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Abstract. The stochastic transportation problem with imprecise data is a probabilistic chance-
constrained programming (CCP) problem in which the objective function is fuzzy and the supply
and demand are random. Three models for the STP with ID with mixed-type restrictions that
follow the Lomax distribution (LD) are created in this research. Optimising the transportation
cost in FTP under probabilistic mixed constraints is the goal of the research project. To do this,
the probabilistic mixed constraints are transformed into deterministic form using the LD, and the
cost coefficient of the fuzzy objective function is changed with alpha cut representation. Numerical
examples are presented to demonstrate the suggested models.
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1. Introduction

Making decisions is essential in many different fields. The main goal of the trans-
portation problem (TP) is to reduce the cost of transferring goods and materials between
producers and consumers, enabling the manufacturer to better satisfy consumer demands.
An uneven transportation issue with mixed constraints (TPMC) arises when there is a no-
ticeable expansion or reduction in both the capacity of a supply and the need of a demand
in a typical transportation system. Many researchers TP with mixed constraints intro-
duced first by Brigden [7], had proposed different models by V. Adlakha [2], A. Das, [11],
S. Agarwal [3],S. Gupta, [19], V. Vidhya, [32], Rashid, [31], and extended multiobjectived
in fuzzy by Gupta [20]. The terms for TP that are modelled under such circumstances
are fuzzy transportation problems (FTP) and stochastic transportation problems (STP).
Comparision of the TP with different authors defined on Gessesse [16], Jerbi [21], Al Qah-
tani et al. [30], Nasseri and Bavandi [28], Dutta et al. [13], Mahapatra et al. [26], Agrawal
and Ganesh [5], Das and Lee
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The Lomax distribution is utilised extensively these days in numerous domains, in-
cluding decision-making. This paper’s goal is to use the SFTPMC model to optimise the
overall cost of transportation under ambiguous situations. Generally speaking, fuzzy or
probability theory is used to characterise uncertainty. However, because it requires suffi-
cient knowledge, using fuzzy theory or probability theory with stochastic to show every
indeterminacy is not always feasible. In actuality, the uncertainty theory is applied be-
cause low-frequency occurrences happen in our day-to-day lives. It becomes difficult to
schedule an appropriate transport plan under these conditions in order to reduce the over-
all expenditures. This study offers a useful paradigm that the decision making may use to
handle some unpredictable variables without compromising customer reliability. Agrawal
[4], Aruna Chalam [9], Giri et al. [18][19], Acharya et al. [1], Gessesse [17], Maity et al.
[27] were solved the STP articles that involve both fuzziness and randomness. This study
might be expanded to include additional areas where plans or decisions must be made
under unknown circumstances.

There are four sections to this paper: section 2 provides an overview of the funda-
mental terms and concepts, while section 3 presents the suggested lomax distribution, the
mathematical formulation of the SFTPMC, the steps involved in solving it, and a descrip-
tion of the suggested strategy supported by numerical examples. Moreover, the conclusion
in section 4 signifies the end of the paper.

1.1. Research Gap and Motivation

SFTPMC was used to discover and resolve uncertainty in linear programming prob-
lems (LPPs). Fuzzy transposition problems (FTP) are unique circumstances in which
many academics have devised various algorithms and ranking functions to turn fuzzy
data into crisp data in order to handle the FTP. Neutrosophic Transportation Problems
(NTP) have recently been proposed as a way to use optimization techniques with unknown
and indeterminate variables. Furthermore, many researchers have proposed Fuzzy Opti-
mization Techniques (FOT), the Single-valued Trapezoidal Neutrosophic Transportation
Problem (SVTNTP) [22], the Commercial Traveler Problem (CTP) [29], and a two-stage
conventional transportation model to distribute relief aid to victims in uncertain scenarios
[15] and multi-objective stochastic solid transportation problem (MOSSTP) uncertainity
with weibull distribution [12]. In this paper proposed the SFTPMC, the stochastic trans-
portation problem with imprecise data using the Lomax distribution provides a valuable
tool for addressing the challenges of transportation planning and logistics in an uncertain
environment, and it helps decision makers make more accurate and robust decisions by
considering the stochastic nature of various factors and incorporating the Lomax distri-
bution for modeling imprecise data.

2. Preliminaries

Let we recall first of all the fuzzy set theory and triangular fuzzy number and alpha-cut
concepts used in this paper. Now a days the imprecise information modelling are done by
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using fuzzy concepts [33].

Definition 1. (Fuzzy set). Let X be a crisp set and let Ã ⊆ F be a fuzzy set where F is
a fuzzy space. The fuzzy set Ã is defined on crisp set X with a membership function µÃ ,
can be expressed as follows

Ã = {(x, µÃ(x)), x ∈ X}

where µÃ :X → [0, 1].

Definition 2. (Triangular Fuzzy Number). A fuzzy number ã is a triangular fuzzy
number denoted by (a1, a2, a3) and its membership function µã is given below

µÃ =


x−a1
a2−a1

, if a1 ≤ x ≤ a2
a3−x
a3−a2

, if a2 ≤ x ≤ a3

0, otherwise

Definition 3. (α - cut). The cut or level of a fuzzy set A is a crisp set defined by

Aα = {x/µÃ(x) ≥ α}, 0 < α < 1.

A triangular fuzzy number (a,b,c) can be represented as an interval number form as
follows.

(a, b, c) = [a+ (b− a)α, c− (c− b)α]

Figure 1: α-cut

Definition 4. (Linear Membership Function). [6] A linear membership function can
be defined as

µR(X) =


0 if xij < x

¯ ij
x̄ij−xij

x̄ij−x
¯ ij

if x
¯ ij < xij < x̄ij

1 if xij > x̄ij

In order to transform the fuzzy system to a deterministic set, the alpha cut representation
using linear membership function is

x̄ij − xij
x̄ij − x

¯ ij

= α

such that
xij = (1− α)x̄ij + αx

¯ ij , ∀α ∈ [0, 1]
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Definition 5. (Feasible solution). Any set of {xij ≥ 0, i = 1, 2, ...,m; j = 1, 2, ...n}
that satisfies all the constraints is called a feasible solution to the problem.

Definition 6. (Optimal solution).A feasible solution to the problem which minimizes
the total shipping cost is called an optimal solution to the problem.

2.1. Lomax Distribution

The Lomax distribution, also known as the Pareto Type II distribution [25], is a
probability distribution commonly used to model heavy-tailed and skewed data.

Definition 7. (Lomax Distribution). [23] [24] The Lomax distribution expressed as
the random variable X has parameters scale parameter β and shape parameter α as

X ∼ Lomax(β, α),

A Lomax random variable X with scale parameter β and shape parameter α has probability
density function

f(x) =
α

β
(1 +

x

β
)−(α+1), x > 0

for β > 0, α > 0.
The cumulative distribution function is as follows by

F (x) = 1− (1 + x
β )

−α

where α and β are the shape and scale parameters, respectively, and x > 0, β > 0, α > 0.

One specific aspect that has gained attention in stochastic transportation modeling is
the involvement of the Lomax distribution. The real motivation behind incorporating the
Lomax distribution into stochastic transportation modeling lies in its ability to capture
the variability and uncertainty in transportation parameters such as supply and demand.
By using the Lomax distribution, researchers aim to better represent the range of possible
values for these parameters and incorporate their probabilistic nature into the modeling
process. By doing so, they can obtain more realistic and robust transportation models
that account for the inherent uncertainty in the system. Additionally, the Lomax distribu-
tion provides flexibility in handling mixed-type restrictions and fuzzy objective functions,
allowing for a more comprehensive analysis of the transportation problem under uncertain
conditions.

Probabilistic programming is a mathematical programming approach that is utilized
when some or all of the model parameters are random and follow a probability distribution.
Charnes and Cooper [10] established the chance-constrained programming technique for
individual probabilistic constraints. Rasha [14] revealed how to turn chance constraints
into similar deterministic linear constraints in the lomax distribution, as presented here,
offers equal deterministic constraints for individual and joint constraints.
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The goal of the paper is to optimize the transportation cost in the Stochastic Trans-
portation Problem under probabilistic mixed constraints. To achieve this, transforms
the probabilistic mixed constraints into a deterministic form using the Lomax distribu-
tion. Overall, the real motivation of Lomax distribution involvement in stochastic trans-
portation modeling is to enhance the accuracy and reliability of transportation models
by incorporating the probabilistic nature of transportation parameters and capturing the
variability and uncertainty present in real-world transportation systems.

3. Main results

3.1. Formulation of the Stochastic Transportation Problem by Using
Lomax Distribution

The following is our definition of the transportation issue with mixed constraints. Let
us assume that there are m origins, Oi, {i = 1,2,,,,,,,m} divided into sets I1, I2, I3, such that
the origin Oi(i ∈ I1) must distribute at least at ai supply units, Oi(i ∈ I2) must distribute
precisely at ai supply units, and Oi(i ∈ I3) may distribute at most at ai supply units.
Assume also that there are n destinations, Dj {j=1,2,...,n}, divided into sets J1, J2, J3,
where Dj(j ∈ J1) is required to receive a minimum of bj units of demand, Dj(j ∈ J2) an
exact amount of bj units of demand, and Dj(j ∈ J3) a maximum of bj units of demand.

The main goal is to reduce the overall cost of shipping, where cij represents the cost
of shipping from OitoDj and xij represents the amount of shipping from OitoDj . All
requests and supply are considered to be non-negative.

Applying the constraints in the proposed TP model to the deterministic constraints
is required to obtain the quantiles of a probability distribution function in a closed form.
The fact that the Lomax distribution has the quantiles in their closed form is also another
incentive to use it.

Mathematically, the transportation issue with mixed constraints may be expressed as
follows:

Minimizez =
m∑
i=1

n∑
j=1

cijxij ,

subject to constraints,

P (
∑
j=J

xij ≥ ai) ≥ P (ai), i ∈ I1 = 1, 2, ....m1

P (
∑
j=J

xij = ai) ≥ P (ai), i ∈ I2 = m1 + 1,m1 + 2, ....m2

P (
∑
j=J

xij ≤ ai) ≥ P (ai), i ∈ I3 = m2 + 1,m2 + 2, ....m

P (
∑
i=I

xij ≥ bj) ≥ P (bj), j ∈ J1 = 1, 2, ....n1
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P (
∑
i=I

xij = bj) ≥ P (bj), j ∈ J2 = n1 + 1, n1 + 2, ....n2

P (
∑
i=I

xij ≤ bj) ≥ P (bj), j ∈ J3 = n2 + 1, n2 + 2, ....n

and
xij ≥ 0, i ∈ I, j ∈ J

where P (ai) and P (bj) are the probabilities of the random variables of supply and demand
respecively and also which follows the lomax distribution. The parameters of the lomax
distribution for supply ai has shape parameter αai and scale parameter βai . Like wise the
parameters of the lomax distribution for demand bj has shape parameter αbj and scale
parameter βbj .

The following cases are to be considered:
(i) Only ai, i = 1, 2, . . . , m follows LD.
(ii) Only bj , j = 1, 2, . . . , n follows LD.
(iii) Both ai and bj , i=1,2,.....m and j=1,2,....n follows LD.

Case 1.
Only ai follows LD
For

P (

n∑
j=1

xij ≥ ai) ≥ P (ai), i ∈ I1,

P (ai ≤
n∑

j=1

xij) ≥ P (ai), i ∈ I1

Let us consider
∑n

j=1 xij = δai and ai ≥ ξaithen

P (ai ≤ δai) ≥ P (ai), i ∈ I1

Now by using Lomax distribution PDF, integrating from∫ δai

ξai

αai

βai
(1 +

ai − ξai
βai

)−(αai+1)dai ≥ P (ai)

[−(1 +
ai − ξai
βai

)−αai ]δaiξai
≥ P (ai)

1 +
δai − ξai

βai
≤ −(P (ai)− 1)

− 1
αai

δai ≤ ξai − βai[1 + (P (ai)− 1)
− 1

αai ]

n∑
j=1

xij ≤ ξai − βai[1 + (P (ai)− 1)
− 1

αai ]

Remarks.
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(i) For

P (

n∑
j=1

xij ≤ ai) ≥ P (ai), i ∈ I3,

then
n∑

j=1

xij ≥ ξbj + βbj [(P (bj) + 1)
− 1

αbj − 1]

(ii) For

P (
n∑

j=1

xij = ai) ≥ P (ai), i ∈ I2,

then
n∑

j=1

xij = ξai − βai[1 + (P (ai)− 1)
− 1

αai ]

We get the same deterministic result for both inequality types for supply and demand
constraints by using lomax distribution to select the probability value at the 50% level in
the supply and demand inequality constraint.

Case 2.
Only bj follows LD
For

P (

m∑
i=1

xij ≤ bj) ≥ P (bj), j ∈ J3,

P (bj ≥
m∑
i=1

xij) ≥ P (bj), j ∈ J3

Let us consider
∑m

i=1 xij = δbj and bj ≥ ξbjthen

P (bj ≤ δbj) ≥ P (bj), j ∈ J3

Now by using Lomax distribution PDF, integrating from∫ ξbj

δbj

αbj

βbj
(1 +

bj − ξbj
βbj

)−(αbj+1)dbj ≥ P (bj)

[−(1 +
bj − ξbj
βbj

)−αbj ]
ξbj
δbj

≥ P (bj)

[1 +
δbj − ξbj

βbj
]−αbj ≥ P (bj) + 1

δbj ≥ ξbj + βbj [(P (bj) + 1)
− 1

αbj − 1]

m∑
i=1

xij ≥ ξbj + βbj [(P (bj) + 1)
− 1

αbj − 1]
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Remarks.
(i) For

P (
m∑
i=1

xij ≤ bj) ≥ P (bj), j ∈ J1,

then
m∑
i=1

xij ≥ ξai − βai[1 + (P (ai)− 1)
− 1

αai ]

(ii) For

P (

m∑
i=1

xij = bj) ≥ P (bj), j ∈ J2,

then
m∑
i=1

xij ≥ ξbj + βbj [(P (bj) + 1)
− 1

αbj − 1]

Case 3.
Both ai and bj follows LD By using the above cases (i) and (ii) we follows.

3.2. Formulation of the Modulations of the Stochastic Transportation
Problem with the Imprecise Data by Using Lomax Distribution

The nature of the parameters (cost, supply, and demand) changes in many real-life
scenarios, making it difficult for decision to make the best choice. It is possible to manage
this scenario with fuzzy and random variables. We treat restrictions as random variables
and cost as triangular fuzzy variables in our model. Depending on the circumstances
around decision, there may or may not be uncertainty regarding supply or demand limits.
As a result, we develop three STP models depending on the degree of uncertainty in the
requirements.

Here the objective function can be used the alpha cut to transform the provided tri-
angular fuzzy cost of problem into an equal deterministic cost.

Minimizez =

m∑
i=1

n∑
j=1

cij((1− α̂)x̄ij + α̂xij) (1)

The following models are to be considered:
(i) Only ai, i = 1, 2, . . . , m follows uncertainty.
(ii) Only bj , j = 1, 2, . . . , n follows uncertainty.
(iii) Both ai, i = 1, 2, . . . , m and bj , j = 1, 2, . . . , n follow uncertainty.

Model 1.
Only ai follows uncertainty For modulation of the STP with the imprecise data by
using LD is used for probabilistic only for supply constraints and demand constraints are
certain.
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The mathematics formulation can be represented as follows as

Minimizez =
m∑
i=1

n∑
j=1

cij((1− α̂)x̄ij + α̂xij)

subject to constriants,

n∑
j=1

xij ≤ ξai − βai[1 + (P (ai)− 1)
− 1

αai ], i ∈ I1 (2)

n∑
j=1

xij = ξai − βai[1 + (P (ai)− 1)
− 1

αai ], i ∈ I2 (3)

n∑
j=1

xij ≥ ξbj + βbj [(P (bj) + 1)
− 1

αbj − 1], i ∈ I3 (4)

m∑
i=1

xij ≥ bj , j ∈ J1 (5)

m∑
i=1

xij = bj , j ∈ J2 (6)

m∑
i=1

xij ≤ bj , j ∈ J3 (7)

and
xij ≥ 0

Model 2.
Only bj follows uncertainty For modulation of the STP with the imprecise data by
using LD is used for probabilistic only for demand constraints and supply constraints are
certain.

The mathematics formulation can be represented as follows as

Minimizez =
m∑
i=1

n∑
j=1

cij((1− α̂)x̄ij + α̂xij)

subject to constriants,
n∑

j=1

xij ≥ ai, i ∈ I1 (8)

n∑
j=1

xij = ai, i ∈ I2 (9)
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n∑
j=1

xij ≤ ai, i ∈ I3 (10)

m∑
i=1

xij ≤ ξai − βai[1 + (P (ai)− 1)
− 1

αai ], j ∈ J1 (11)

m∑
i=1

xij = ξbj + βbj [(P (bj) + 1)
− 1

αbj − 1], j ∈ J2 (12)

m∑
i=1

xij ≥ ξbj + βbj [(P (bj) + 1)
− 1

αbj − 1], j ∈ J3 (13)

and
xij ≥ 0

Model 3.
Both ai and bj follows uncertainty For modulation of the STP with the imprecise
data by using LD is used for probabilistic both supply and demand constraints.

The mathematics formulation can be represented as follows as

Minimizez =
m∑
i=1

n∑
j=1

cij((1− α̂)x̄ij + α̂xij)

subject to constriants,

n∑
j=1

xij ≤ ξai − βai[1 + (P (ai)− 1)
− 1

αai ], i ∈ I1 (14)

n∑
j=1

xij = ξai − βai[1 + (P (ai)− 1)
− 1

αai ], i ∈ I2 (15)

n∑
j=1

xij ≥ ξbj + βbj [(P (bj) + 1)
− 1

αbj − 1], i ∈ I3 (16)

m∑
i=1

xij ≤ ξai − βai[1 + (P (ai)− 1)
− 1

αai ], j ∈ J1 (17)

m∑
i=1

xij = ξbj + βbj [(P (bj) + 1)
− 1

αbj − 1], j ∈ J2 (18)

m∑
i=1

xij ≥ ξbj + βbj [(P (bj) + 1)
− 1

αbj − 1], j ∈ J3 (19)

and
xij ≥ 0.
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Example 1. This section offers an example to show the effectiveness and applicability. By
taking from the weibull distribution [8]. There are three factories and four repositories, and
the coal plant produces a homogeneous output. The manufacturing capacity of coal plant
A is precisely a1 units, the manufacturing capacity of coal plant B is at least a2 units, and
the manufacturing capacity of coal plant C is the greatest amount of a3 units. Similarly,
demand capacity for repository 1 is at least b1 units; demand capacity for repository 2 is at
most b2 units; and demand capacity for repository 3 is at least b3 units. Repository 4 can
hold precisely b4 units in demand. If the cost of transportation for each unit from every
coal plant to every deposit is cij, it is in the form of imprecise data

1 2 3 4 ai
A (0,0.5,1) (2,4,6) (1.5,2,3) (2,4,5) =a1
B (3,5,7) (1.5,2,3) (0,0.5,1) (4,5.8,6) ≥ a2
C (7,8.5,9) (2.5,3,4) (3,4,5) (2,3,4) ≤ a3
bj ≥ b1 ≤ b2 ≥ b3 = b4

Table 1: Fuzzy Data

i.e., TFN by using the linear membership function of alpha cut representation it will
be convert into crisp data. By using these formula with alpha value as ”0”, it represent in
given table into crisp data,

xij = ((1− α̂)x̄ij + α̂xij)∀[0, 1]

1 2 3 4 ai
A 1 6 3 5 =a1
B 7 3 1 6 ≥ a2
C 9 4 5 4 ≤ a3
bj ≥ b1 ≤ b2 ≥ b3 = b4

Table 2: Crisp data

Here the following arbitrary nominal values of certain constants are supplied as a1 =
20, a2 = 16 a3 = 25, and demand as b1 = 11, b2 = 13, b3= 17, b4= 14 in the following
sections. Furthermore, probabilities are given as Pa1 = 0.50, Pa2= 0.96, Pa3= 0.95, Pb1=
0.26, Pb2= 0.29, Pb3= 0.25, Pb4= 0.28. Since ai and bj are presumed to follow Lomax
distribution, the distinct values for the parameters are ξa1 = 19, ξa2 =13, ξa3= 24, ξb1=
10, ξb2 = 11, ξ − b3= 16, ξb4 = 13 and also the scale parameter βai and βbj both are as 2
and the shape parameter αai and αbj are 3 as taken. Now the modulations of the stochastic
transportation problem with the imprecise data by using lomax distribution as

Model-1. For modulation of the STP with the imprecise data by using LD is used for
probabilistic only for supply constraints and demand constraints are certain.

Then By using the Lingo software, we obtain the optimal transportation cost as 92.52
and x11= 11, x14= 8.52, x23= 17, x34=5.48 and unit flow as 42.

Model-2. For modulation of the STP with the imprecise data by using LD is used for
probabilistic only for demand constraints and supply constraints are certain.
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1 2 3 4 ai
A 1 6 3 5 =19.52
B 7 3 1 6 ≥ 16.85
C 9 4 5 4 ≤ 23.6

bj ≥ 11 ≤ 13 ≥ 17 = 14

Table 3: Only ai are uncertain

1 2 3 4 ai
A 1 6 3 5 =20
B 7 3 1 6 ≥ 16
C 9 4 5 4 ≤ 25

bj ≥ 10.15 ≤ 10.83 ≥ 16.2 = 12.84

Table 4: Only bj are uncertain

Then By using the Lingo software, we obtain the optimal transportation cost as 87.56
and x11= 10.15, x14= 9.85, x23= 16.2, x34=2.99 and unit flow as 39.19.

Model-3. For modulation of the STP with the imprecise data by using LD is used for
probabilistic both supply and demand constraints.

1 2 3 4 ai
A 1 6 3 5 =19.52
B 7 3 1 6 ≥ 16.85
C 9 4 5 4 ≤ 23.6

bj ≥ 10.15 ≤ 10.83 ≥ 16.2 = 12.84

Table 5: Both ai and bj are uncertain

Then By using the Lingo software, we obtain the optimal transportation cost as 87.08
and x11= 10.15, x14= 9.37, x23= 16.2, x34=3.47 and unit flow as 39.19.

3.3. Result and Discussion with comparison

The ideal results are compared to different distributions for the SFTPMC problem
minimizes transportation costs relative to prior techniques. The table below illustrates
the comparison of findings.

The table 6 shows the results obtained from different distribution functions. It justified
the lomax distribution of the approach which attains very minimum when compare with
other different distributions.
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Distribution Optimization Method Model 1 Model 2 Model 3

Weibull Optimal Transportation cost 93.67 95.75 96.42
Normal 102.68 105.8 107.4
Poisson 98.45 100.2 99.89
Lomax 92.52 87.56 87.08

Weibull Units flow 42 42.84 42.84
Normal 49 49.85 49.85
Poisson 45 45.6 45.6
Lomax 42 39.19 39.19

Table 6: Comparing results with different distributions

4. Conclusion

This article presents a methodology for solving an SFTPMC that has probabilistic
constraints together with the lomax distribution and a fuzzy integer for the objective
function’s cost coefficient. Alpha cut representation is used to transform the fuzzy objec-
tive value into a corresponding consistent objective function, and LD is used to transform
each stochastic constraint into an analogous deterministic constraint. The Lomax distribu-
tion is a crucial aspect of stochastic transportation modeling, as it captures variability and
uncertainty in transportation parameters like supply and demand. This paper aim to rep-
resent these values realistically and incorporate their probabilistic nature, resulting in more
robust models and more comprehensive analysis under uncertain conditions.Additionally,
three SFTPMC models—models 1, 2, and 3—are constructed, and Lingo software has
been used to determine each model’s ideal answer.A numerical example illustrating the
models’ performance is provided.

Due to this issue, SFTPMC is essential in many circumstances involving managerial
decision-making, such as the planning of several intricate resource allocation issues in
the context of industrial production, where supply and demand are essentially random
variables. This model will function as an effective tool for the best planning in such
circumstances. When compared with different distributions, the LD optimum solution is
superior in this instance, due to minimum.
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