On the McShane-Dunford-Stieltjes Integral and McShane-Pettis-Stieltjes Integral
DOI:
https://doi.org/10.29020/nybg.ejpam.v17i2.5165Keywords:
McShane-Stieltjes integral, McShane-Dunford-Stieltjes integral, McShane-Pettis-StieltjesAbstract
This paper combines the McShane-Stieltjes integral and Pettis approaches by utilizing Pettis' definition, which coincides with the Dunford integral rather than the version applicable to weakly measurable functions with Lebesgue integrable images. In this way, another integration process without measure theoretic standpoint will be introduced. To this end, we will define the McShane-Dunford-Stieltjes integral and McShane-Pettis-Stieltjes integral in Banach Space and provide its simple properties such as the uniqueness, linearity property of both the integrand and integrator, additivity and formulate the Cauchy criterion of these integrals. In addition, the existence theorem of McShane-Dunford Stieltjes integral will also be presented.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.