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Abstract. Proofs without words are pictures or diagrams that help the reader see why a particular

mathematical statement may be true, and also see how one might begin to go about proving it true.

In some instances a proof without words may include an equation or two to guide the reader, but the

emphasis is clearly on providing visual clues to stimulate mathematical thought. While proofs without

words can be employed in many areas of mathematics (geometry, number theory, trigonometry, calcu-

lus, inequalities, and so on) in our “invitation” we examine only one area: elementary combinatorics.

In this article we use combinatorial proof methods based on two simple counting principles (the Fu-

bini principle and the Cantor principle) to wordlessly prove several simple theorems about the natural

numbers.
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1. Introduction

What are “proofs without words”? As you will see from this article, the question does not

have a simple, concise answer. Generally, proofs without words are pictures or diagrams that

help the reader see why a particular mathematical statement may be true, and also to see how

one might begin to go about proving it true. As Yuri Ivanovich Manin said, “A good proof is

one that makes us wiser,” a sentiment echoed by Andrew Gleason: “Proofs really aren’t there

to convince you that something is true - they’re there to show you why it is true.”

Proofs without words (PWWs) are regular features in two journals published by the Math-

ematical Association of America. PWWs began to appear in Mathematics Magazine about

1975, and in the College Mathematics Journal about ten years later. Many of these appear in

two collections of PWWs published by the Mathematical Association of America [8, 9].
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But PWWs are not recent innovations-they have been around for a very long time, perhaps

first appearing in ancient Greece and China, and later in tenth century Arabia and renaissance

Italy. Today PWWs regularly appear in journals published around the world and on the World

Wide Web.

Some argue that PWWs are not really “proofs,” nor, for that matter, are they “without

words,” on account of equations which often accompany a PWW. Martin Gardner, in his popu-

lar “Mathematical Games” column in the October 1973 issue of Scientific American, discussed

PWWs as “look - see” diagrams. He said “in many cases a dull proof can be supplemented

by a geometric analog so simple and beautiful that the truth of a theorem is almost seen at

a glance.” It is in that spirit that we write this “invitation” to PWWs. In some instances we

include an equation or two to guide the reader, but the emphasis is clearly on providing visual

clues to stimulate mathematical thought. We encourage the reader to think about how the

picture “proves” the theorem before reading on. However, in each case we have included a

short description of what we hope the reader sees in each picture.

We believe there is a role for PWWs in mathematics classrooms from elementary schools

to universities. The ability to visualize is essential for success in mathematics, and George

Pólya’s “Draw a figure. . . ” is classic pedagogical advice.

2. Combinatorial Proofs

PWWs can be employed in many areas of mathematics, to prove theorems in geometry,

number theory, trigonometry, calculus, inequalities, and so on. In our “invitation” we will

examine only one area: elementary combinatorics. In many theorems concerning the natural

numbers {1,2, . . .}, insight can be gained by representing the numbers as sets of objects. Since

the particular choice of object is unimportant, in PWWs we usually use dots, squares, balls,

cubes, and other easily drawn objects.

In this article we will use combinatorial proof methods based on two simple counting

principles that can be applied to representations of natural numbers by sets of objects. The

principles are:

1. If you count the objects in a set in two different ways, you will obtain the same result;

and

2. If two sets are in one-to-one correspondence, then they have the same number of ele-

ments.

The first principle has been called the Fubini principle [11] after the theorem in multivari-

able calculus concerning exchanging the order of integration in iterated integrals. We call the

second the Cantor principle, after Georg Cantor (1845 - 1918), who used it extensively in his

investigations into the cardinality of infinite sets. The two proof techniques are also known as

the double - counting method and the bijection method, respectively.
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3. Figurate Numbers

The idea of representing a number by a set of objects (perhaps as pebbles on the beach)

dates back at least to the ancient Greeks. When that representation takes the shape of a poly-

gon such as a triangle or a square, the number is often called a figurate number. We begin

with some theorems and proofs about the simplest figurate numbers: triangular numbers and

squares.

Nearly every biography of the great mathematician Carl Friedrich Gauss (1777 - 1855)

relates the following story. When Gauss was about ten years old, his arithmetic teacher asked

the students in class to compute the sum 1+ 2+ 3+ . . .+ 100, anticipating this would keep

the students busy for some time. He barely finished stating the problem when young Carl

came forward and placed his slate on the teacher’s desk, void of calculation, with the correct

answer: 5050. When asked to explain, Gauss admitted he recognized the pattern 1+ 100 =

101,2+ 99= 101,3+ 98= 101, and so on to 50+ 51= 101. Since there are fifty such pairs,

the sum must be 50× 101 = 5050. The pattern for the sum (adding the largest number to

the smallest, the second largest to the second smallest, and so on) is illustrated in Figure 1,

where the rows of balls represent positive integers.

Figure 1

The number tn = 1+ 2+ 3+ . . . + n for a positive integer n is called the nth triangular

number, from the pattern of the dots on the left in Figure 1. Young Carl correctly computed

t100 = 5050. However, this solution works only for n even, so we first prove

Theorem 1. For all n≥ 1, tn =
n(n+1)

2
.

Proof. See Figure 2.

Figure 2
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We arrange two copies of tn to form a rectangular array of balls in n rows and n + 1

columns. Then we have 2tn = n(n+ 1), or tn = n(n+ 1)/2.

The counting procedure in the preceding combinatorial proof is the Fubini principle. We

employ the same procedure to prove that sums of odd numbers are squares.

Theorem 2. For all n≥ 1, 1+ 3+ 5+ . . .+ (2n− 1) = n2.

Proof. We give two combinatorial proofs in Figure 3.

(a) (b)

Figure 3

In Figure 3a, we count the balls in two ways, first as a square array of balls, and then by

the number of balls in each L-shaped region of similarly colored balls (the Fubini principle). In

Figure 3b, we see a one-to one correspondence (illustrated by the color of the balls) between

a triangular array of balls in rows with 1,3,5, . . . , (2n− 1) balls, and a square array of balls

(the Cantor principle).

The same idea can be employed in three dimensions to establish the following sequence

of identities:

1+ 2= 3,

4+ 5+ 6= 7+ 8,

9+ 10+ 11+ 12= 13+ 14+ 15, etc.

Note that each row begins with a square number. The general pattern

n2+ (n2+ 1) + . . .+ (n2+ n) = (n2+ n+ 1)+ . . .+ (n2+ 2n)

can be proved by induction, but the following visual proof is much nicer.

Figure 4
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In Figure 4, we see the n = 4 version of the identity where counting the number of small

cubes in the pile in two different ways yields 16+ 17+ 18+ 19+ 20= 21+ 22+ 23+ 24.

There are many nice relationships between triangular and square numbers. The simplest

is perhaps the one illustrated in the right side of Figure 3b: tn−1 + tn = n2. Two more are

given in the following lemma (setting t0 = 0 for convenience):

Lemma 1. For all n≥ 0, (a) 8tn = 1= (2n+ 1)2, and (b) 9tn+ 1= t3n+1.

Proof. See Figure 5 (where we have replaced balls by squares).

(a) (b)

Figure 5

Lemma 1 enables us to prove the following two theorems.

Theorem 3. There are infinitely many numbers that are simultaneously square and triangular.

Proof. Observe that

t8tn
=

8tn(8tn+ 1)

2
= 4tn(2n+ 1)2,

so if tn is square, then so is t8tn
. Since t1 = 1, this relation generates an infinite sequence

of square triangular numbers, e.g., t8 = 62 and t288 = 2042. However, there are square

triangular numbers such as t49 = 352 and t1681 = 11892 that are not in this sequence.

Theorem 4. Sums of powers of 9 are triangular numbers, i.e., for all n≥ 0,

1+ 9+ 92 + . . .+ 9n = t1+3+32+...+3n

Proof. See Figure 6.

Figure 6
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As a consequence, in base 9 the numbers 1,11,111,1111, . . . are all triangular.

The next theorem presents a companion to the identity tn−1 + tn = n2.

Theorem 5. The sum of the squares of consecutive triangular numbers is a triangular number,

i.e., t2
n−1 + t2

n = tn2 for all n≥ 1.

Proof. See Figure 7, where we illustrate the square of a triangular number as a triangular

array of triangular numbers.

Figure 7

You may have noticed that the nth triangular number is a binomial coefficient, i.e., tn =
�n+1

2

�

. One explanation for this is that each is equal to n(n+1)/2, but this answer sheds little

light on why it is true. Here is a better explanation using the Cantor principle:

Theorem 6. There exists a one-to-one correspondence between a set of tn objects and the set of

two-element subsets of a set with n+ 1 objects.

Proof. See Figure 8 [6], and recall that the binomial coefficient
�k

2

�

is the number of

ways to choose 2 elements from a set of k elements. The arrows denote the correspondence

between an element of the set with tn elements and a pair of elements from a set of n+ 1

elements.

1

2
3

n

n+1

..
.

Figure 8

4. Sums of Squares, Triangular Numbers, and Cubes

Having examined triangular numbers and squares as sums of integers and sums of odd

integers, we now consider sums of triangular numbers and sums of squares.



C. Alsina and R. Nelsen / Eur. J. Pure Appl. Math, 3 (2010), 118-127 124

Theorem 7. For all n≥ 1, 12+ 22+ 32 + . . .+ n2 = n(n+ 1)(2n+ 1)/6.

Proof. We give two proofs. The first is in Figure 9.
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Figure 9

We exhibit a one-to-one correspondence between three copies of 12 + 22 + 32 + . . . + n2

and a rectangle whose dimensions are 2n+ 1 and 1+ 2+ . . . + n = n(n+ 1)/2 [4]. Hence

3(12+ 22+ 32+ . . .+ n2) = (2n+ 1)(1+ 2+ . . .+ n) from which the result now follows.

For a second proof, see Figure 10 [5].
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Figure 10

Here we write each square k2 as a sum of k ks, then place those numbers in a triangular

array, create two more arrays by rotating the triangular array by 120◦ and 240◦, and add

corresponding entries in each triangular array.

Theorem 8. For all n≥ 1, t1 + t2 + t3 + . . .+ tn = n(n+ 1)(n+ 2)/6.

Proof. See Figure 11.
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= = = – (n+1)

Figure 11

Here we stack layers of unit cubes to represent the triangular numbers. The sum of the

triangular numbers is total number of cubes, which is the same as the total volume of the

cubes. To compute the volume, we “slice” off small pyramids (shaded gray) and place each

small pyramid on the top of the cube from which it came. The result is a large right triangular

pyramid minus some smaller right triangular pyramids along one edge of the base. Thus

t1 + t2 + t3 + . . .+ tn =
1

6
(n+ 1)3− (n+ 1)

1

6
=

n(n+ 1)(n+ 2)

6
.

In the above proof we evaluated the sum of the first n triangular numbers by comput-

ing volumes of pyramids. This is actually an extension of the Fubini principle from simple

enumeration of objects to additive measures such as length, area and volume. The volume

version of the Fubini principle is: computing the volume of an object in two different ways yields

the same number; and similarly for length and area. We cannot, however, extend the Cantor

principle to additive measures - for example, one can construct a one-to-one correspondence

between the points on two line segments with different lengths.

Theorem 9. For all n≥ 1, 13+ 23+ 33 + . . .+ n3 = (1+ 2+ 3+ . . .+ n)2 = t2
n.

Proof. Again, we give two proofs. In the first, we represent k3 as k copies of a square with

area k2 to establish the identity [3, 7].

Figure 12

In Figure 12, we have 4(13+ 23+ 33 + . . .+ n3) = [n(n+ 1)]2 (for n= 4).

For the second proof, we use the fact that 1+2+3+. . .+(n−1)+n+(n−1)+. . .+2+1= n2

(we leave it as an exercise for the reader to draw a picture with balls in a square array and
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count the balls by diagonals in the square array) and consider a square array of numbers

(rather than balls) in which the element in row i and column j is i j, and sum the numbers in

two different ways. See Figure 13 [10].
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Figure 13

Summing by columns yields

n
∑

i=1

i + 2
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,

while summing by the L-shaped shaded regions yields 1 · 12+ 2 · 22+ . . .+ n · n2+ =
∑n

i=1 i3.

We conclude this section with a theorem representing a cube as a double sum of integers.

Theorem 10. For all n≥ 1,
∑n

i=1

∑n

j=1(i+ j+ 1) = n3.

Proof. We represent the double sum as a collection of unit cubes and compute the volume

of a rectangular box composed of two copies of the collection. See Figure 14.

Figure 14

Observe that two copies of the sum S =
∑n

i=1

∑n

j=1(i+ j+1) fit into a rectangular box with

base n2 and height 2n, hence computing the volume of the box in two ways yields 2S = 2n3,

or S = n3.

5. Conclusion

In this short survey we have looked at visual proofs using representations of numbers by

sets of objects. Of course, there are many other ways to represent numbers (not necessarily
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natural numbers), including representing them as lengths of segments, areas of plane figures,

volumes of objects. With such representations, other techniques can be employed in the

proofs, such as rotations, translations, reflections, and other transformations that preserve

length, area, or volume. For a comprehensive survey of these techniques (and many others),

see the books Math Made Visual: Creating Images for Understanding Mathematics and When

Less Is More: Visualizing Basic Inequalities [1, 2].
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