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1. Introduction

It is well-known that the branch of mathematics called topology is related to all ques-
tions directly or indirectly concerned with continuity. Semi-open sets, preopen sets, α-open
sets, β-open sets and δ-open sets play an important role in the researches of generaliza-
tions of continuity in topological spaces. By using these sets many authors introduced and
studied various types of weak forms of continuity for functions and multifunctions. Singal
and Singal [28] introduced the concept of almost continuous functions as a generaliza-
tion of continuity. Munshi and Bassan [16] studied the notion of almost semi-continuous
functions. Noiri [18] introduced and investigated the concept of almost α-continuous func-
tions. Nasef and Noiri [17] introduced two classes of functions, namely almost precontin-
uous functions and almost β-continuous functions by utilizing the notions of preopen sets
and β-open sets due to Mashhour et al [15] and Abd El-Monsef et al. [12], respectively.
The class of almost precontinuity is a generalization of almost α-continuity. The class of
almost β-continuity is a generalization of almost semi-continuity. Keskin and Noiri [13]
introduced the concept of almost b-continuous functions by utilizing the notion of b-open
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sets due to Andrijević [1]. The class of almost b-continuity is a generalization of almost
precontinuity and almost semi-continuity. The class of almost β-continuity is a gener-
alization of almost b-continuity. Popa [22] introduced the concepts of upper and lower
almost continuous multifunctions. Popa and Noiri [23] introduced the notions of upper
and lower almost quasi-continuous multifunctions. Several characterizations of upper and
lower almost quasi-continuous multifunctions were investigated in [19].

In 1996, Popa and Noiri [24] introduced and investigated the notions of upper and lower
almost α-continuous multifunctions. In 1997, Popa et al. [26] introduced the concepts of
upper and lower almost precontinuous multifunctions. In particular, several characteriza-
tions of upper and lower almost precontinuous multifunctions were presented in [27]. In
1999, Noiri and Popa [20] introduced the concepts of upper and lower almost β-continuous
multifunctions. Some characterizations of upper and lower almost β-continuous multi-
functions were investigated in [25]. In 2006, Ekici and Park [11] introduced and studied
almost γ-continuous multifunctions. Noiri and Popa [21] introduced and investigated the
notions of upper and lower almost m-continuous multifunctions as multifunctions from a
set satisfying some minimal conditions into a topological space. In [3], the present author
introduced and studied the concept of pairwise almost M -continuous functions in bimini-
mal structure spaces. Laprom et al. [14] introduced and investigated the notion of almost
β(τ1, τ2)-continuous multifunctions. Viriyapong and Boonpok [29] introduced and studied
the concept of almost (τ1, τ2)α-continuous multifunctions. Moreover, some characteriza-
tions of almost (τ1, τ2)δ-semicontinuous multifunctions, almost weakly (τ1, τ2)-continuous
multifunctions, almost (Λ, sp)-continuous multifunctions, almost β(⋆)-continuous multi-
functions and almost ⋆-continuous multifunctions were established in [5], [8], [10], [6] and
[4] respectively. In this paper, we introduce the concepts of upper and lower almost
(τ1, τ2)-continuous multifunctions. Furthermore, several characterizations of upper and
lower almost (τ1, τ2)-continuous multifunctions are investigated.

2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and
Y ) always mean bitopological spaces on which no separation axioms are assumed unless
explicitly stated. Let A be a subset of a bitopological space (X, τ1, τ2). The closure of A
and the interior of A with respect to τi are denoted by τi-Cl(A) and τi-Int(A), respectively,
for i = 1, 2. A subset A of a bitopological space (X, τ1, τ2) is called τ1τ2-closed [9] if
A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed set is called τ1τ2-open. Let A be
a subset of a bitopological space (X, τ1, τ2). The intersection of all τ1τ2-closed sets of X
containing A is called the τ1τ2-closure [9] of A and is denoted by τ1τ2-Cl(A). The union
of all τ1τ2-open sets of X contained in A is called the τ1τ2-interior [9] of A and is denoted
by τ1τ2-Int(A).

Lemma 1. [9] Let A and B be subsets of a bitopological space (X, τ1, τ2). For the τ1τ2-
closure, the following properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).
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(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).

(5) τ1τ2-Cl(X −A) = X − τ1τ2-Int(A).

A subset A of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)r-open [29] (resp.
(τ1, τ2)s-open [5], (τ1, τ2)p-open [5], (τ1, τ2)β-open [5]) if A = τ1τ2-Int(τ1τ2-Cl(A)) (resp.
A ⊆ τ1τ2-Cl(τ1τ2-Int(A)), A ⊆ τ1τ2-Int(τ1τ2-Cl(A)), A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A)))).
The complement of a (τ1, τ2)r-open (resp. (τ1, τ2)s-open, (τ1, τ2)p-open, (τ1, τ2)β-open)
set is called (τ1, τ2)r-closed, (τ1, τ2)s-closed, (τ1, τ2)p-closed, (τ1, τ2)β-closed. Let A be a
subset of a bitopological space (X, τ1, τ2). The intersection of all (τ1, τ2)s-closed sets of
X containing A is called the (τ1, τ2)s-closure [5] of A and is denoted by (τ1, τ2)-sCl(A).
The union of all (τ1, τ2)s-open sets of X contained in A is called the (τ1, τ2)s-interior [5]
of A and is denoted by (τ1, τ2)-sInt(A). A subset A of a bitopological space (X, τ1, τ2)
is said to be α(τ1, τ2)-open [30] if A ⊆ τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(A))). The complement
of an α(τ1, τ2)-open set is called α(τ1, τ2)-closed. Let A be a subset of a bitopological
space (X, τ1, τ2). The intersection of all (τ1, τ2)p-closed (resp. α(τ1, τ2)-closed) sets of
X containing A is called the (τ1, τ2)p-closure (resp. α(τ1, τ2)-closure) and is denoted by
(τ1, τ2)-pCl(A) (resp. (τ1, τ2)-αCl(A)).

By a multifunction F : X → Y , we mean a point-to-set correspondence from X into
Y , and we always assume that F (x) ̸= ∅ for all x ∈ X. For a multifunction F : X → Y ,
following [2] we shall denote the upper and lower inverse of a set B of Y by F+(B) and
F−(B), respectively, that is, F+(B) = {x ∈ X | F (x) ⊆ B} and

F−(B) = {x ∈ X | F (x) ∩B ̸= ∅}.

In particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each A ⊆ X,
F (A) = ∪x∈AF (x).

3. Upper and lower almost (τ1, τ2)-continuous multifunctions

In this section, we introduce the notions of upper and lower almost (τ1, τ2)-continuous
multifunctions. Moreover, several characterizations of upper and lower almost (τ1, τ2)-
continuous multifunctions are discussed.

Definition 1. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper almost
(τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set V of Y containing F (x),
there exists a τ1τ2-open set U of X containing x such that F (U) ⊆ σ1σ2-Int(σ1σ2-Cl(V )).
A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper almost (τ1, τ2)-continuous
if F has this property at each point of X.

Lemma 2. For a subset A of a bitopological space (X, τ1, τ2), the following properties
hold:
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(1) (τ1, τ2)-sCl(A) = τ1τ2-Int(τ1τ2-Cl(A)) ∪A [5];

(2) (τ1, τ2)-sInt(A) = τ1τ2-Cl(τ1τ2-Int(A)) ∩A.

Lemma 3. Let A be a subset of a bitopological space (X, τ1, τ2). If A is τ1τ2-open in X,
then (τ1, τ2)-sCl(A) = τ1τ2-Int(τ1τ2-Cl(A)).

Theorem 1. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is upper almost (τ1, τ2)-continuous at x ∈ X;

(2) x ∈ τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(V )))) for every σ1σ2-open set V of Y containing

F (x);

(3) x ∈ τ1τ2-Int(F
+((σ1, σ2)-sCl(V ))) for every σ1σ2-open set V of Y containing F (x);

(4) x ∈ τ1τ2-Int(F
+(V )) for every (σ1, σ2)r-open set V of Y containing F (x);

(5) for each (σ1, σ2)r-open set V of Y containing F (x), there exists a τ1τ2-open set U
of X containing x such that F (U) ⊆ V .

Proof. (1) ⇒ (2): Let V be any σ1σ2-open set of Y containing F (x). There exists
a τ1τ2-open set U of X containing x such that F (U) ⊆ σ1σ2-Int(σ1σ2-Cl(V )). Thus,
x ∈ U ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V ))) and hence x ∈ τ1τ2-Int(F

+(σ1σ2-Int(σ1σ2-Int(V )))).
(2) ⇒ (3): This follows from Lemma 3.
(3) ⇒ (4): Let V be any (σ1, σ2)r-open set of Y containing F (x). Then, it follows

from Lemma 3 that V = σ1σ2-Int(σ1σ2-Cl(V )) = (σ1, σ2)-sCl(V ).
(4) ⇒ (5): Let V be any (σ1, σ2)r-open set of Y containing F (x). Then by (4),

x ∈ τ1τ2-Int(F
+(V )) and there exists a τ1τ2-open set U of X containing x such that

x ∈ U ⊆ F+(V ); hence F (U) ⊆ V .
(5) ⇒ (1): Let V be any σ1σ2-open set of Y containing F (x). Since σ1σ2-Int(σ1σ2-Cl(V ))

is (σ1, σ2)r-open, there exists a τ1τ2-open set U of X containing x such that F (U) ⊆
σ1σ2-Int(σ1σ2-Cl(V )). This shows that F is upper almost (τ1, τ2)-continuous at x ∈ X.

Definition 2. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower almost
(τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set V of Y such that

F (x) ∩ V ̸= ∅,

there exists a τ1τ2-open set U of X containing x such that σ1σ2-Int(σ1σ2-Cl(V ))∩F (z) ̸= ∅
for each z ∈ U . A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower almost
(τ1, τ2)-continuous if F has this property at each point of X.

Theorem 2. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower almost (τ1, τ2)-continuous at x ∈ X;
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(2) x ∈ τ1τ2-Int(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) for every σ1σ2-open set V of Y such that

F (x) ∩ V ̸= ∅;

(3) x ∈ τ1τ2-Int(F
−((σ1, σ2)-sCl(V ))) for every σ1σ2-open set V of Y such that

F (x) ∩ V ̸= ∅;

(4) x ∈ τ1τ2-Int(F
−(V )) for every (σ1, σ2)r-open set V of Y such that F (x) ∩ V ̸= ∅;

(5) for each (σ1, σ2)r-open set V of Y such that F (x) ∩ V ̸= ∅, there exists a τ1τ2-open
set U of X containing x such that U ⊆ F−(V ).

Proof. The proof is similar to that of Theorem 1.

Definition 3. [7] A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be almost (τ1, τ2)-
continuous at a point x ∈ X if for each σ1σ2-open set V of Y containing f(x), there exists
a τ1τ2-open set U of X containing x such that f(U) ⊆ σ1σ2-Int(σ1σ2-Cl(V )). A function
f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be almost (τ1, τ2)-continuous if f has this property
at each point of X.

Corollary 1. For a function f : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) f is almost (τ1, τ2)-continuous at x ∈ X;

(2) x ∈ τ1τ2-Int(f
−1(σ1σ2-Int(σ1σ2-Cl(V )))) for every σ1σ2-open set V of Y containing

f(x);

(3) x ∈ τ1τ2-Int(f
−1((σ1, σ2)-sCl(V ))) for every σ1σ2-open set V of Y containing f(x);

(4) x ∈ τ1τ2-Int(f
−1(V )) for every (σ1, σ2)r-open set V of Y containing f(x);

(5) for each (σ1, σ2)r-open set V of Y containing f(x), there exists a τ1τ2-open set U of
X containing x such that f(U) ⊆ V .

Theorem 3. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is upper almost (τ1, τ2)-continuous;

(2) F+(V ) ⊆ τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(V )))) for every σ1σ2-open set V of Y ;

(3) τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(K)))) ⊆ F−(K) for every σ1σ2-closed set K of Y ;

(4) τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B))))) ⊆ F−(σ1σ2-Cl(B)) for every subset B

of Y ;

(5) F+(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(B))))) for every subset

B of Y ;
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(6) F+(V ) is τ1τ2-open in X for every (σ1, σ2)r-open set V of Y ;

(7) F−(K) is τ1τ2-closed in X for every (σ1, σ2)r-closed set K of Y .

Proof. (1) ⇒ (2): Let V be any σ1σ2-open set of Y and x ∈ F+(V ). Then, F (x) ⊆
V . Thus, by Theorem 1, x ∈ τ1τ2-Int(F

+(σ1σ2-Int(σ1σ2-Cl(V )))) and hence F+(V ) ⊆
τ1τ2-Int(F

+(σ1σ2-Int(σ1σ2-Cl(V )))).
(2) ⇒ (3): Let K be any σ1σ2-closed set of Y . Then, Y −K is σ1σ2-open in Y and by

(2),

X − F−(K) = F+(Y −K)

⊆ τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(Y −K))))

= τ1τ2-Int(X − F−(σ1σ2-Cl(σ1σ2-Int(K))))

= X − τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(K)))).

Thus, τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(K)))) ⊆ F−(K).

(3) ⇒ (4): Let B be any subset of Y . Then, σ1σ2-Cl(B) is a σ1σ2-closed set of Y and
by (3), τ1τ2-Cl(F

−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B))))) ⊆ F−(σ1σ2-Cl(B)).
(4) ⇒ (5): Let B be any subset of Y . Then, we have

F+(σ1σ2-Int(B)) = X − F−(σ1σ2-Cl(Y −B))

⊆ X − τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(Y −B)))))

= X − τ1τ2-Cl(F
−(Y − σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(B)))))

= τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(B))))).

(5) ⇒ (6): Let V be any (σ1, σ2)r-open set of Y . By (5), we have F+(V ) ⊆
τ1τ2-Int(F

+(V )) and hence F+(V ) is τ1τ2-open in X.
(6) ⇒ (7): The proof is obvious.
(7) ⇒ (1): Let x ∈ X and V be any (σ1, σ2)r-open set of Y containing F (x). Since

Y −V is (σ1, σ2)r-closed and by (7), X −F+(V ) = F−(Y −V ) is τ1τ2-closed in X. Thus,
F+(V ) is τ1τ2-open and hence x ∈ τ1τ2-Int(F

+(V )). Then, there exists a τ1τ2-open set U
of X containing x such that F (U) ⊆ V . It follows from Theorem 1 that F is upper almost
(τ1, τ2)-continuous.

Theorem 4. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower almost (τ1, τ2)-continuous;

(2) F−(V ) ⊆ τ1τ2-Int(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) for every σ1σ2-open set V of Y ;

(3) τ1τ2-Cl(F
+(σ1σ2-Cl(σ1σ2-Int(K)))) ⊆ F+(K) for every σ1σ2-closed set K of Y ;

(4) τ1τ2-Cl(F
+(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B))))) ⊆ F+(σ1σ2-Cl(B)) for every subset B

of Y ;
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(5) F−(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
−(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(B))))) for every subset

B of Y ;

(6) F−(V ) is τ1τ2-open in X for every (σ1, σ2)r-open set V of Y ;

(7) F+(K) is τ1τ2-closed in X for every (σ1, σ2)r-closed set K of Y .

Proof. The proof is similar to that of Theorem 3.

Corollary 2. For a function f : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) f is almost (τ1, τ2)-continuous;

(2) f−1(V ) ⊆ τ1τ2-Int(f
−1(σ1σ2-Int(σ1σ2-Cl(V )))) for every σ1σ2-open set V of Y ;

(3) τ1τ2-Cl(f
−1(σ1σ2-Cl(σ1σ2-Int(K)))) ⊆ f−1(K) for every σ1σ2-closed set K of Y ;

(4) τ1τ2-Cl(f
−1(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B))))) ⊆ f−1(σ1σ2-Cl(B)) for every subset B

of Y ;

(5) f−1(σ1σ2-Int(B)) ⊆ τ1τ2-Int(f
−1(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(B))))) for every subset

B of Y ;

(6) f−1(V ) is τ1τ2-open in X for every (σ1, σ2)r-open set V of Y ;

(7) f−1(K) is τ1τ2-closed in X for every (σ1, σ2)r-closed set K of Y .

Theorem 5. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is upper almost (τ1, τ2)-continuous;

(2) τ1τ2-Cl(F
−(V )) ⊆ F−(σ1σ2-Cl(V )) for every (σ1, σ2)β-open set V of Y ;

(3) τ1τ2-Cl(F
−(V )) ⊆ F−(σ1σ2-Cl(V )) for every (σ1, σ2)s-open set V of Y .

Proof. (1) ⇒ (2): Let V be any (σ1, σ2)β-open set of Y . Then, σ1σ2-Cl(V ) is a
(σ1, σ2)r-closed set of Y . Since F is upper almost (τ1, τ2)-continuous and by Theorem 3,
F−(σ1σ2-Cl(V )) is τ1τ2-closed in X. Thus, τ1τ2-Cl(F

−(V )) ⊆ F−(σ1σ2-Cl(V )).
(2) ⇒ (3): The proof is obvious.
(3) ⇒ (1): Let K be any (σ1, σ2)r-closed set of Y . Then, K is (σ1, σ2)s-open in

Y . Then by (3), τ1τ2-Cl(F
−(K)) ⊆ F−(σ1σ2-Cl(K)) = F−(K) and hence F−(K) is

τ1τ2-closed in X. By Theorem 3, F is upper almost (τ1, τ2)-continuous.

Theorem 6. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) F is lower almost (τ1, τ2)-continuous;
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(2) τ1τ2-Cl(F
+(V )) ⊆ F+(σ1σ2-Cl(V )) for every (σ1, σ2)β-open set V of Y ;

(3) τ1τ2-Cl(F
+(V )) ⊆ F+(σ1σ2-Cl(V )) for every (σ1, σ2)s-open set V of Y .

Proof. The proof is similar to that of Theorem 5.

Corollary 3. For a function f : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are
equivalent:

(1) f is almost (τ1, τ2)-continuous;

(2) τ1τ2-Cl(f
−1(V )) ⊆ f−1(σ1σ2-Cl(V )) for every (σ1, σ2)β-open set V of Y ;

(3) τ1τ2-Cl(f
−1(V )) ⊆ f−1(σ1σ2-Cl(V )) for every (σ1, σ2)s-open set V of Y .

Lemma 4. For a bitopological space (X, τ1, τ2), the following properties hold:

(1) (τ1, τ2)-αCl(V ) = τ1τ2-Cl(V ) for every (τ1, τ2)β-open set V of Y ;

(2) (τ1, τ2)-pCl(V ) = τ1τ2-Cl(V ) for every (τ1, τ2)s-open set V of Y .

Corollary 4. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties
are equivalent:

(1) F is upper almost (τ1, τ2)-continuous;

(2) τ1τ2-Cl(F
−(V )) ⊆ F−((σ1, σ2)-αCl(V )) for every (σ1, σ2)β-open set V of Y ;

(3) τ1τ2-Cl(F
−(V )) ⊆ F−((σ1, σ2)-pCl(V )) for every (σ1, σ2)s-open set V of Y .

Corollary 5. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties
are equivalent:

(1) F is lower almost (τ1, τ2)-continuous;

(2) τ1τ2-Cl(F
+(V )) ⊆ F+((σ1, σ2)-αCl(V )) for every (σ1, σ2)β-open set V of Y ;

(3) τ1τ2-Cl(F
+(V )) ⊆ F+((σ1, σ2)-pCl(V )) for every (σ1, σ2)s-open set V of Y .
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