y→

α−1
β

(10− 12y1).

where y1 =
10− 1

12
=

9

12
= 0.75.

Hence (x1, y1) = (1, 0.75)

Therefore X2 = lim
yn→α−1

β

f(x,y1) = lim
y1→0.75

f(x1, y1).

= x1 lim
y1→0.75

(10− 12y1)

= 1[10− 12(0.75)]

This implies X2 = x1 = 1

The iteration process so far indicates the limit of xn+1 is the same as that of (xn) and keeps

repeating itself. Hence, xn =
1 + γ

δ
is a fixed point of the function.

Which implies that

when n = 0, X1 = g(x0) = x0

when n = 1, X2 = g(x1) = x1

when n = 2, X3 = g(x2) = x2
...

when n = k,Xk+1 = g(xk) = xk

Considering equation (12), that is yn+1 = δxnT (yn)− γT (yn)
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We pick any y ∈ M setting y = y0, we define a sequence {yi}i∈Z+ by setting yn+1 = T (yn)

yn+1 = δxnT (yn)− γT (yn)

Rewriting the contraction formula we have yn+1 = (δxn − γ)T (yn)

d(yn+2, yn+1) ≤ (δxn − γ)qd(yn+1, yn)

or

d(yn+1, yn) ≤ (δxn − γ)qnd(y1, y0)

d(yn+1, yn) ≤ qn(δxn − γ)d(y1, y0)

Assuming n < m

d(ym, yn) ≤ d(ym, ym−1) + d(ym−1, ym−2) + . . .+ d(yn+1, yn)

d(ym, yn) ≤ (qm−n−1 + qm−n−2 + . . .+ q + 1)d(yn+1, yn)

d(ym, yn) ≤
1− qm−n

1− q
d(yn+1, yn)

since qm−n < 1

d(ym, yn) <
qn

1− q
(δxn − γ)d(y1, y0)

Thus {yi} is Cauchy.

This shows that yn is a Cauchy sequence in M
Hence, (yn) must be convergent, say lim

n→+∞
yn = y

Since T is continuous, we have Ty = T

(
lim

n→+∞
yn

)
= lim

n→+∞
Tyn

= lim
n→+∞

yn+1

= y

Since the limit of yn+1 is the same as that of yn

Thus, y is a fixed point of T.

ILLUSTRATION 2

Similarly, let Yn+1 = h(xn, yn) = δxnyn − γyn

Then, by considering the coordinate of x, that is xn =
1 + γ

δ
lim

xn→ 1+γ
δ

h(xn, yn) = lim
xn→ 1+γ

δ

(δxnyn − γyn)

= yn lim
xn→ 1+γ

δ

(δxn − γ) where n = 0, 1, 2, . . .

= δ

(
1 + γ

δ

)
yn − γyn
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= yn

[
δ

(
1 + γ

δ

)
− γ

]
= yn[(1 + γ)− γ]

= yn × (1)

= yn

Hence, Yn+1 = h(yn) = yn irrespective of the values of the parameters. whitewhitespaceere

when n = 0, Y1 = h(y0) = y0

when n = 1, Y2 = h(y1) = y1

when n = 2, Y3 = h(y2) = y2

This forms the orbit {y0, y1 = h(y0) = y0, y2 = h(y1) = y1, y3 = h(y2) = y2, . . .}
of the function that are equilibrium in nature, asymptotically stable and continuous

after several iterations.

Example 2.

Given Yn+1 = h(xn, yn) = δxnyn − γyn. Let γ > 1, δ > 1, and α > 1, β > 1. At

γ = 1.1, δ = 2.1, α = 1.2, β = 2.5.(
1 + γ

δ
,
α− 1

β

)
implies (xn, yn))

Then, taking the limit of the function Yn+1as xn → 1 + γ

δ
for γ = 1.1, δ = 2.1

implies lim
xn→ 1+γ

δ

h(xn, yn) = lim
xn→ 1+γ

δ

(δxnyn − γyn)

lim
xn→ 1+γ

δ

h(xn, yn) = lim
xn→ 1+γ

δ

(2.1xnyn − 1.1yn)

= yn lim
xn→ 1+γ

δ

(2.1xn − 1.1)

Then for xn =
1 + γ

δ
,When n = 0, implies x0 =

1 + γ

δ
=

1 + 1.1

2.1
= 1,

Also, for y1 implies Y1 = lim
xo→1

h(x0, y0) = y0 lim
x0→1

(2.1x0 − 1.1)

= 0.008[2.1(1)− 1.1]

= 0.08

Hence, y1 = y0 = 0.08

Now, using y1 = 0.08 as the initial value for the next iteration Y2 and taking different
values for the parameters of x coordinate, that is; γ = 10, δ = 12 at n = 1

That is lim
xn→ 1+γ

δ

h(xn, yn) = lim
xn→ 1+γ

δ

(12xnyn − 10yn)
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= yn lim
xn→ 1+γ

δ

(12xn − 10)

x1 =
11

12
= 0.92

(x1, y1) = (0.92, 0.08)

Y2 = lim
x1→0.92

h(x1, y1) = y1 lim
x1→0.92

(12x1 − 10)

= 0.08[12(0.92)− 10]

= 0.08

Again the final value of y2 = y1 = 0.08
Hence, from the iteration process so far, the limit of Yn+1 is the same as that of (yn) and
keeps repeating itself. Thus,indicating that yn = α−1

β is a fixed point of the function.

Which implies that: when n = 0, Y1 = h(y0) = y0

when n = 1, Y2 = h(y1) = y1

when n = 2, Y3 = h(y2) = y2
...

when n = k, Yk+1 = h(yk) = yk

Clearly, at a fixed value of γ, δ, α, β for h(xn, yn) and f(xn, yn) , i.e.,
(γ = 1.1, δ = 2.1, α = 1.2, β = 2.5),The functions have fixed values, for instance, (1, 0.08)
irrespective of the number of successive iterations and the values for the parameters of the
x and y coordinates. This indicates that the structure of the fixed orbits of the function
is in equilibrium as it travels through time with a stable and continuous movement.

4. Conclusion

The Lotka-Volterra function has been studied, and it shows that the function has two sets

of roots, or zeros. (0, 0) and
(
γ
δ ,

α
β

)
where the latter depends on the parameters of the

function. Again, there are four solutions of the function (0, 0),
(
0, α−1

β

)
,
(
1+γ
δ , 0

)
and(

1+γ
δ , α−1

β

)
, where (0, 0) as a trivial solution always exits but the existence of

(
1+γ
δ , α−1

β

)
depends on the parameters of the function.The study also shows that the solutions of the
function are the fixed points of the function, and the limit points, as the fixed points of the
function, are asymptotically stable and continuous after several iterations. The outcome
of the fixed points after several iterations forms a fixed orbit structure of the function,
irrespective of the value of the parameter. In addition, the uniqueness of the fixed points
demonstrates the stability and continuity of the function in its steady state.
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