Distance Neighbourhood Pattern Matrices

Germina Kizhekekunnel Augustine ${ }^{1,2, *}$, Alphy Joseph ${ }^{2}$, Sona Jose ${ }^{2}$
${ }^{1}$ P.G. \& Research Department of Mathematics, Mary Matha Arts \& Science College (Kannur University), Mananthavady-670645, India
${ }^{2}$ Centre for Mathematical Sciences, Pala Campus, Arunapuram-686 574, Kerala, INDIA.

Abstract

Let $G=(V, E)$ be a given connected simple (p, q)-graph, and an arbitrary nonempty subset $M \subseteq V(G)$ of G and for each $v \in V(G)$, define $N_{j}^{M}[u]=\{v \in M: d(u, v)=j\}$. Clearly, then $N_{j}[u]=$ $N_{j}^{V(G)}[u]$. B.D. Acharya [2] defined the M-eccentricity of u as the largest integer for which $N_{j}^{M}[u] \neq \emptyset$ and the $p \times\left(d_{G}+1\right)$ nonnegative integer matrix $D_{G}^{M}=\left(\left|N_{j}^{M}\left[v_{i}\right]\right|\right)$, called the M-distance neighborhood pattern (or, M-dnp) matrix of G. The matrix $D_{G}^{* M}$ is obtained from D_{G}^{M} by replacing each nonzero entry by 1 . Clearly, $f_{M}(u)=\left\{j: N_{j}^{M}[u] \neq \emptyset\right\}$. Hence, in particular, if $f_{M}: u \mapsto f_{M}(u)$ is an injective function, then the set M is a distance-pattern distinguishing set (or, a 'DPD-set' in short) of G and G is a dpd-graph. If $f_{M}(u)-\{0\}$ is independent of the choice of u in G then M is an open distance-pattern uniform (or, ODPU) set of G. A study of these sets is expected to be useful in a number of areas of practical importance such as facility location [5] and design of indices of "quantitative structureactivity relationships" (QSAR) in chemistry [3,10]. This paper is a study of M-dnp matrices of a dpd-graph.

2000 Mathematics Subject Classifications: 05C78
Key Words and Phrases: Distance-pattern distinguishing sets, distance neighborhood pattern matrix, M-distance neighborhood pattern matrix.

1. Introduction

For all terminology which are not defined in this paper, we refer the reader to F. Harary [5]. Unless mentioned otherwise, all the graphs considered in this paper are finite, simple and without self loops.
On 26th November 2006, B.D. Acharya [2] conveyed to the first author the following definitions and problems for a detailed study.

[^0]Definition 1 ([2, 9]). Let $G=(V, E)$ be a given connected simple (p, q)-graph, $M \subseteq V(G)$ and for each $u \in V(G)$, let $f_{M}(u)=\{d(u, v): v \in M\}$ be the distance-pattern of u with respect to the marker set M. If f_{M} is injective then the set M is a distance-pattern distinguishing set (or, a "dpd-set" in short) of G and G is a dpd-graph. If $f_{M}(u)-\{0\}$ is independent of the choice of u in G then M is an open distance-pattern uniform (or, odpu) set of G and G is called an odpu-graph. The minimum cardinality of a dpd-set (odpu-set) in G, if it exists, is the dpd-number(odpunumber) of G and it is denoted by $\varrho(G)$.
B.D. Acharya [2], raised the following problems during the conversation.

Problem 1. For what structural properties of the graph G, the function f_{M} is injective?
Problem 2. Characterize dpd-graphs having the given dpd-number.
Problem 3. Which graphs G have the property that every k-subset of $V(G)$ is a dpd-set of G. Solve this problem in particular when $k=\varrho(G)$?
Problem 4. Which graphs G have exactly one $\varrho(G)$-set?
Given a positive integer n, an n-distance coloring of a graph G is a coloring of the vertices of G in such a way that no two vertices at distance n are colored by the same color; G is n-distance colorable if it indeed admits such a coloring (e.g., see Sampathkumar, 1977 [13], 1988 [14]). Clearly, if G admits an n-distance coloring then $1 \leq n \leq \operatorname{diam}(G)$.
Problem 5. For which values of n it is possible to extract a proper n-distance coloring of a given graph G using a distance-pattern function as a listing of colors for the vertices?
Problem 6. Given any positive integer k, does there exist a graph G with $\varrho(G)=k$?
Some of the above mentioned problems studied are reported in the Technical Report [9]. B.D. Acharya, while sharing his many incisive thoughts, during the discussion, in June 2008, introduced a new approach namely, distance neighborhood pattern matrices (dnp-matrices), to study dpd-graphs. In this paper we initiate a study of dnp-matrices of a graph.

For an arbitrarily fixed vertex u in G and for any nonnegative integer j, we let $N_{j}[u]=$ $\{v \in V(G): d(u, v)=j\}$. Clearly, $N_{0}[u]=\{u\}, \forall u \in V(G)$ and $N_{j}[u]=V(G)-V\left(\mathscr{C}_{u}\right)$ whenever j exceeds the eccentricity $\varepsilon(u)$ of u in the component \mathscr{C}_{u} to which u belongs. Thus, if G is connected then, $N_{j}[u]=\emptyset$ if and only if $j>\varepsilon(u)$. If G is a connected graph then the vectors $\bar{u}=\left(\left|N_{0}[u]\right|,\left|N_{1}[u]\right|,\left|N_{2}[u]\right|, \ldots,\left|N_{\varepsilon(u)}[u]\right|\right)$ associated with $u \in V(G)$ can be arranged as a $p \times\left(d_{G}+1\right)$ nonnegative integer matrix D_{G} given by

$$
\left(\begin{array}{cccccccc}
1 & \left|N_{1}\left[v_{1}\right]\right| & \left|N_{2}\left[v_{1}\right]\right| & \ldots & \left|N_{\varepsilon\left(v_{1}\right)}\left[v_{1}\right]\right| & 0 & 0 & 0 \\
1 & \left|N_{1}\left[v_{2}\right]\right| & \left|N_{2}\left[v_{2}\right]\right| & \ldots & \ldots & \left|N_{\varepsilon\left(v_{2}\right)}\left[v_{2}\right]\right| & 0 & 0 \\
\cdots & \cdots & \cdots & \ldots & \ldots & \cdots & \cdots & \cdots \\
\cdots & \ldots & \ldots & \ldots & \cdots & \cdots & \cdots & \cdots \\
1 & \left|N_{1}\left[v_{p}\right]\right| & \left|N_{2}\left[v_{p}\right]\right| & \cdots & \cdots & \cdots & \cdots & \left|N_{\varepsilon\left(v_{p}\right)}\left[v_{p}\right]\right|
\end{array}\right)
$$

where d_{G} denotes the diameter of G; we call D_{G} distance neighborhood pattern (or, dnp-) matrix of G.
For a dnp-matrix the following observations are immediate.

Observation 7. Since $N_{0}[u]=\{u\}$ for all $u \in V(G)$, each entry in the first column of D_{G} is equal to 1 .

Observation 8. Entries in the second column of D_{G} corresponds to the degree of the corresponding vertices in G.
Observation 9. In each row of D_{G}, the entry zero will be after the nonzero entries.
Proposition 1. For each $u \in V(G)$ of a connected graph G, $\left\{N_{j}[u]: N_{j}[u] \neq \emptyset, 0 \leq j \leq d_{G}\right\}$ gives a partition of $V(G)$.

Proof. If possible, let $N_{j}[u] \bigcap N_{k}[u]=v$, for some $u, v \in V(G)$, which implies $d(u, v)=j$ and $d(u, v)=k$, and hence $j=k$. Therefore, $N_{j}[u] \bigcap N_{k}[u]=\emptyset$ for any (j, k) with $j \neq k$.
Now, clearly, $\bigcup_{j=0}^{d_{G}} N_{j}[u] \subseteq V(G)$. Also, for any $v \in V(G)$, since G is connected, $d(u, v)=k$, for some $k \in\left\{0,1,2, \ldots, d_{G}\right\}$. That is, $v \in N_{k}[u]$ for some $k \in\left\{0,1,2, \ldots, d_{G}\right\}$, which implies $V(G) \subseteq \bigcup_{j=0}^{d_{G}} N_{j}[u]$. Hence, $\bigcup_{j=0}^{d_{G}} N_{j}[u]=V(G)$.

Corollary 1. Each row of the dnp-matrix D_{G} of a graph G is the partition of the order of G. Hence, sum of the entries in each row of the dnp-matrix D_{G} of a graph G is equal to the order of G.

2. M-distance Neighborhood Pattern Matrix of a Graph

Given an arbitrary nonempty subset $M \subseteq V(G)$ of G and for each $u \in V(G)$, define $N_{j}^{M}[u]=\{v \in M: d(u, v)=j\}$; clearly then $N_{j}^{V(G)}[u]=N_{j}[u]$. One can define the M eccentricity of u as the largest integer for which $N_{j}^{M}[u] \neq \emptyset$ and the $p \times\left(d_{G}+1\right)$ nonnegative integer matrix $D_{G}^{M}=\left(\left|N_{j}^{M}[u]\right|\right)$ is called the M-distance neighborhood pattern (or M-dnp) matrix of $G . D_{G}^{* M}$ is obtained from D_{G}^{M} by replacing each nonzero entry by 1 .
Acharya [2] defined dnp matrix of any graph and in particular, M-dnp matrix of a dpd-graph as follows:

Definition 2. Let $G=(V, E)$ be a given connected simple (p, q)-graph, $\emptyset \neq M \subseteq V(G)$ and $u \in V(G)$. Then, the M-distance-pattern of u is the set $f_{M}(u)=\{d(u, v): v \in M\}$. Clearly, $f_{M}(u)=\left\{j: N_{j}^{M}[u] \neq \emptyset\right\}$. Hence, in particular, if $f_{M}: u \mapsto f_{M}(u)$ is an injective function then the set M is a distance-pattern distinguishing set (or, a "dpd-set"in short) of G and if $f_{M}(u)-\{0\}$ is independent of the choice of u in G then M is an open distance-pattern uniform (or, odpu) set of G. A graph G with a dpd-set(odpu-set) is called a dpd-(odpu-)graph.

Following are some interesting results on M-dnp matrix of a connected graph G.
Observation 10. Both D_{G}^{M} and $D_{G}^{* M}$ do not admit null rows.
Proposition 2. For each $u_{i} \in V(G)$,

$$
N_{0}^{M}\left[u_{i}\right]= \begin{cases}u_{i} & \text { if } u_{i} \in M \\ \emptyset & \text { if } u_{i} \notin M\end{cases}
$$

Therefore, the entries in the first column of D_{G}^{M} and $D_{G}^{* M}$ will either be 0 or 1 .

Remark 1. It should note that Observation 9 is not true in the case of D_{G}^{M}.
Corollary 2. The sum of the entries in the first column of D_{G}^{M} and $D_{G}^{* M}$ is equal to $|M|$.
Lemma 1 is similar to Proposition 1.
Lemma 1. For each $u \in V(G)$, of a connected graph $G,\left\{N_{j}^{M}[u]: N_{j}^{M}[u] \neq \emptyset, 0 \leq j \leq d_{G}\right\}$ is a partition of M.

Proof. Let $N_{j}^{M}[u] \bigcap N_{k}^{M}[u]=v$, for some $u \in V(G), v \in M$. Then $d(u, v)=j$ and $d(u, v)=k$, and hence $j=k$. Therefore, $N_{j}^{M}[u] \bigcap N_{k}^{M}[u]=\emptyset$ for $j \neq k$.
Now, $\bigcup_{j=0}^{d_{G}} N_{j}^{M}[u] \subseteq M$ is trivial. Also, for any vertex $v \in M$, since G is connected $d(u, v)=k$, for some $k \in\left\{0,1,2, \ldots, d_{G}\right\}$. That is, $v \in N_{k}^{M}[u]$ for some $k \in\left\{0,1,2, \ldots, d_{G}\right\}$. Hence, $v \in \bigcup_{j=0}^{d_{G}} N_{j}^{M}[u]$, which implies $M \subseteq \bigcup_{j=0}^{d_{G}} N_{j}^{M}[u]$. Hence, $\bigcup_{j=0}^{d_{G}} N_{j}^{M}[u]=M$.

Corollary 3. Each row of D_{G}^{M} is a partition of $|M|$.
Corollary 4. Sum of the entries in each row of D_{G}^{M} gives $|M|$ and sum of the entries in each row of $D_{G}^{* M}$ is less than or equal to $|M|$.

3. M-dnp Matrix of a dpd-graph

In this section we investigate some interesting results of $D_{G}^{M}\left(D_{G}^{* M}\right)$ of a dpd-graph. From the definition of $D_{G}^{* M}$, we have the following important observations.

Observation 11. In any graph G, a nonempty $M \subseteq V(G)$ is a dpd-set if and only if no two rows of $D_{G}^{* M}$ are identical.

Observation 12. If M is a dpd-set of a dpd-graph G, no row in $D_{G}^{* M}$ is a scalar multiple of any other row.

Remark 2. For any $\emptyset \neq M \subseteq V(G)$, if the rows of $D_{G}^{* M}$ are linearly independent, M is a dpd-set. However, the converse need not be true. For example, let G be a graph obtained by attaching two vertices u_{1} and u_{2} to two adjacent vertices v_{4} and v_{5} respectively of the cycle $C_{5}: v_{1} v_{2} v_{3} v_{4} v_{5}$. Choose $M=\left\{v_{2}, v_{3}, u_{1}\right\}$. Then,

$$
D_{G}^{* M}=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

In $D_{G}^{* M}$ the third row is the sum of fifth and seventh rows.

Lemma 2. Let G be a graph with dpd-set M. If there exists a row say, R_{m}, in $D_{G}^{* M}$ as the sum of any other rows, say, $R_{1}, R_{2}, \ldots, R_{k}$ then, each column sum of the sub matrix formed by $R_{1}, R_{2}, \ldots, R_{k}$ is either 0 or 1.

Proof. Let $C_{j}: j=1,2, \ldots,\left(d_{G}+1\right)$ be the $j^{t h}$ column sum of the sub-matrix formed by $R_{1}, R_{2}, \ldots, R_{k}$. Assume $C_{j}=c$ where c is a constant not equal to 0 or 1 for some j. Then the $j^{t h}$ entry in row R_{m} is, $c \neq 0$, 1 , which is a contradiction to the fact that $D_{G}^{* M}$ is a (0,1)-matrix.

Proposition 3. Any dpd-graph G, with dpd-set M and the M-dnp matrix D_{G}^{M} as an identity matrix of order n is isomorphic to a path P_{n} on n vertices with dpd-set M as any of its pendent vertices.

Proof. Let G be a graph with dpd-set M such that $D_{G}^{M} \cong I_{n}$, the identity matrix of order n. From Corollary 4, sum of the entries in each row of $D_{G}^{M}=|M|$. Hence $|M|=1$, since, $D_{G}^{M} \cong I_{n}$. Since $|M|=1, M=\{x\}$, where x is any vertex in G. We claim that x is a pendent vertex. If possible assume there exists at least two vertices $v_{1}, v_{2} \in V(G)$ adjacent to x. Then the rows corresponding to v_{1} and v_{2} in D_{G}^{M} will be

$$
\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0
\end{array}\right)
$$

which is not possible since, $D_{G}^{M} \cong I_{n}$. Therefore, x is a pendent vertex.
Now we prove that $G \cong P_{n}$, a path on n vertices. Since, $D_{G}^{M} \cong I_{n}, O(G)=n$ and $d_{G}=n-1$. Since $d_{G}=n-1, G$ contains a path of length $n-1$. Since $O(G)=O\left(P_{n}\right)=n$, number of vertices of G and P_{n} are same. Now, if $G \not \approx P_{n}, G$ contains at least one edge other than the edges of P_{n}, which is not possible, since $d_{G}=n-1$. Hence, $G \cong P_{n}$, the path on n vertices. For the converse, consider the path $P_{n}=v_{1} v_{2} \ldots v_{n}$ with dpd-set M as any of its pendent vertices. Then,

$$
D_{G}^{M}=I_{n}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right)
$$

Proposition 4. Let G be a dpd-graph. Then the dnp-matrix D_{G}^{M} of G is a diagonal matrix if and only if all the diagonal entries in D_{G}^{M} are unity. Also, D_{G}^{M} can neither be upper triangular nor lower triangular.

Proof. Let G be graph with dpd-set M and M-dnp matrix D_{G}^{M}, a diagonal matrix say, D. By Proposition 2, entries in the first column of D_{G}^{M} are 0 or 1 and by Observation $10, D_{G}^{M}$ does not admit null rows, hence, $a_{11}=1$. Also, by Corollary 4, the sum of the entries in each row of $D_{G}^{M}=|M|$. Therefore, from first row of $D,|M|=1$ and hence $a_{i i}=1 \forall i=2,3, \ldots, n$. Hence $D \cong I_{n}$. Converse part follows from Proposition 3.
For the second part of the theorem, assume that G is a graph with dpd-set M and D_{G}^{M} as an upper triangular matrix with atleast one nonzero entry above the main diagonal. From

Proposition 2, the entries in the first column of D_{G}^{M} are either 0 or 1. Also, from Corollary 2 sum of the entries in the first column of $D_{G}^{M}=|M|$. Hence $a_{11}=1$ and $|M|=1$. From Corollary 4, sum of the entries in each row of $D_{G}^{M}=|M|$. Hence, in each row, the nonzero entry appears in exactly one place and is unity. D_{G}^{M} being an upper triangular matrix, the entry 1 cannot be below the main diagonal and D_{G}^{M} contains atleast one nonzero entry above the main diagonal, which in turn implies, D_{G}^{M} contains identical rows, a contradiction.
By a similar argument, we can prove that D_{G}^{M} is not a lower triangular matrix.

4. Main Results

Theorem 13. For any graph $G=(V, E)$, there exists no dpd-set M of cardinality 2 .
Proof. Suppose there exists a dpd-graph G with a dpd-set M of cardinality 2 . Let us choose $M=\{x, y\}$, where x and y are arbitrary vertices in G. Then $D_{G}^{* M}$ contains $2 \times\left(d_{G}+1\right)$ submatrix so that rows of the sub-matrix represent the M-distance neighborhood pattern(M-dnp) of x and M-distance neighborhood pattern(M-dnp) of y in $D_{G}^{* M}$. Hence, the entry 1 can be only at the first and $(d(x, y)+1)^{\text {th }}$ columns, and the rows will be of the following form

$$
\left(\begin{array}{llllllll}
1 & 0 & 0 & \ldots & 1 & 0 & \ldots & 0 \\
1 & 0 & 0 & \ldots & 1 & 0 & \ldots & 0
\end{array}\right)
$$

Hence, $D_{G}^{* M}$ contains identical rows and so M is not a dpd-set.
Theorem 14. For any (p, q)-graph $G, V(G)$ is a dpd-set if and only if G is isomorphic to K_{1}, the trivial graph.

Proof. Assume that G is isomorphic to K_{1}. Clearly, K_{1} has the dpd-set $M=\{v\}$ where $V\left(K_{1}\right)=\{v\}$.
Converse follows from the fact when $M=V(G)$, the rows in the dnp-matrix $D_{G}^{* M}$ corresponding to the diametrically opposite vertices are identical. Hence, G can have exactly one row and column (i.e., exactly one vertex) and hence is isomorphic to K_{1}.

Theorem 15. The complete graph K_{n} possess a dpd-set if and only if $n \leq 2$.
Proof. Suppose $G \cong K_{n}$ has a dpd-set M with cardinality k. Then the first k rows of D_{G}^{M} represent the M-dnp of those vertices which belongs to M and the remaining $n-k$ rows represent the M-dnp of those vertices which are not in M.

That is,

$$
D_{G}^{M}=\left(\begin{array}{cc}
1 & k-1 \\
1 & k-1 \\
\cdots & \cdots \\
\cdots & \cdots \\
1 & k-1 \\
0 & k \\
0 & k \\
\cdots & \cdots \\
\cdots & \cdots \\
0 & k
\end{array}\right)
$$

Hence,

$$
D_{G}^{* M}=\left(\begin{array}{cc}
1 & 1 \\
1 & 1 \\
\cdots & \cdots \\
\cdots & \cdots \\
1 & 1 \\
0 & 1 \\
\cdots & \cdots \\
\cdots & \cdots \\
0 & 1
\end{array}\right)
$$

Clearly, when $n \geq 3, D_{G}^{* M}$ contains identical rows and hence M is not a dpd-set. Converse follows from Theorem 14 and proposition 3.

Theorem 16. Complete bipartite graph $K_{m, n}$ possess a dpd-set M if and only if either $m=n=1$ or $m=1, n=2$.

Proof. Let $G \cong K_{m, n}$ be a complete bipartite graph with partition of the vertex set as P_{1} and P_{2} with $\left|P_{1}\right|=m$ and $\left|P_{2}\right|=n$. Assume $K_{m, n}$ possess a dpd-set M such that $|M|=k$. Let $M=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ where $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\} \in P_{1}$ and $\left\{v_{r+1}, v_{r+2}, \ldots, v_{k}\right\} \in P_{2}$. Then the first k rows of $D_{G}^{* M}$ represent the M-dnp of the vertices in M. In this k rows, the first r rows represent the M-dnp of the vertices which are in P_{1} and the remaining $k-r$ rows represent the M-dnp of the vertices which are in P_{2}. The remaining $(m+n)-k$ rows represent the M-dnp of the vertices which are not in M. Now, in this $(m+n)-k$ rows, the first $m-r$ rows represent the M -dnp of the vertices in P_{1} and the remaining $n-(k-r)$ rows represent the M-dnp of vertices which are in P_{2}.

Case 1: $r \geq 2$ and $k-r \geq 2$

Then,

$$
D_{G}^{* M}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
\cdots & \ldots & \ldots \\
1 & 1 & 1 \\
0 & 1 & 1 \\
\cdots & \cdots & \cdots \\
0 & 1 & 1
\end{array}\right)
$$

Since $r \geq 2$ and $k-r \geq 2, D_{G}^{* M}$ contains identical rows and hence, M is not a dpd-set.
Case 2: $r=1$ and $k-r \geq 2$

$$
D_{G}^{* M}=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 1 & 1 \\
\cdots & \ldots & \cdots \\
1 & 1 & 1 \\
0 & 1 & 1 \\
\cdots & \cdots & \cdots \\
0 & 1 & 1
\end{array}\right)
$$

Since, $k-r \geq 2, D_{G}^{* M}$ contains identical rows and hence, M is not a dpd-set.
Case 3: $r=0$ and $k-r \geq 2$

$$
D_{G}^{* M}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
\cdots & \cdots & \ldots \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\ldots & \ldots & \ldots \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\cdots & \cdots & \cdots \\
0 & 0 & 1
\end{array}\right)
$$

Since, $k-r \geq 2, D_{G}^{* M}$ will have identical rows and hence, M is not a dpd-set.
Case 4: $r=1$ and $k-r=1$
In this case, $k=|M|=2$. Therefore, by Theorem 13, M is not a dpd-set.
Case 5: $r=0$ and $k-r=1$

$$
D_{G}^{* M}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\cdots & \cdots & \cdots \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\cdots & \cdots & \cdots \\
0 & 0 & 1
\end{array}\right)
$$

Hence, from $D_{G}^{* M}$ it is clear that $D_{G}^{* M}$ contains nonidentical rows only if either $m=$ $1, n=1$ or $m=1, n=2$.

Converse follows from proposition 3.
Corollary 5. The star graph $K_{1, n}$ admits a dpd-set M if and only if $n \leq 2$.
Theorem 17. For a dpd-graph G with a dpd-set M of $|M|=3$, the vertices in M should be at distinct distances from each other.

Proof. Let G be a dpd-graph with dpd-set $M=\left\{v_{1}, v_{2}, v_{3}\right\}$.
Let us denote $d\left(v_{1}, v_{2}\right)=k_{1}, d\left(v_{2}, v_{3}\right)=k_{2}$ and $d\left(v_{1}, v_{3}\right)=k_{3}$.

Case 1: $d\left(v_{1}, v_{2}\right)=d\left(v_{2}, v_{3}\right)=d\left(v_{1}, v_{3}\right)=k$
In this case $D_{G}^{* M}$ has a $3 \times\left(d_{G}+1\right)$ sub-matrix where the rows represent the M-dnp of the vertices v_{1}, v_{2} and v_{3} respectively, with entries 1 only at the first and $(k+1)^{t h}$ columns.

$$
\left(\begin{array}{cccccccc}
1 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
1 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
1 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0
\end{array}\right)
$$

Therefore, $D_{G}^{* M}$ contains identical rows and hence, M is not a dpd-set.
Case 2: $k_{1}=k_{2} \neq k_{3}$
In this case, $D_{G}^{* M}$ has a $2 \times\left(d_{G}+1\right)$ sub-matrix where the rows represent the M-dnp of the vertices v_{1} and v_{3} respectively with entries 1 only at the first, $\left(k_{1}+1\right)^{t h}$ and $\left(k_{3}+1\right)^{\text {th }}$ columns.

$$
\left(\begin{array}{llllllllllll}
1 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
1 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0
\end{array}\right)
$$

Hence, $D_{G}^{* M}$ has identical rows and M is not a dpd-set.
Case 3: $k_{1} \neq k_{2} \neq k_{3}$
In this case, the first, second and the third rows represent the M-dnp of the vertices v_{1}, v_{2} and v_{3} respectively in $D_{G}^{* M}$, with entries 1 only at the first, $\left(k_{1}+1\right)^{t h},\left(k_{2}+1\right)^{t h}$ and the $\left(k_{3}+1\right)^{\text {th }}$ columns.

$$
\left(\begin{array}{cccccccccccccccc}
1 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
1 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0
\end{array}\right)
$$

Hence, it is possible to form a dpd-set M with $|M|=3$ in this case.
However, any subset $M=\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq V(G)$, satisfying the condition stated in Theorem 17, is not a sufficient condition for M to be a dpd-set. Consider $C_{6}=\left(v_{1} v_{2} \ldots v_{6}\right)$, with $M=\left\{v_{1}, v_{2}, v_{4}\right\}$ which are at distinct distances, but clearly do not form a dpd-set.

Theorem 18. A cycle $G \cong C_{n}$ of order n admits a dpd-set if and only if $n \geq 7$.
Proof. Let $C_{n}=\left(v_{1} v_{2} \ldots v_{n} v_{1}\right)$ be a cycle on n vertices.
Case 1: n, an even integer and $n \geq 8$
Let $M=\left\{v_{1}, v_{2}, v_{4}\right\}$. Then,

$$
D_{G}^{* M}=\left(\begin{array}{ccccccccccccc}
1 & 1 & 0 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & \ldots & 0 & 0 & 0 & 0 & 0 & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 1 & 1 & 0 & 1 & 0 & 0 \\
\ldots & \ldots \\
0 & 1 & 1 & 0 & 1 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

where the rows of $D_{G}^{* M}$ represent the M-dnp of the vertices $v_{1}, v_{2}, \ldots, v_{n}$ taken in order. Now, we can partition $D_{G}^{* M}$ in to two sub-matrices say, A and B where A is a $\frac{n}{2} \times\left(\frac{n}{2}+1\right)$ sub-matrix of the form

$$
\left(\begin{array}{cccccccccccc}
1 & 1 & 0 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & \ldots & 0 & 0 & 0 & 0 & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 1 & 0 & 1 & 1 & 0
\end{array}\right)
$$

If we denote the columns of A as $\left(c_{1}, c_{2}, \ldots, c_{d_{G}+1}\right)$, then B is such that, the columns of B are $\left(c_{d_{G}+1}, \ldots, c_{2}, c_{1}\right)$. Looking at the rows of A and B, it is clear that the rows of $D_{G}^{* M}$ are not identical, and hence, $\left\{v_{1}, v_{2}, v_{4}\right\}$ form a dpd-set.

Case 2: n, an odd integer and $n \geq 7$

Let $M=\left\{v_{1}, v_{2}, v_{4}\right\}$. Then,

$$
D_{G}^{* M}=\left(\begin{array}{ccccccccccccc}
1 & 1 & 0 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & \ldots & 0 & 0 & 0 & 0 & 0 & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 1 & 1 & 0 & 1 & 0 & 0 \\
\cdots & \ldots & \ldots & \ldots & \ldots & \cdots & \ldots & \cdots & \cdots & \ldots & \cdots & \cdots & \cdots \\
0 & 1 & 1 & 0 & 1 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

where rows of $D_{G}^{* M}$ represent the M-dnp of the vertices $v_{1}, v_{2}, \ldots, v_{n}$ taken in order. In this case, $D_{G}^{* M}$ can have three sub-matrices A, B, C as its partition as described below. Choose the sub-matrix $A\left\ulcorner\frac{n}{2}\right\urcorner \times\left(d_{G}+1\right)$ as

$$
\left(\begin{array}{cccccccccccc}
1 & 1 & 0 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & \ldots & 0 & 0 & 0 & 0 & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

We choose B as $3 \times\left(d_{G}+1\right)$ sub-matrix of $D_{G}^{* M}$, which is of the form

$$
\left(\begin{array}{lllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

Also, choose C as $\left((n-3)-\left\ulcorner\frac{n}{2}\right\urcorner\right) \times\left(d_{G}+1\right)$ sub-matrix of $D_{G}^{* M}$, which is of the form,

$$
\left(\begin{array}{ccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 1 & 1 & 0 & 1 & 0 & 0 \\
\ldots & \ldots \\
0 & 1 & 1 & 0 & 1 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

None of the rows of the sub-matrices of A, B and C are identical and hence the rows of $D_{G}^{* M}$ are not identical. Therefore, for any cycle $C_{n}, n \geq 7$ there exist a dpd-set.
Now to complete the proof of the theorem it is enough to prove that C_{n} is not a dpdgraph for $n \leq 6$.

Case 3: $n=3$.
Since C_{3} is a complete graph by Theorem $15, C_{3}$ is not a dpd-graph.
Case 4: $n=4$ or $n=5$.

Subcase 1: $|M|=1$.
Let $M=\{v\} ; v \in V(G)$. Then the rows represent the M-dnp of the adjacent vertices of v gives a $2 \times\left(d_{G}+1\right)$ sub-matrix of $D_{G}^{* M}$ of the form

$$
\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & \ldots & 0 \\
1 & 1 & 0 & 0 & \ldots & 0
\end{array}\right)
$$

in which the rows are identical. Hence, M is not a dpd-set.
Subcase 2: $|M|=2$.
By Theorem 13, there exist no dpd-set M of cardinality 2.
Subcase 3: $|M|=3$
For C_{4} and C_{5} we cannot find a dpd-set M with $|M|=3$, in which the vertices of M are at distinct distances from each other. Hence, by Theorem 17 there exist no dpd-set M with $|M|=3$ for C_{4} and C_{5}.
Subcase 4: $|M|=4$.
By Theorem 14, C_{4} doesn't have a dpd-set M with $|M|=4$ and for C_{5}, M with any four vertices of C_{5} gives $D_{G}^{* M}$ as:

$$
D_{G}^{* M}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

in which the rows are identical. Hence, M is not a dpd-set.
Subcase 5: $|M|=5$.
By Theorem 14, C_{5} cannot have a dpd-set M with $|M|=5$.
Thus C_{4} and C_{5} are not dpd-graphs.
Case 5: $n=6$.
As in Case $4, M$ with $|M|=1$ and $|M|=2$ are not possible.

Let $|M|=3$. Then, any dpd-set M satisfies Theorem 17 , has $D_{G}^{* M}$ as:

$$
D_{G}^{* M}=\left(\begin{array}{cccc}
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

in which third and sixth rows are identical. Hence, M with $|M|=3$, is not a dpd-set for C_{6}. Let C_{6} has a dpd-set M with $|M|=4$.

Subcase 1: Let $M=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$

$$
D_{G}^{* M}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

in which there are identical rows and hence, M is not a dpd-set.
Subcase 2: $M=\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$

$$
D_{G}^{* M}=\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

in which there are identical rows and hence, M is not a dpd-set.
Subcase 3: $M=\left\{v_{1}, v_{3}, v_{4}, v_{6}\right\}$

$$
D_{G}^{* M}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

in which there are identical rows and hence, M is not a dpd-set. By symmetry, similar argument follows for the other choices of four vertices in M and hence, C_{6} doesn't have a dpd-set with $|M|=4$.

Now, let C_{6} has a dpd-set M of $|M|=5$. Then,

$$
D_{G}^{* M}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

in which there are identical rows and hence, M is not a dpd-set. Thus, for C_{6}, a dpd-set M with $|M|=5$ is not possible.

By Theorem $14, C_{6}$ cannot possess a dpd-set M with $|M|=6$. Thus C_{6} is not a dpd-graph.
Theorem 19. The set of all vertices in a diametrical path of a graph G cannot form a dpd-set.
Proof. Let $P_{n}=v_{1}, v_{2}, \ldots, v_{n}$ be an arbitrary diametrical path of G, where $M=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a dpd-set of G. Then, the rows representing the M-dnp of the antipodal vertices v_{1} and v_{n} in $D_{G}^{* M}$ forms a $2 \times\left(d_{G}+1\right)$ sub matrix as

$$
\left(\begin{array}{lllll}
1 & 1 & \ldots & 1 & 1 \\
1 & 1 & \ldots & 1 & 1
\end{array}\right)
$$

Hence, M is not a dpd-set.
Theorem 20. For all non-trivial dpd-graphs G, the number of nonzero entries in the first column of D_{G}^{M} is less than the number of rows. In particular, all the nonzero entries in the first column of D_{G}^{M} are unity.

Proof. By Proposition 2, all the nonzero entries in the first column are unity. If possible, let the number of entries in the first column of D_{G}^{M} is equal to the number of rows. Since, all the nonzero entries in the first column are unity, $\left|N_{0}^{M}\left(u_{i}\right)\right|=1 \quad \forall u_{i} \in V(G)$, which implies, $N_{0}^{M}\left(u_{i}\right)=\left\{u_{i}\right\} \quad \forall u_{i} \in V(G)$. Hence, $u_{i} \in M \quad \forall u_{i} \in V(G)$. Therefore, by Theorem 14, $G \cong K_{1}$.

Corollary 6. Let G be a nontrivial graph with dpd-set M and M-dnp matrix D_{G}^{M} as an $n \times n$ square matrix. Then, the number of nonzero entries in the first column $\leqq n-1$.
Theorem 21. Let G be a graph with a dpd-set M. Then, the M-dnp matrix D_{G}^{M} is a square matrix of order n if and only if $G \approx P_{n}$, path on n vertices.

Proof. Assume that the M-dnp matrix D_{G}^{M} of dpd-graph G is a square matrix of order n. Then $O(G)=n$ and $d_{G}=n-1$. Since $d_{G}=n-1, G$ contains a path P of length $n-1$. Since $O(G)=O(P)=n$, the number of vertices of G and P are same. Therefore, if $G \not \approx P$, G contains at least one edge connecting the nonadjacent vertices of P, which is not possible since, in this case $d_{G}<n-1$, a contradiction. Hence, $G \cong P_{n}$.

Conversely, let G be a path on n vertices with dpd-set M and M-dnp matrix D_{G}^{M}. Then, D_{G}^{M} is a square matrix of order n, since the number of vertices of G is n and $d_{G}=n-1$.

Corollary 7. Let G be a graph with dpd-set M and the M-dnp matrix D_{G}^{M} as an invertible matrix. Then $G \cong P_{n}$, a path on n vertices.
Theorem 22. Let G be a graph with dpd-set M and the M-dnp matrix D_{G}^{M} is such that the rows of D_{G}^{M} are the elements of a basis of the Euclidean space \mathbb{R}^{n}. Then $G \cong P_{n}$, a path on n vertices.

Proof. Since the rows of D_{G}^{M} are the elements of a basis of $\mathbb{R}^{n}, D_{G}^{M}$ is a square matrix of order n. Therefore, $G \cong P_{n}$, a path on n vertices.

Remark 3. In Proposition 3, we proved that if the rows of $D_{G}^{* M}$ are the elements of the standard basis of the Euclidean space \mathbb{R}^{n}, then G is a path P_{n} on n vertices with the dpd-set M as one of its pendent vertices.

Remark 4. The converse of Theorem 22 and Corollary 7 need not be true. Consider the path $P_{7}=v_{1} v_{2} v_{3} \ldots v_{7}$. Let $M=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{7}\right\}$. Then, M is a dpd-set. Now D_{G}^{M} is a square matrix, but the rows of D_{G}^{M} are not linearly independent. Therefore, the rows cannot form the basis elements of \mathbb{R}^{7}. Also note that D_{G}^{M} is not invertible.

Remark 5. All invertible matrices need not be a M-dnp matrix D_{G}^{M} of a graph G. For example

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

is invertible but not a M-dnp, since the row sums are not equal.
From above discussion, it is interesting to investigate those $M-\operatorname{dnp}$ matrices D_{G}^{M} that are invertible. Also, distinguishing those invertible matrices which are M-dnp matrix of a graph is an open problem.

Problem 23. Characterize those invertible matrices, which are the M-dnp of some graph G.

5. Conclusion and Scope

As well known, apart from theoretical interest in the study of the distance matrix, such as the realization of a given matrix as the distance matrix of a graph [12], it has found applications in many practically interesting areas such as Quantitative Structure-Activity Relation (QSAR) in discrete mathematical chemistry [3] and studies on the effect of indirect qualitative relationships between individuals in a social network [7, 11]. Also, the M-Weiner index $W_{M}(G)$ may be defined as the sum of the entries in the upper triangular half of the M-distance matrix D_{G}^{M}; by a partial Weiner index $W^{\prime}(G)$, we mean the M-Weiner index of G for some nonempty proper subset M of $V(G)$ and the well known Weiner index $W(G)$ [11] is then seen as the M-Weiner index with $M=V(G)$.

An interesting question for chemists would be the following.

Problem 24. Consider any structure-activity relationship \mathscr{R} of a molecular graph that has been identified to be well correlated with the Weiner index. Is it possible to achieve such a correlation using M-Weiner index for as low cardinality (dpd-)sets M as possible? [Choice of marker sets M in the molecular graph might be very crucial and hence might involve deeper insights into the molecular characteristics.]

ACKNOWLEDGEMENTS Authors deeply indebted to B.D. Acharya for suggesting the concept of dnp-matrices of a dpd-graph and sparing his valuable time in sharing his many incisive thoughts to propel our vigorous discussion on the content of this paper. The work reported in this note is a part of the research work done under the project No.SR/S4/MS:287/05 funded by the Department of Science \& Technology (DST), Govt. of India, New Delhi. The first author is thankful to the Department of Science \& Technology, Government of India for supporting this research under the project No. SR/S4/MS:277/06, Govt. of India, New Delhi.

References

[1] B.D. Acharya. Contributions to the theories of Graphs, Graphoids and Hypergraphs. PhD thesis, The Indian Institute of Technology, Bombay, 1975.
[2] B.D. Acharya. Personal communication, November, 2006.
[3] S.C. Basak, D. Mills and B.D. Gute. Predicting bioactivity and toxicity of chemicals from mathematical descriptors: A chemical-cum-biochemical approach. In D.J. Klein and D. Brandas, editors, Advances in Quantum Chemistry: Chemical Graph Theory: Wherefrom, wherefor and whereto?, Elsevier-Academic Press, 1-91, 2007.
[4] F. Buckley and F. Harary. Distance in graphs. Addison Wesley Publishing Company, Advanced Book Programme, Redwood City, CA, 1990.
[5] F. Harary and Melter. On the metric dimension of a graph, Ars Combin., 2, 191-195, 1976.
[6] F. Harary. Graph Theory, Addison Wesley Publ. Comp., Reading, Massachusetts, 1969.
[7] J. Fiksel. Dynamic evolution of societal networks, J. Math. Sociology, 7, 27-46, 1980.
[8] H.J. Ryser.(0,1)-Matrices, Carus Mathematical Monographs No.14, New York, 1968.
[9] K.A. Germina, Set Valuations of Graphs and Their Applications, Technical Report, grant-in-aid project No.SR/S4/277/06, Department of Science \& Technology (DST),Govt. of India, April 2009.
[10] D.H. Rouvrey. Predicting chemistry from topology. Scientific American, 254, 9, 40-47, 1986.
[11] N. Trinajstic, Chemical graph theory, Boca Raton, 1983.
[12] Wai-Kai Chen. The metric structure of graphs: Theory and Applications. London Math. Soc., 123, 197-221, 1987.

[^0]: *Corresponding author.
 Email addresses: srgerminaka@gmail.com (G. Augustine), alphy22joseph@gmail.com (A. Joseph), sonamaryjose@yahoo.com (S. Jose)
 (c) 2010 EJPAM All rights reserved.

