EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 2, Article Number 5528 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Characterizations of Nonadditive Mappings in Prime *-Rings Involving Bi-Skew Products

Moin A. Ansari¹, Abbas Hussain Shikeh², Junaid Nisar^{3,*}, Shahid Tamboli⁴

Abstract. The paper investigates nonadditive mappings $\Omega: \Re \to \Re$ on a prime ring \Re with involution *, characterized by satisfying one of the following conditions:

- (i) $[\Omega(u), \Omega(v)]_{\bullet} = [u, v]_{\bullet}$ for all $u, v \in \Re$.
- (ii) $[\Omega(u), v]_{\bullet} = [u, \Omega(v)]_{\bullet}$ for all $u, v \in \Re$.
- (iii) $\Omega(u \bullet v) = \Omega(u) \bullet v$ for all $u, v \in \Re$.

Furthermore, the paper characterizes generalized bi-skew Jordan derivations within prime *-rings and examines the implications of these results in the context of various operator algebras.

2020 Mathematics Subject Classifications: 16N60, 16W10, 47B47

Key Words and Phrases: Involution, prime ring, strong bi-skew commutativity preserving map, bi-skew commuting map, bi-skew Jordan derivation

1. Introduction

In this paper, unless stated otherwise, \Re represents a prime ring with $\mathcal{Z}(\Re)$ as its center. A ring \Re is defined as prime if, for any $u, v \in \Re$, the condition $u\Re v = \{0\}$ implies that either u = 0 or v = 0.

We denote the maximal left and right rings of quotients of \Re by $\mathcal{Q}_{ml}(\Re)$ and $\mathcal{Q}_{mr}(\Re)$, respectively. The maximal symmetric ring of quotients of \Re is denoted by $\mathcal{Q}_{ms}(\Re)$. It is well established that $\Re \subseteq \mathcal{Q}_{ms}(\Re) \subseteq \mathcal{Q}_{ml}(\Re)$ and that $\mathcal{Q}_{ms}(\Re) = \mathcal{Q}_{ml}(\Re) \cap \mathcal{Q}_{mr}(\Re)$. Both $\mathcal{Q}_{ms}(\Re)$ and $\mathcal{Q}_{ml}(\Re)$ are also recognized as prime rings and share a common center,

DOI: https://doi.org/10.29020/nybg.ejpam.v18i2.5528

Email addresses: maansari@jazanu.edu.sa (M. Ansari), abbasnabi94@gmail.com (A. Shikeh), junaidnisar73@gmail.com (J. Nisar), shahidt@sitpune.edu.in (S. Tamboli)

1

¹ Department of Mathematics College of Science, Jazan University Jazan 45142, Kingdom of Saudi Arabia

² Department of Mathematics, Aligarh Muslim University, Aligarh-202002 India

³ Department of Applied Sciences, Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Lavale, Pune, India

⁴ Department of Mechanical Engineering, Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Lavale, Pune, India

^{*}Corresponding author.

denoted by \mathcal{C} , which is the extended centroid of \Re . The set \mathcal{C} is defined as $\{\lambda \in \mathcal{Q}_{ms}(\Re) \mid \lambda a = a\lambda \text{ for all } a \in \Re\}$. The ring \Re is prime if and only if \mathcal{C} is a field (see [1–3] for more details).

An involution '*' on \Re is defined as an anti-automorphism of order 1 or 2. An anti-automorphism ∇ of \Re is classified as being of the first kind with respect to $\mathcal{Z}(\Re)$ if it acts as the identity map on $\mathcal{Z}(\Re)$; otherwise, it is considered of the second kind on $\mathcal{Z}(\Re)$. For a semiprime ring \Re , if ∇ is an anti-automorphism, then a right ideal \mathcal{I} of \Re is dense if and only if $\nabla(\mathcal{I})$ is a dense left ideal of \Re , and a left ideal \mathcal{I} of \Re is dense if and only if $\nabla(\mathcal{I})$ is a dense right ideal of \Re . Consequently, with a straightforward modification of the proof in [1, Proposition 2.5.4], it follows that ∇ can be uniquely extended to an anti-automorphism of $\mathcal{Q}_{ms}(\Re)$. An anti-automorphism ∇ of \Re is said to be of the first kind if it acts as the identity on \mathcal{C} , and of the second kind otherwise. For elements $u, v \in \Re$, the following products are defined: the Lie product [u, v] = uv - vu, the skew Lie product $[u, v]_* = uv - vu^*$, the skew Jordan product $u \diamond v = uv + vu^*$, the bi-skew Lie product $[u, v]_* = uv^* - vu^*$, and the bi-skew Jordan product $u \diamond v = uv^* + vu^*$. These types of products have been the focus of extensive research by various authors (see [4–15]).

A map $\Omega: \Re \to \Re$ is termed a strong commutativity preserving map if it satisfies $\Omega([u,v]) = [u,v]$ for all $u,v \in \Re$. In the context of *-rings, Ω is referred to as a strong skew commutativity preserving map if $\Omega([u,v]_*) = [u,v]_*$ for all $u,v \in \Re$, and as a strong bi-skew commutativity preserving map if $\Omega([u,v]_{\bullet}) = [u,v]_{\bullet}$ for all $u,v \in \Re$ (see [9, 12, 14, 16]). A map $\Omega: \Re \to \Re$ is called a skew commuting map if it satisfies $[\Omega(u),v]_* = [u,\Omega(v)]_*$ for all $u,v \in \Re$ (see [17]). Similarly, Ω is termed a bi-skew commuting map if $[\Omega(u),v]_{\bullet} = [u,\Omega(v)]_{\bullet}$ for all $u,v \in \Re$.

A map $\Omega: \Re \to \mathcal{Q}_{ms}(\Re)$ is described as *-linear if it holds that $\Omega(u^*) = \Omega(u)^*$ for all $u \in \Re$. Furthermore, a map $\Omega: \Re \to \Re$ is known as a derivation if it satisfies $\Omega(uv) = \Omega(u)v + u\Omega(v)$ for all $u, v \in \Re$. In *-rings, a map $\Omega: \Re \to \Re$ is called a skew Lie derivation if $\Omega([u,v]_*) = [\Omega(u),v]_* + [u,\Omega(v)]_*$ for all $u,v \in \Re$ (see [7, 18]). Similarly, it is called a skew Jordan derivation if $\Omega(u \diamond v) = \Omega(u) \diamond v + u \diamond \Omega(v)$ for all $u,v \in \Re$. A map $\Omega: \Re \to \Re$ is defined as a bi-skew Jordan derivation if $\Omega(u \bullet v) = \Omega(u) \bullet v + u \bullet \Omega(v)$ for all $u,v \in \Re$ (see [19–22]). Additionally, a map $\Psi: \Re \to \Re$ is termed a generalized bi-skew Jordan derivation if there exists a bi-skew Jordan derivation $\Omega: \Re \to \Re$ such that $\Psi([u,v]_{\bullet}) = [\Psi(u),v]_{\bullet} + [u,\Omega(v)]_{\bullet}$ for all $u,v \in \Re$ (see [22]). A derivation $\Omega: \Re \to \Re$ is called an additive *-derivation if Ω is both additive and *-linear. A map $\Omega: \Re \to \Re$ is called a left (resp. right) centralizer if $\Omega(uv) = \Omega(u)v$ (resp. $\Omega(uv) = u\Omega(v)$) for all $u,v \in \Re$ (see [23]). Similarly, Ω is termed a left (resp. right) bi-skew Jordan centralizer if $\Omega(u \bullet v) = \Omega(u) \bullet v$ (resp. $\Omega(u \bullet v) = u \bullet \Omega(v)$) for all $u,v \in \Re$.

Brešar and Miers [24, Theorem 5] proved that if \Re is a semiprime ring and $\Omega: \Re \to \Re$ is an additive strong commutativity preserving map, then $\Omega(u) = \lambda u + \mu(u)$ for all $u \in \Re$, where $\lambda \in \mathcal{C}$ and $\mu: \Re \to \mathcal{C}$ is an additive map. Recently, several authors have studied strong commutativity preserving maps (see [8, 10, 11, 15]). Strong skew commutativity preserving maps have received a lot of attention from various algebraists and have been widely studied in the context of rings and algebras (see [4, 6, 9, 12, 14]). Quiet recently, Siddeeque et al. [25, Theorem 2.2] characterized surjective strong skew commutativity

preserving maps in prime rings without assuming the existence of the unity and a nontrivial symmetric idempotent. They established that if \Re is a prime ring with an involution '*' and $\Omega: \Re \to \Re$ is a surjective strong skew commutativity preserving map, then there exists $\lambda \in \{1, -1\}$ such that $\Omega(a) = \lambda a$ for all $a \in \Re$. Qi and Chen [16, Theorem 2.1] characterized surjective strong bi-skew commutativity preserving maps on prime *algebras. Consequently, they proved the following result: Let $\mathfrak A$ be a prime *-algebra, over a field \mathbb{K} , with unity I and containing a nontrivial symmetric idempotent. Suppose that '*' is of the second kind on $\mathcal{Z}(\mathfrak{A})$ and $\Psi(I)\Psi(I)^* = \Psi(I)^*\Psi(I) = I$. If $\Psi: \mathfrak{A} \to \mathfrak{A}$ is a surjective strong bi-skew commutativity preserving map, then $\Psi(u) = \alpha u \Psi(I)$ for all $u \in \mathcal{A}$, where $\alpha^* = \alpha \in \mathcal{C}$ and $\alpha^2 = I$. Khong and Zhang [17] showed, under certain restrictions, that if \Re is a unital *-ring containing a nontrivial symmetric idempotent and $\Omega: \Re \to \Re$ is a skew commutating map, then there exists $\lambda^* = \lambda \in \mathcal{Z}(\Re)$ such that $\Omega(a) = \lambda a$ for all $a \in \Re$. Recently, Siddeeque et al. [25, Theorem 2.3] characterized skew commutating maps in prime rings without assuming the existence of the unity and a nontrivial symmetric idempotent. They established that if \Re is a prime ring with an involution '*' and $\Omega: \Re \to \Re$ is a skew commutating map, then there exists $\lambda^* = \lambda \in \mathcal{C}$ such that $\Omega(a) = \lambda a$ for all $a \in \Re$. Motivated by the above results, in Section 2 of the present paper, we will characterize surjective strong bi-skew commutativity preserving maps and bi-skew commutating maps in prime rings without assuming the existence of the unity and a nontrivial symmetric idempotent (see Theorems 2.1 and 2.2). As applications, we will characterize such maps in different operator algebras.

Skew Lie, skew Jordan and bi-skew Jordan derivations have been explored by various algebraists in the context of algebras and rings (see [7, 18, 21, 22] and their bibliographic content). Very recently, Siddeeque and Shikeh [20] characterized bi-skew Jordan derivations in prime rings and proved that every bi-skew Jordan derivation on a unital prime *-ring containing a nontrivial symmetric idempotent is an additive *-derivation. In Section 3, we will characterize generalized bi-skew Jordan derivations in prime rings (see Theorem 3.2). As applications, we will characterize generalized bi-skew Jordan derivations in different operator algebras.

2. Strong bi-skew commutativity preserving maps and bi-skew commuting maps in prime rings

We facilitate our discussion with the following lemma which plays a crucial role in the proof of our main results.

Lemma 2.1. Let \Re be a prime ring with an involution '*' of order 2 and let $\mathfrak{a}, \mathfrak{b} \in \mathcal{Q}_{ml}(\Re)$ such that $\mathfrak{b}u^* = u\mathfrak{a}$ for all $u \in \Re$. Then $\mathfrak{a} = \mathfrak{b} = 0$.

Proof. If \Re is noncommutative, then by [20, Lemma 2.1], the result follows. Therefore, let's assume that \Re is commutative. Thus, $\alpha^* \neq \alpha$ for some $\alpha \in \Re$. Substituting αu for u in the given relation, we find that $\mathfrak{b}\alpha^*u^* = \alpha u\mathfrak{a}$ for all $u \in \Re$. Also, $\alpha \mathfrak{b}u^* = \alpha u\mathfrak{a}$ for all $u \in \Re$. Hence, $(\alpha^* - \alpha)\mathfrak{b}u^* = 0$ for all $u \in \Re$. Therefore, $\mathfrak{b} = 0$ and consequently, $\mathfrak{a} = 0$.

Lemma 2.2. Let \Re be a prime PI-ring with an anti-automorphism ∇ . Then ∇ is of first kind if and only if ∇ is of the first kind on $\mathcal{Z}(\Re)$.

Proof. By [26, Corollary 1], $\mathcal{Q}_{ml}(\Re) = \Re \mathcal{C} = \{\frac{u}{\alpha} | u \in \Re \text{ and } 0 \neq \alpha \in \mathcal{Z}(\Re)\}$. Therefore if ∇ is of the first kind on $\mathcal{Z}(\Re)$, then ∇ can be uniquely extended to an antiautomorphism of $\Re \mathcal{C}$, denoted by ∇ also, by defining $\nabla(\frac{a}{\alpha}) = \frac{\nabla(u)}{\alpha}$. Hence ∇ is of the first kind. The converse holds trivially.

Lemma 2.3. [20, Lemma 2.2] Let \Re be a ring with an involution '*' and let $\Omega: \Re \times \Re \to \mathcal{G}$ be a map, where \mathcal{G} is an additive group. Suppose $f, h: \Re \to \mathcal{G}$ are maps such that $\Omega(u, v) = f(uv^*) + h(vu^*)$ for all $u, v \in \Re$. Then $\Omega(uw, v) = \Omega(u, vw^*)$ for all $u, w, v \in \Re$.

The following result provides a characterization of strong bi-skew commutativity preserving maps in prime rings without assuming the existence of the unity and a nontrivial symmetric idempotent, thereby generalizing, improving and extending [16, Theorem 2.1] to prime rings.

Theorem 2.1. Let \Re be a prime ring with an involution '*' of order 2, and let $\Omega: \Re \to \Re$ be a surjective strong bi-skew commutativity preserving map. Then there exists $q \in \mathcal{Q}_{ms}(\Re)$ such that $qq^* = 1$ and $\Omega(u) = uq$ for all $u \in \Re$ provided that either $\dim_{\mathcal{C}} \Re{\mathcal{C}} > 4$ or both $\operatorname{char}(\Re) \neq 2$ and '*' is of the second kind.

Proof. By the given hypothesis, we have

$$[\Omega(u), \Omega(v)]_{\bullet} = [u, v]_{\bullet} \tag{2.1}$$

for all $u, v \in \Re$. Firstly we establish some facts about Ω .

Fact I. Ω is additive. For every $u, v, w \in \Re$, we have

$$\begin{split} [\Omega(u),\Omega(v+w)-\Omega(v)-\Omega(w)]_{\bullet} &= [\Omega(u),\Omega(v+w)]_{\bullet} - [\Omega(u),\Omega(v)]_{\bullet} - [\Omega(u),\Omega(w)]_{\bullet} \\ &= [u,v+w]_{\bullet} - [u,v]_{\bullet} - [u,w]_{\bullet} \\ &= 0 \end{split}$$

Therefore by the surjectiveness of Ω , we find that

$$[u, \Omega(v+w) - \Omega(v) - \Omega(w)]_{\bullet} = 0$$

for all $u, v, w \in \mathcal{R}$. Now in view of Lemma 2.1, it follows that $\Omega(u+v) = \Omega(u) + \Omega(v)$ for all $u, v \in \Re$, that is, Ω is additive.

Fact II. Ω is injective. Let $a \in \Re$ be such that $\Omega(a) = 0$. then

$$[a, v]_{\bullet} = [\Omega(a), \Omega(v)]_{\bullet} = 0$$

for all $v \in \Re$. Hence by Lemma 2.1, a = 0. Thus Ω is injective. Therefore from (2.1), we have

$$\Omega(u)v^* + \Omega^{-1}(v)u^* - u\Omega^{-1}(v)^* - v\Omega(u)^* = 0,$$
(2.2)

for all $u, v \in \Re$. Next, we advance by examining the following two scenarios:

Case I. $\dim_{\mathcal{C}} \Re \mathcal{C} > 4$.

In view of [27, Theorem 3.5], it follows that there exists $q \in \mathcal{Q}_{ml}(\Re)$ such that $\Omega(u) = uq$ for all $u \in \Re$ and $\Omega^{-1}(v)^* = qv^*$ for all $v \in \Re$. Note that $qv^* = \Omega^{-1}(v)^* \in \Re$ for all $v \in \Re$. Hence $q\Re \subseteq \Re$. Consequently, $q \in \mathcal{Q}_{ms}(\Re)$. Therefore $\Omega^{-1}(u) = uq^*$ for all $u \in \Re$ and hence $\Omega(u)q^* = u$ for all $u \in \Re$. Using $\Omega(u) = uq$ in the last relation, we get $uqq^* = u$ for all $u \in \Re$. This entails that $qq^* = 1$.

Case I. $\dim_{\mathcal{C}} \Re{\mathcal{C}} \leq 4$.

In this case \Re is a PI-ring and $\mathcal{Q}_{ml}(\Re) = \mathcal{Q}_{ms}(\Re) = \Re \mathcal{C}$. According to the given hypothesis char(\Re) $\neq 2$ and '*' is of the second kind. Hence by Lemma 2.2, there is $\zeta \in \mathcal{Z}(\Re)$ such that $\zeta^* \neq \zeta$. Let $\alpha = \zeta^* - \zeta$ and $\beta = \alpha^2$. Then $\alpha^* = -\alpha$ and $\beta^* = \beta$. Setting $v = \alpha$ in (2.2), we get

$$\alpha(\Omega(u) + \Omega(u)^*) = \Omega^{-1}(\alpha)u^* - u\Omega^{-1}(\alpha)^*, \tag{2.3}$$

for all $u \in \Re$. Also taking $v = \beta$ in (2.2), we get

$$\beta(\Omega(u) - \Omega(u)^*) = u\Omega^{-1}(\beta)^* - \Omega^{-1}(\beta)u^*$$
(2.4)

for all $u \in \Re$. Multiplying both sides of (2.3) by β and (2.4) by α , we get

$$\alpha\beta(\Omega(u) + \Omega(u)^*) = \beta\Omega^{-1}(\alpha)u^* - \beta u\Omega^{-1}(\alpha)^*, \tag{2.5}$$

and

$$\alpha\beta(\Omega(u) - \Omega(u)^*) = \alpha u \Omega^{-1}(\beta)^* - \alpha\Omega^{-1}(\beta)u^*$$
(2.6)

for all $u \in \Re$, respectively. Adding (2.5) and (2.6), we find that

$$2\alpha\beta\Omega(u) = \alpha u\Omega^{-1}(\beta)^* - \alpha\Omega^{-1}(\beta)u^* + \beta\Omega^{-1}(\alpha)u^* - \beta u\Omega^{-1}(\alpha)^*, \qquad (2.7)$$

for all $u \in \Re$. Now $2\alpha\beta$ is invertible in \mathcal{C} . Hence, we have

$$\Omega(u) = uq + q_1 u^*, \tag{2.8}$$

for all $u \in \Re$, where $q = (2\alpha\beta)^{-1}(\alpha\Omega^{-1}(\beta)^* - \beta\Omega^{-1}(\alpha)^*) \in \Re \mathcal{C}$ and $q_1 = (2\alpha\beta)^{-1}(\beta\Omega^{-1}(\alpha) - \alpha\Omega^{-1}(\beta)) \in \Re \mathcal{C}$. Using this in (2.1), we get

$$(uq + q_1u^*)(q^*v^* + vq_1^*) - (vq + q_1v^*)(q^*u^* + uq_1^*) = uv^* - vu^*,$$
(2.9)

for all $u, v \in \Re$. Replacing v by αv in (2.9), we get

$$(uq + q_1u^*)(-q^*v^* + vq_1^*) - (vq - q_1v^*)(q^*u^* + uq_1^*) = -uv^* - vu^*, \tag{2.10}$$

for all $u, v \in \Re$. Subtracting (2.10) and (2.9), we find that

$$(uq + q_1u^*)q^*v^* - q_1v^*(q^*u^* + uq_1^*) = uv^*, (2.11)$$

for all $u, v \in \Re$. Alter u by αu in (2.11), we have

$$(uq - q_1u^*)q^*v^* - q_1v^*(-q^*u^* + uq_1^*) = uv^*, (2.12)$$

for all $u, v \in \Re$. Subtracting (2.12) from (2.11), we obtain

$$q_1 u^* q^* v^* = q_1 v^* q^* u^*, (2.13)$$

for all $u, v \in \Re$. Setting $u = \alpha$ in (2.13), we get $q_1[q^*, v] = 0$ for all $v \in \Re$. Therefore, $q_1 = 0$ or $q \in \mathcal{C}$. If $q_1 = 0$, then from (2.11), we find that $u(qq^* - 1)v = 0$ for all $u, v \in \Re$. Consequently, $qq^* = 1$. Hence we assume that $q \in \mathcal{C}$. Adding (2.11) and (2.12), we obtain

$$qq^*uv - q_1vuq_1^* = uv, (2.14)$$

for all $u, v \in \Re$. Putting $u = v = \alpha$ in (2.14), we find that

$$qq^* - q_1q_1^* = 1. (2.15)$$

Hence from (2.14), we have $q_1q_1^*uv = q_1vuq_1^*$ for all $u, v \in \Re$. Taking $v = \alpha$ in the last relation, we have $q_1[q_1^*, u] = 0$ for all $u \in \Re$. Therefore $q_1 \in \mathcal{C}$ and hence from (2.14), we find that $qq^*uv - q_1q_1^*vu = uv$ for all $u, v \in \Re$. Using (2.15), we get $q_1q_1^*(uv + vu) = 0$ for all $u, v \in \Re$. Putting $u = v = \alpha$ in the previous relation, we get $q_1q_1^* = 0$. Since \mathcal{C} is a field, we conclude that $q_1 = 0$. From (2.8), we infer that $\Omega(u) = uq$ for all $u \in \Re$.

The following example shows that Theorem 2.1 does not hold if $\dim_{\mathcal{C}} \Re{\mathcal{C}} = 4$ and '*' is of the first kind.

Example 2.1. Consider the ring $\mathcal{M}_2(\mathbb{K})$ of all 2×2 matrices over any field \mathbb{K} with involution * as the usual transpose map. Let $\lambda \in \mathbb{K}$ be fixed such that $\lambda \notin \{-1,0,1\}$. Define the map $\Omega : \mathcal{M}_2(\mathbb{K}) \to \mathcal{M}_2(\mathbb{K})$ by $\Omega\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} \lambda a & \frac{b}{\lambda} \\ \frac{c}{\lambda} & \lambda d \end{bmatrix}$. Then it can be easily seen that $\Omega([u,v]_{\bullet}) = [u,v]_{\bullet}$ holds for all $u,v \in \mathcal{M}_2(\mathbb{K})$. However, Ω is not of the form as described in Theorem 2.1.

The following result gives a characterization of bi-skew commuting maps in prime rings without assuming the existence of the unity and a nontrivial symmetric idempotent.

Theorem 2.2. Let \Re be a prime ring with an involution '*' of order 2 and let $\Omega: \Re \to \Re$ be a bi-skew commuting map. Then there exists $q^* = q \in \mathcal{Q}_{ms}(\Re)$ such that $\Omega(u) = uq$ for all $u \in \Re$ provided that either $\dim_{\mathcal{C}} \Re{\mathcal{C}} > 4$ or both $\operatorname{char}(\Re) \neq 2$ and '*' is of the second kind.

Proof. According to the given hypothesis

$$[\Omega(u), v]_{\bullet} = [u, \Omega(v)]_{\bullet} \tag{2.16}$$

for all $u, v \in \Re$. First we show Ω is additive. For every $u, v, w \in \Re$, we have

$$[\Omega(u+w) - \Omega(u) - \Omega(w), v]_{\bullet} = [\Omega(u+w), v]_{\bullet} - [\Omega(u), v]_{\bullet} - [\Omega(w), v]_{\bullet}$$

$$= [u + w, \Omega(v)]_{\bullet} - [u, \Omega(v)]_{\bullet} - [w, \Omega(v)]_{\bullet}$$

= 0

Applying Lemma 2.1, we infer that $\Omega(u+v) = \Omega(u) + \Omega(v)$ for all $a, b \in \Re$, that is, Ω is additive. Now (2.16), can be rewritten as

$$u\Omega(v)^* + v\Omega(u)^* - \Omega(u)v^* - \Omega(v)u^* = 0$$
(2.17)

for all $u, v \in \Re$. Now we proceed by considering the following two cases:-

Case 1: $\dim(\Re C) > 4$.

According to [27, Theorem 3.5] there exists $q \in Q_{ml}(\Re)$ such that

$$\Omega(u) = uq \text{ for all } u \in \Re$$
 (2.18)

and

$$\Omega(v)^* = qv^* \text{ for all } v \in \Re.$$
 (2.19)

Since $qv^* = \Omega(v)^* \in \Re$ for all $v \in \Re$. Therefore $q\Re \subseteq \Re$ and hence $q \in Q_{mr}(\Re)$. Consequently, $q \in Q_{ms}(\Re)$. Thus from (2.19), we find that

$$\Omega(u) = uq^* \text{ for all } u \in \Re.$$
 (2.20)

From (2.18) and (2.20) , we have $uq=uq^*$ for all $u\in\Re.$ Hence $q^*=q.$

Case II: $\dim(\Re) \leq 4$.

In this case by [26, Theorem 2], $\mathcal{Z}(\mathcal{A}) \neq \{0\}$. Also, by the given hypothesis char(\Re) $\neq 2$ and $\zeta^* \neq \zeta$ for some $\zeta \in \mathcal{Z}(\mathcal{A})$. Let $\alpha = \zeta^* - \zeta$ and $\beta = \alpha^2$. Then $\alpha^* = -\alpha$ and $\beta^* = \beta$. Setting $v = \alpha$ in (2.17), we get

$$\alpha(\Omega(u) + \Omega(u)^*) = \Omega(\alpha)u^* - u\Omega(\alpha)^*, \tag{2.21}$$

for all $u \in \Re$. Also taking $v = \beta$ in (2.17), we get

$$\beta(\Omega(u) - \Omega(u)^*) = u\Omega(\beta)^* - \Omega(\beta)u^* \tag{2.22}$$

for all $u \in \Re$. Multiplying both sides of (2.21) by β and (2.22) by α , we get

$$\alpha\beta(\Omega(u) + \Omega(u)^*) = \beta\Omega(\alpha)u^* - \beta u\Omega(\alpha)^*, \tag{2.23}$$

and

$$\alpha\beta(\Omega(u) - \Omega(u)^*) = \alpha u \Omega(\beta)^* - \alpha\Omega(\beta)u^* \tag{2.24}$$

for all $u \in \Re$, respectively. Adding (2.23) and (2.24), we find that

$$\Omega(u) = uq + q_1 u^*, \tag{2.25}$$

for all $u \in \Re$, where $q = (2\alpha\beta)^{-1}(\alpha\Omega(\beta)^* - \beta\Omega(\alpha)^*) \in \Re \mathcal{C}$ and $q_1 = (2\alpha\beta)^{-1}(\beta\Omega(\alpha) - \alpha\Omega(\beta)) \in \Re \mathcal{C}$. Using this in (2.17), we have

$$u(vq_1^* + q^*v^*) + v(uq_1^* + q^*u^*) - (uq + q_1u^*)v^* - (vq + q_1v^*)u^* = 0$$
(2.26)

for all $u, v \in \Re$. Alter v by αv in (2.26), we get

$$u(vq_1^* - q^*v^*) + v(uq_1^* + q^*u^*) + (uq + q_1u^*)v^* - (vq - q_1v^*)u^* = 0$$
(2.27)

for all $u, v \in \Re$. Adding (2.26) and (2.27), we find that

$$uvq_1^* + v(uq_1^* + q^*u^*) - vqu^* = 0 (2.28)$$

for all $u, v \in \Re$. Alter u by αu in (2.28), we get

$$uvq_1^* + v(uq_1^* - q^*u^*) + vqu^* = 0 (2.29)$$

for all $u, v \in \Re$. Adding (2.28) and (2.29), we get $(uv + vu)q_1^* = 0$ for all $u, v \in \Re$. Consequently, $q_1 = 0$ and hence from (2.28), we see that $vq^*u = vqu$ for all $u, v \in \Re$. Thus $q^* = q$. Hence $\Omega(u) = qu$ for all $u \in \Re$, where $q^* = q \in \Re \mathcal{C}$.

The following example shows that Theorem 2.2 does not hold if $\dim_{\mathcal{C}} \Re{\mathcal{C}} = 4$ and '*' is of the first kind.

Example 2.2. Let $\mathcal{M}_2(\mathbb{K})$ be the ring of all square matrices of order 2 over any field \mathbb{K} with involution '*' as the usual transpose. Define the map $\Omega: \mathcal{M}_2(\mathbb{K}) \to \mathcal{M}_2(\mathbb{K})$ by $\Omega\left(\begin{bmatrix} \zeta_1 & \zeta_2 \\ \zeta_3 & \zeta_4 \end{bmatrix}\right) = \begin{bmatrix} \zeta_1 - \zeta_4 & \zeta_2 - \zeta_3 \\ \zeta_2 - \zeta_3 & \zeta_1 - \zeta_4 \end{bmatrix}$. Then it can be easily seen that $[\Omega(a), b]_{\bullet} = [a, \Omega(b)]_{\bullet}$ for all $a, b \in \mathbb{R}$. However, Ω is not of the form as described in Theorem 2.2.

3. Generalized bi-skew Jordan derivations in prime rings

The following result gives a characterization of additive bi-skew Jordan derivations in prime rings without assuming the existence of a nontrivial symmetric idempotent.

Theorem 3.1. Let \Re be a noncommutative prime ring with an involution '*' and let Ω : $\Re \to \mathcal{Q}_{ms}(\Re)$ be an additive bi-skew Jordan derivation. Suppose that either $\dim_{\mathcal{C}} \Re{\mathcal{C}} > 4$ or \Re is unital. Then Ω is a *-derivation unless $\dim_{\mathcal{C}} \Re{\mathcal{C}} = 4$ and $\operatorname{char}(\Re) = 2$.

Proof. Since $\Omega: \Re \to \mathcal{Q}_{ms}(\Re)$ is an additive bi-skew Jordan derivation, therefore $\Omega(u \bullet v) = \Omega(u) \bullet v + u \bullet \Omega(v)$ for all $u, v \in \Re$. Now $a \bullet b = b \bullet a$ for any $a, b \in \Re$. Hence if \Re is 2-torsion free, then replacing v by u in the previous expression, we have $\Omega(uu^*) = \Omega(u) \bullet u$ for all $u \in \Re$. Also if $\Omega: \Re \to \mathcal{Q}_{ms}(\Re)$ is an additive map satisfying $\Omega(uu^*) = \Omega(u) \bullet u$ for all $u \in \Re$, then replacing u by u + v in the last expression, we find that $\Omega(u \bullet v) = \Omega(u) \bullet v + u \bullet \Omega(v)$ for all $u, v \in \Re$. Thus if \Re is a 2-torsion free prime ring with an involution '*', then an additive map $\Omega: \Re \to \mathcal{Q}_{ms}(\Re)$ is a bi-skew Jordan derivation if and only if $\Omega(uu^*) = \Omega(u) \bullet u$ for all $u \in \Re$. Therefore in view of Theorem 2.1 of [20] and the arguments given in Case I of its proof, we conclude that Ω is a *-derivation unless $\dim_{\mathcal{C}} \Re \mathcal{C} = 4$ and $\operatorname{char}(\Re) = 2$.

Proposition 3.1. Let \Re be a noncommutative prime ring with an involution '*' and let $\Omega: \Re \to \mathcal{Q}_{ms}(\Re)$ be a left (right) bi-skew Jordan centralizer. Then there exists $\lambda^* = \lambda \in \mathcal{C}$ such that $\Omega(u) = \lambda u$ for all $u \in \Re$.

Proof. We give the details of the proof only when Ω is a left bi-skew Jordan centralizer. The case when Ω is a right bi-skew Jordan centralizer can be proved by using similar arguments.

Suppose

$$\Omega(u \bullet v) = \Omega(u) \bullet v \tag{3.1}$$

for all $u, v \in \Re$. Alter v by v + w in (3.1), we have

$$\Omega(u \bullet v + u \bullet w) = \Omega(u) \bullet v + \Omega(u) \bullet w \tag{3.2}$$

for all $u, v, w \in \Re$. That is,

$$\Omega(v \bullet u + v \bullet w) = \Omega(v) \bullet u + \Omega(v) \bullet w \tag{3.3}$$

for all $u, v, w \in \Re$. Also alter u by u + w in (3.1), we have

$$\Omega(u \bullet v + w \bullet v) = \Omega(u + w) \bullet v \tag{3.4}$$

for all $u, v, w \in \Re$. Comparing (3.3) and (3.4), we find that

$$\Omega(u+w) \bullet v = \Omega(v) \bullet u + \Omega(v) \bullet w \tag{3.5}$$

for all $u, v, w \in \Re$. Putting w = 0 in (3.5), we get

$$\Omega(u) \bullet v = \Omega(v) \bullet u \tag{3.6}$$

for all $u, v \in \Re$. Therefore from (3.5), we find that

$$(\Omega(u+w) - \Omega(u) - \Omega(w)) \bullet v = 0 \tag{3.7}$$

for all $u, v, w \in \Re$. In view of Lemma 2.1, it follows that $\Omega(u+w) = \Omega(u) + \Omega(w)$ for all $u, v \in \Re$. Thus Ω is additive.

Now (3.1) can be rewritten as

$$\Omega(uv^* + vu^*) = \Omega(u)v^* + v\Omega(u)^*$$
(3.8)

for all $u, v \in \mathbb{R}$. Consider the map $\Phi : \mathbb{R}^2 \to \mathcal{Q}_{ms}(\mathbb{R})$ given by

$$\Phi(u, v) = \Omega(uv^*) + \Omega(vu^*).$$

In view of Lemma 2.3, it follows that Φ satisfies the following relation

$$\Phi(uw, v) = \Phi(u, vw^*)$$

for all $u, v, w \in \Re$. Using (3.8), we obtain

$$(\Omega(uw) - \Omega(u)w)v^* + v(\Omega(uw)^* - w^*\Omega(u)^*) = 0$$
(3.9)

for all $u, v, w \in \Re$. Applying Lemma 2.1, we deduce that $\Omega(uw) = \Omega(u)w$ for all $u, w \in \Re$. By [23, Lemma 2.1] there exists $q \in \mathcal{Q}_{mr}(\Re)$ such that $\Omega(u) = qu$ for all $u \in \Re$. Now in view of [1, Proposition 2.1.7], it follows that there exists a nonzero dense right ideal \mathcal{K} of \Re such that $\mathcal{K}q \subseteq \Re$. Hence from (3.8), we have

$$qvu^* = v(qu)^* \text{ for all } u \in \mathcal{K} \text{ and } v \in \Re.$$
 (3.10)

For each fixed u this is a GPI. Hence by [1, Theorem 6.4.4] $qvu^* = v(qu)^*$ for all $v \in \mathcal{Q}_{mr}(\Re)$. Therefore putting v = 1, we find that $qu^* = (qu)^*$ for all $u \in \mathcal{K}$. Thus from (3.10), we have $qvu^* = vqu^*$ for all $v \in \Re$ and $u \in \mathcal{K}$. Consequently, $q \in \mathcal{C}$. Now from (3.10) it can be easily seen that $q^* = q$. This completes the proof.

Now we are ready to provide a characterization of generalized bi-skew Jordan derivations in prime rings.

Theorem 3.2. Let \Re be a unital prime *-ring containing a nontrivial symmetric idempotent. Suppose that $\Phi: \Re \to \mathcal{Q}_{ms}(\Re)$ is a generalized bi-skew Jordan derivation with $\Omega: \Re \to \mathcal{Q}_{ms}(\Re)$ as associated bi-skew Jordan derivation. Then Ω is an additive *-derivation and there exists $\lambda^* = \lambda \in \mathcal{C}$ such that $\Phi(u) = \lambda u + \Omega(u)$ unless $\dim_{\mathcal{C}} \Re{\mathcal{C}} = 4$ and $\operatorname{char}(\Re) = 2$.

Proof. By the given hypothesis

$$\Phi(u \bullet v) = \Phi(u) \bullet v + u \bullet \Omega(v)$$

and

$$\Omega(u \bullet v) = \Omega(u) \bullet v + u \bullet \Omega(v)$$

for all $u, v \in \Re$. Therefore,

$$\Psi(u \bullet v) = \Psi(u) \bullet v$$

for all $u, v \in \Re$, where $\Psi : \Re \to \mathcal{Q}_{ms}(\Re)$ is a map given by $\Psi(u) = (\Phi - \Omega)(u)$. In view of Proposition 3.1, it follows that there exists $\lambda^* = \lambda \in \mathcal{C}$ such that $\Psi(u) = \lambda u$ for all $u \in \Re$. Consequently, $\Phi(u) = \lambda u + \Omega(u)$ for all $u \in \Re$. Finally, by [20], Ω is an additive *-derivation. This completes the proof.

The following result gives a characterization of generalized additive bi-skew Jordan derivations in prime rings without assuming the existence of a nontrivial symmetric idempotent.

Theorem 3.3. Let \Re be a noncommutative prime ring with an involution '*' and let $\Phi: \Re \to \mathcal{Q}_{ms}(\Re)$ be a generalized bi-skew Jordan derivation with $\Omega: \Re \to \mathcal{Q}_{ms}(\Re)$ as associated bi-skew Jordan derivation such that both Φ and Ω are additive. Suppose that either $\dim_{\mathcal{C}} \Re{\mathcal{C}} > 4$ or \Re is unital. Then Ω is a *-derivation and there exists $\lambda^* = \lambda \in \mathcal{C}$ such that $\Phi(u) = \lambda u + \Omega(u)$ unless $\dim_{\mathcal{C}} \Re{\mathcal{C}} = 4$ and $\operatorname{char}(\Re) = 2$.

Proof. By the given hypothesis

$$\Phi(u \bullet v) = \Phi(u) \bullet v + u \bullet \Omega(v)$$

and

$$\Omega(u \bullet v) = \Omega(u) \bullet v + u \bullet \Omega(v)$$

for all $u, v \in \Re$. Therefore,

$$\Psi(u \bullet v) = \Psi(u) \bullet v$$

for all $u, v \in \Re$, where $\Psi : \Re \to \mathcal{Q}_{ms}(\Re)$ is a map given by $\Psi(u) = (\Phi - \Omega)(u)$. In view of Proposition 3.1, it follows that there exists $\lambda^* = \lambda \in \mathcal{C}$ such that $\Psi(u) = \lambda u$ for all $u \in \Re$. Consequently, $\Phi(u) = \lambda u + \Omega(u)$ for all $u \in \Re$. Finally, by Theorem 3.1, Ω is an *-derivation. This completes the proof.

4. Applications to Some Operator Algebras

As applications of the outcomes presented in the preceding sections, we aim to delineate strong biskew commutativity-preserving maps, bi-skew commuting maps, and generalized bi-skew Jordan derivations within standard operator algebras and factor von Neumann algebras. Throughout this section, all vector spaces and algebras are defined over the field $\mathbb C$ of complex numbers.

Suppose \mathbb{H} represents a Hilbert space, with $\mathcal{B}(\mathbb{H})$ denoting the algebra comprising all bounded linear operators on \mathbb{H} , and $\mathcal{F}(\mathbb{H})$ representing the ideal consisting of all finite rank operators within $\mathcal{B}(\mathbb{H})$. The map $T \mapsto T^*$, which takes an operator to its Hilbert adjoint operator, is an involution on $\mathcal{B}(\mathbb{H})$. Here \mathbb{C} , the field of complex numbers, is equipped with the conjugate involution and $\mathcal{B}(\mathbb{H})$ forms a *-algebra. Therefore $\mathcal{B}(\mathbb{H})$ is an algebra of characteristic zero and the map $T \mapsto T^*$, where T^* denotes the Hilbert adjoint operator of T, is an involution of the second kind on $\mathcal{Z}(\mathcal{B}(\mathbb{H}))$. A subset \mathcal{M} of $\mathcal{B}(\mathbb{H})$ is said to be closed under adjoint operation if $u \in \mathcal{M}$ implies that $u^* \in \mathcal{M}$, that is, $\mathcal{M}^* \subseteq \mathcal{M}$.

Standard operator algebras: A subalgebra \mathcal{S} of $\mathcal{B}(\mathbb{H})$ earns the label of a standard operator algebra if it includes the identity operator and encompasses $\mathcal{F}(\mathbb{H})$. It's evident that $\mathcal{B}(\mathbb{H})$ itself is a standard operator algebra. Furthermore, every standard operator algebra qualifies as a prime algebra. Moreover, for any standard operator algebra \mathcal{S} , its center $\mathcal{Z}(\mathcal{S})$ is $\mathbb{C}I$. A self-adjoint standard operator algebra \mathcal{S} represents an algebra of characteristic zero, and a mapping $T \mapsto T^*$, where T^* denotes the Hilbert adjoint operator of T, serves as an involution of the second kind on $\mathcal{Z}(\mathcal{S})$. Leveraging the results derived in the preceding section, the following corollaries emerge.

Corollary 4.1. Let S be a self-adjoint standard operator algebra on a Hilbert space \mathbb{H} . Suppose that $\chi: S \to S$ is a surjective map. Then χ is strong bi-skew commutativity preserving map if and only if there exists $\lambda \in \mathcal{Q}_{ms}(S)$ with $\lambda \lambda^* = 1$ such that $\chi(a) = \lambda a$ for all $a \in S$.

Corollary 4.2. Let S be a self-adjoint standard operator algebra on a Hilbert space \mathbb{H} . Then $\chi: S \to S$ is a bi-skew commuting map if and only if there exists $\lambda \in \mathbb{R}$ such that $\chi(a) = \lambda a$ for all $a \in S$.

Corollary 4.3. Let S be a self-adjoint standard operator algebra on a Hilbert space \mathbb{H} . Suppose that $\Phi: S \to S$ is a generalized bi-skew Jordan derivation with $\Omega: \Re \to S$ as associated bi-skew Jordan derivation. Then $\Omega: S \to S$ is an additive *-derivation and there exists $\lambda \in \mathbb{R}$ such that $\Phi(u) = \lambda u + \Omega(u)$.

Factor von Neumann algebras A von Neumann algebra \mathcal{N} is a subalgebra of $\mathcal{B}(\mathbb{H})$ which satisfies the double commutant property, that is, $\mathcal{N}'' = \mathcal{N}$ where

$$\mathcal{N}' = \{ T \in \mathcal{B}(\mathbb{H}) \mid TF = FT \text{ for all } F \in \mathcal{N} \} \text{ and } \mathcal{M}'' = (\mathcal{M}')'.$$

It is clear that a von Neumann algebra is unital. A von Neumann algebra \mathcal{N} is an algebra of characteristic zero and a map $T \mapsto T^*$, where T^* denotes the Hilbert adjoint operator of T, is an involution of the second kind on $\mathcal{Z}(\mathcal{N})$. A von Neumann algebra \mathcal{N} is called a factor von Neumann algebra if its center is trivial, that is, $\mathcal{Z}(\mathcal{N}) = \mathbb{C}I$. Every factor von Neumann algebra is a prime algebra.

Corollary 4.4. Let \mathcal{N} be a factor von Neumann algebra. Suppose that $\chi : \mathcal{N} \to \mathcal{N}$ is a surjective map. Then χ is strong bi-skew commutativity preserving map if and only if there exists $\lambda \in \mathcal{Q}_{ms}(\mathcal{N})$ with $\lambda \lambda^* = 1$ such that $\chi(a) = \lambda a$ for all $a \in \mathcal{N}$.

Corollary 4.5. Let \mathcal{N} be a factor von Neumann algebra. Then $\chi : \mathcal{N} \to \mathcal{N}$ is a bi-skew commuting map if and only if there exists $\lambda \in \mathbb{R}$ such that $\chi(u) = \lambda u$ for all $u \in \mathcal{N}$.

Corollary 4.6. Let \mathcal{N} be a factor von Neumann algebra. Suppose that $\Phi: \mathcal{N} \to \mathcal{N}$ is a generalized bi-skew Jordan derivation with $\Omega: \mathcal{N} \to \mathcal{N}$ as associated bi-skew Jordan derivation. Then $\Omega: \mathcal{N} \to \mathcal{N}$ is an additive *-derivation and there exists $\lambda \in \mathbb{R}$ such that $\Phi(u) = \lambda u + \Omega(u)$ for all $u \in \mathcal{N}$.

Conflict of Interest: The authors declare that they have no Conflict of interest

References

- [1] Konstant I Beidar, Wallace S Martindale, and Alexander V Mikhalev. Rings with generalized identities. CRC Press, 1995.
- [2] Scott Lanning. The maximal symmetric ring of quotients. *Journal of Algebra*, 179(1):47–91, 1996.
- [3] Matej Brešar. Functional identities and rings of quotients. Algebras and Representation Theory, 19:1437–1450, 2016.
- [4] Cui Jianlian and Choonkil Park. Maps preserving strong skew lie product on factor von neumann algebras. *Acta Mathematica Scientia*, 32(2):531–538, 2012.
- [5] Jianlian Cui and Chi-Kwong Li. Maps preserving product $xy yx^*$ on factor von neumann algebras. Linear algebra and its applications, 431(5-7):833-842, 2009.

- [6] Jinchuan Hou and Wei Wang. Strong 2-skew commutativity preserving maps on prime rings with involution. *Bulletin of the Malaysian Mathematical Sciences Society*, 42:33–49, 2019.
- [7] Liang Kong and Jianhua Zhang. Nonlinear skew lie derivations on prime *-rings. Indian Journal of Pure and Applied Mathematics, 54(2):475–484, 2023.
- [8] Tsiu-Kwen Lee and Tsai-Lien Wong. Nonadditive strong commutativity preserving maps. *Communications in Algebra*, 40(6):2213–2218, 2012.
- [9] Chang Jing Li and Quan Yuan Chen. Strong skew commutativity preserving maps on rings with involution. *Acta Mathematica Sinica*, English Series, 32(6):745–752, 2016.
- [10] Jer-Shyong Lin and Cheng-Kai Liu. Strong commutativity preserving maps in prime rings with involution. *Linear algebra and its applications*, 432(1):14–23, 2010.
- [11] Jer-Shyong Lin and Cheng-Kai Liu. Strong commutativity preserving maps on lie ideals. *Linear algebra and its applications*, 428(7):1601–1609, 2008.
- [12] Lei Liu. Strong skew commutativity preserving maps on rings. *Journal of the Australian Mathematical Society*, 100(1):78–85, 2016.
- [13] Xiaofei Qi and Yazhou Zhang. k-skew lie products on prime rings with involution. *Communications in Algebra*, 46(3):1001–1010, 2018.
- [14] Xiaofei Qi and Jinchuan Hou. Strong skew commutativity preserving maps on von neumann algebras. *Journal of Mathematical Analysis and Applications*, 397(1):362–370, 2013.
- [15] Xiaofei Qi and Jinchuan Hou. Nonlinear strong commutativity preserving maps on prime rings. Communications in Algebra®, 38(8):2790–2796, 2010.
- [16] Xiaofei Qi and Shaobo Chen. Strong bi-skew commutativity preserving maps on von neumann algebras. Bulletin of the Iranian Mathematical Society, 49(2):15, 2023.
- [17] L Kong and J Zhang. Nonlinear skew commuting maps on *-rings. *Ukrainian Mathematical Journal*, 74(6):946–952, 2022.
- [18] Mohammad Aslam Siddeeque and Abbas Hussain Shikeh. On the characterization of skew jordan derivations in *-rings. *Iranian Journal of Science*, 47(5):1605–1611, 2023.
- [19] Vahid Darvish, Mojtaba Nouri, and Mehran Razeghi. Non-linear bi-skew jordan derivations on *-algebra. *Filomat*, 36(10):3231–3239, 2022.
- [20] Mohammad Aslam Siddeeque and Abbas Hussain Shikeh. Nonlinear bi-skew jordan derivations in prime *-rings. *Journal of Algebra and Its Applications*, 23(14):2550001, 2024
- [21] Asma Ali, Amal S Alali, and Mohd Tasleem. Characterization of non-linear bi-skew jordan n-derivations on prime *-algebras. Axioms, 12(8):753, 2023.
- [22] Mohammad Ashraf, Md Shamim Akhter, and Mohammad Afajal Ansari. Nonlinear generalized bi-skew jordan n-derivations on *-algebras. Bulletin of the Malaysian Mathematical Sciences Society, 47(1):18, 2024.
- [23] Tsiu-Kwen Lee and Tsai-Lien Wong. Right centralizers of semiprime rings. Communications in Algebra, 42(7):2923–2927, 2014.
- [24] Matej Brešar and C Robert Miers. Strong commutativity preserving maps of semiprime rings. Canadian Mathematical Bulletin, 37(4):457–460, 1994.

- [25] Mohammad Aslam Siddeeque, Abbas Hussain Shikeh, and Raof Ahmad Bhat. On the structure of some nonlinear maps in prime *-rings. Filomat, 38(1):261–269, 2024.
- [26] Louis Rowen. Some results on the center of a ring with polynomial identity. 1973.
- [27] Konstantin I Beidar and WS Martindale III. On functional identities in prime rings with involution. *Journal of algebra*, 203(2):491–532, 1998.