EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 2, Article Number 5569 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Upper Bound of Radio Span for Shadow-path Network and Its Mathematical Modeling

Nawal M. NourEldeen^{1,2}, Elsayed Badr^{3,4,5},Hanan M. Shabana^{6,*}, M. E. Abdel-Aal⁷

- ¹ Department of Mathematics, College of Science, Taibah University, Madinah, Kingdom of Saudi Arabia
- ² Department of Mathematics, Women's College of Arts, Science and Education, Ain Shams University, Egypt
- ³ Department of Information Systems, College of Information Technology, Misr University for Science and Technology (MUST), P.O. BOX 77, Giza, Egypt
- ⁴ Scientific Computing Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha, Egypt
- ⁵ The Egyptian School of Data Science (ESDS), Benha University, Egypt
- ⁶ Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
- Department of Mathematics, Faculty of Science, Benha University, Benha 13518, Egypt

Abstract. Motivated by the frequency assignment problem, we investigate radio labeling of graphs. In graph theory and discrete mathematics, radio labeling of graphs has received significant attention as it is of immense importance for numerous applications to a wide range of areas such as circuit and sensor network, signal processing, design, frequency assignment in mobile communication systems, etc. An assignment of labels satisfying specific constraints to the edges, vertices, or both of graph G is known as graph labeling. Radio labeling of a graph G is a technique of labeling vertices of G by non-negative integers. Hence, radio labeling problem presents an efficient graph modeling for the frequency assignment problem. In radio labeling of a graph G, the maximum label used for labeling vertices is called the span of that radio labeling. The minimum span from all radio labelings of G is known as the radio number of G. That radio number reflects the efficient usage of the available frequencies in frequency assignment for a network modeled by the graph G. This paper contributes the mathematical proof (Theorems 1-4), an integer linear programming model for finding the upper bound of radio number of shadow graphs. It also introduces an application of radio labeling of graphs in cryptography. Additionally, a computational study has been conducted wherein it demonstrates that our results (Theorems 1-4) outperform both the mathematical model, and the results published in the literature.

2020 Mathematics Subject Classifications: 05C78, 05C12, 05C15

DOI: https://doi.org/10.29020/nybg.ejpam.v18i2.5569

Email addresses: neldeen@taibahu.edu.sa (N. M. NourEldeen), Elsayed.Badr@must.edu.eg (E. Badr), hananshabana22@gmail.com (H. M. Shabana), mohamed.abdelghani@fsc.bu.edu.eg (M. E. Abdel-Aal)

^{*}Corresponding author.

Key Words and Phrases: Frequency(channel) assignment problem, Radio labeling, Integer linear programing, Radio number, Cryptography.

An overview of the notations that will be applied throughout the paper, listed in Table 1.

Parameter	Description
$V\left(G\right)$	The set of vertices of the graph G .
$E\left(G\right)$	The set of edges of the graph G .
$d\left(u,v\right)$	The distance between two vertices u, v in a graph.
$diam\left(G\right)$	The diameter of G .
P_n	Path of <i>n</i> vertices.
C_n	Cycle with n vertices.
$rn\left(G ight)$	The radio number of G .
FAP	Frequency assignment problem
$D_2\left(P_n\right)$	The shadow path graph
ILPM	Integer Linear Programming Model

Table 1: Table of Notations.

1. Introduction

The communication in wireless networks depends on the frequencies (channels) allotted to them. For an effective communication, the frequencies should assigned to transmitters in such a way that avoids the interference. Here, the interference is closely related to the geographical position of the transmitting stations. The interference is increasing whenever the stations are geographical close. To avoid such interference, we have to assign frequencies to stations such that difference between the assigned channels must be large enough. The process of assigning a limited number of available frequencies to transmitters in radio networks with avoiding interference is known as the frequency assignment problem (FAP). Wireless networks appear in a variety of services such as T.V. and radio broadcasting, Engineering, Economics, military services, and many other. Due to increasing popularity of wireless services and the limited available frequencies, FAP has a lot of interest from the scientific and the business communities. As the optimizing usage of the available frequencies means higher traffic capacity, more bandwidth and bigger coverage for the existing radio networks. As a result, many researchers and a wide variety of models have investigated FAPs and solution techniques have been proposed. The labeling technique in graph theory has played an important role in solving FAP; thereby the time and cost will be saved. For modeling FAP in graph theory, an interference graph G = (V(G), E(G)) is constructed where V(G) and E(G) are the set of vertices and the set of edges of G respectively. This graph represents the interference between transmitters. Each vertex belong to V(G) represents a unique transmitter. In the event of the broadcasting of the two transmitters may interfere, then their corresponding vertices from V(G) are joined by an edge. Positive integers are used as labels for the frequency channels. Therefore, FAP [1] is equivalent to the vertex coloring (labeling) issue of the graph G with certain labeling constraints. In [2] author examined a comprehensive overview of graph labeling. Griggs and Yeh [3] presented the first graph labeling technique, known as L(2,1) labeling or distance two labeling to address the frequency assignment problem. The graph labeling L(2,1) of a simple graph G is a non-negative real-valued function $L:V(G) \to [0, \infty)$ where V(G) is the vertex set of the graph G. Whenever G0 and G1 are two vertices in G2 such that the distance between G2 and G3 is 1, then

 $|L(u) - L(v)| \ge 2$, and whenever the vertices u and v are of distance 2 from each other, then $|L(u) - L(v)| \ge 1$.

Another graph labeling technique called *radio Labeling* was introduced by Chartrand et al. [4]. The radio labeling problem of a connected graph G = (V(G), E(G)) is denoted as follows. Let $u, v \in V(G)$. The distance d(u, v) denote the length of the shortest path between u, v. The diameter diam(G) of G is defined as the maximum distance between any two vertices in G. Thus,

 $diam(G) = \max \{d(u, v) : u, v \in V(G) \}$. A radio labeling of G is an injective function f from V(G) to $N = \{0, 1, 2, 3, \dots\}$, satisfying the following constraints

$$|f(u) - f(v)| \ge diam(G) + 1 - d(u, v)$$
. For all $u, v \in V(G)$.

The integer f(u) is said to be the color (label) of u under f and, the span of f is denoted by

$$\operatorname{span}(f) = \max\{|f(u) - f(v)| : u, v \in V(G)\}.$$

The radio number of G, or (rn(G)), is defined as

$$rn(G) = \min \{ span(f) \}$$

for all radio labeling f of G. The objective of radio labeling problem of G is finding the value of rn(G).

2. Related Work

From viewpoint of complexity, the problem of getting the radio number of a given graph is NP complete [5]. Saha and Panigrahi [6] presented an algorithm which finds the upper bounds of rn (G) for a given graph G. In [7] Badr and Moussa suggested a developing algorithm for one presented in [6]. Besides that they gave an approach for solving the radio labeling problem using mathematical modeling. Recently radio labeling of graphs and finding the exact or the upper bounds of radio number of graphs has a lot of attention. In [8] an assignment of radio numbers to triangular networks and rhombic honeycomb networks is discussed. The study of the radio labeling of fuzzy graphs is

studied in [9]. In addition, the study of the radio labeling for many different types of graphs has been the subject of intellectual research by several authors [10–23].

Many authors have found the radio labeling and radio labeling of path graphs, the middle graph of the path, a strong product of the path graph, the cross product of the path, and the corona product of the path sub division of paths, etc. This study aims to fill the research gaps by determining the radio number for the shadow of path graph. In this paper, we are concerned with finding an upper bound for radio number rn (G) of networks modeled by the shadow of path graph. We present a theoretical approach for getting an upper bound of radio number of the shadow of path graph. Moreover, modeling the problem of radio labeling of the shadow path graph using integer linear programing is proposed. Besides that, an experimental study is carried out in order to demonstrate our approach's effectiveness in comparison to previously published results. Overall, our investigation demonstrates that, in terms of the running time and radio numbers' upper bound, the suggested results perform better than the earlier findings.

The rest of the paper is structured as follows. Section 3 introduces our theoretical approach for finding an upper bound of radio number of the shadow of path graph. The modeling of radio labeling of shadow of path graph using integer linear programing is presented in section 4. Section 5, gives the computational study for comparing our theoretical approach, integer programing model and previous algorithms known in the literature. The application of radio labeling technique in cryptography is introduced in Section 6. The conclusion of work is presented in section 7.

3. Theoretical approach for upper bound of radio number of shadow networks

Hereafter, we are interested in getting an upper bound of radio number of shadow networks.

Definition 1. Let P_n be the path with n vertices. The shadow graph $D_2(P_n)$ is constructed by taking two copies of P_n . Join each vertex u in the first path to the neighbors of the corresponding vertex v in the second path as shown in Figure 1.

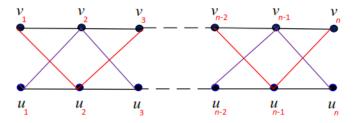


Figure 1: The graph $D_2(P_n)$.

In $D_2(P_n)$, the set of vertices is $V(D_2(P_n)) = \{u_i, v_i : 1 \le i \le n\}$ and the set of edges

is defined as:

$$E(D_2(P_n)) = \{u_i u_{i+1}, v_i v_{i+1} \ v_i : 1 \le i \le n-1\} \cup \{u_i v_{i+1}, v_i u_{i+1} \ v_i : 1 \le i \le n-1\}.$$

For convenience, we divided all vertices of $D_2(P_n)$ into two subsets V_u and V_v . Where $V_u = \{u_i : 1 \le i \le n\}$ and $V_v = \{v_i : 1 \le i \le n\}$. Hence, the graph $D_2(P_n)$ has a set of 2n vertices; that is $|V_u| = |V_v| = n$ and the diameter of $D_2(P_n)$ equals n - 1, n > 2.

In the following, we investigate the radio number of $D_2(P_n)$.

Lemma 1. For a positive integer n = 2, $rn(D_2(P_n)) \le 4$.

Proof. Let
$$(f(u_1), f(u_2), f(v_1), f(v_2)) = (0, 3, 1, 4)$$
.

Lemma 2. For a positive integer n = 3, $rn(D_2(P_n)) \le 6$.

Proof. Let
$$(f(u_1), f(u_2), f(u_3), f(v_1), f(v_2), f(v_3)) = (0, 5, 1, 2, 6, 3).$$

Lemma 3. For a positive integer n = 4, $rn(D_2(P_n)) \le 12$.

Proof. For
$$n = 4$$
, let $(f(u_1), f(u_2), f(u_3), f(u_4), f(v_1), f(v_2), f(v_3), f(v_4)) = (0, 5, 10, 1, 2, 7, 12, 3).$

Lemma 4. For a positive integer n = 5, $rn(D_2(P_n)) \le 22$.

Proof. For n = 5 Let

$$(f(u_1), f(u_2), f(u_3), f(u_4), f(u_5), f(v_1), f(v_2), f(v_3), f(v_4), f(v_5)) =$$

= $(6, 13, 0, 16, 7, 9, 19, 3, 22, 10)$

In the next theorems, we find upper bound of $rn(D_2(P_n))$ for $n \geq 6$.

Theorem 1. Let $n \geq 6$ be a positive integer such that $n \equiv 2 \pmod{4}$. Then

$$rn(D_2(P_n)) \le n^2 - \frac{n}{2}.$$

Proof. For $k \ge 1, n \equiv 2 \pmod{4}$ such that n = 4k + 2, let $f: V(D_2(P_n)) \to N$ define as follows:

$$f(u_i) = \begin{cases} (2n+3)(i-1) + 2(i-1)(i-2), & \text{if} \quad \underline{1 \le i \le k+1} \\ f(u_{k+1}) - (2n-1) - (3n-5)(j-1) + 2(j-1)(j-2), \\ & \text{if} \quad \underline{k+2 \le i \le 2k+1} \quad \text{where} \quad 1 \le j \le k, \text{ and} \quad i = k+1+j \\ f(u_{k+1+j}) + (6k+1) - 2(j-1), & \text{if} \quad \underline{2k+2 \le i \le 3k+1}, \\ & \text{where} \quad 1 \le j \le k, \quad \text{and} \quad i = 3k+2-j \\ f(u_j) + 2j - 1, & \text{if} \quad \underline{3k+2 \le i \le 4k+2=n}, \\ & \text{where} \quad 1 \le j \le k+1, \quad \text{and} \quad i = 4k+3-j \end{cases}$$

And for the vertices belongs to V_v ,

$$f(v_i) = \begin{cases} & (n+2) + (2n+7)(i-1) + 2(i-1)(i-2), & \text{if} \quad \underline{1 \le i \le k}, \\ & f(v_k) + (2n+1) + (n+1)(j-1) + 2(j-1)(j-2), \\ & \text{if} \quad \underline{k+1 \le i \le 2k+1}, \quad \text{where} \quad 1 \le j \le k+1, \text{and} i = k+j \\ & f(v_{k+j}) + (2k+1) + 2(j-1), \quad \text{if} \quad \underline{2k+2 \le i \le 3k+2}, \\ & \text{where} \quad 1 \le j \le k+1, \quad \text{and} \quad i = 3k+3-j \\ & f(v_j) - 2j+1, \text{if} \quad \underline{3k+3 \le i \le 4k+2=n}, \\ & \text{where} \quad 1 \le j \le k, \quad \text{and} \quad i = 4k+3-j \end{cases}$$

Now we claim to prove that the function f given above is a radio labelling of $D_2(P_n)$ Consequently, It is required that f verifies the following condition

$$|f(x) - f(y)| \ge n - d(x, y)$$

for any two distinct vertices $x, y \in V(D_2(P_n))$.

<u>case 1</u> $x, y \in V_u$. If $\{x, y\} = \{u_1, u_n\}$ then

$$|f(x) - f(y)| = |f(u_1) - f(u_n)|$$

$$= |f(u_1) - [f(u_1) + 2 - 1]| = 1$$

$$\geq diam(D_2(P_n)) + 1 - d(x, y), \text{ where } d(x, y) = n - 1.$$

<u>case 2</u> If $\{x, y\} = \{u_1, u_{k+1}\}$ then

$$\begin{split} |f(x)-f(y)| &= |f(u_1)-f(u_{k+1})| \\ &= |f(u_1)-[(2n+3)(k)+2k(k-1)]| \\ &= |-[(2n+3)(k)+2k(k-1)]| \\ &= (2n+3)(k)+2k(k-1) \geq n-k, \\ &\geq diam(D_2(P_n))+1-d(x,y), \text{ where } \quad d(x,y)=k \end{split}$$

case 3 If $\{x,y\} = \{u_1, u_{2k+1}\}$ then d(x,y) = 2k

$$|f(x) - f(y)| = |f(u_1) - f(u_{2k+1})|$$

$$= |f(u_1) - [f(u_{k+1}) - (2n-1) - (3n-5)(k-1) + 2(k-1)(k-2)]|$$

$$= |f(u_{k+1}) - (2n-1) - (3n-5)(k-1) + 2(k-1)(k-2)|$$

$$= |(2n+3)(k) + 2k(k-1) - (2n-1) - (3n-5)(k-1) + 2(k-1)(k-2)|$$

$$\geq n - 2k$$

<u>case 4</u> If $\{x, y\} = \{u_1, u_{3k+1}\}$ then d(x, y) = 3k

$$|f(x) - f(y)| = |f(u_1) - f(u_{3k+1})|$$

$$= |f(u_1) - [f(u_{k+2}) + (6k+1)]|$$

$$= |f(u_{k+2}) + (6k+1)|$$

$$= |f(u_{k+1}) - (2n-1) + (6k+1)|$$

= $|(2n+3)(k) + 2k(k-1) - (2n-1) + (6k+1)|$
> $n-3k$

<u>case 5</u> $x, y \in V_v$. If $\{x, y\} = \{v_1, v_n\}$ then

$$|f(x) - f(y)| = |f(v_1) - f(v_n)|$$

$$= |f(v_1) - [f(v_1) - 1]| = 1$$

$$\geq diam(D_2(P_n)) + 1 - d(x, y), \text{ where } d(x, y) = n - 1.$$

<u>case 6</u> If $\{x, y\} = \{v_1, v_k\}$ then

$$|f(x) - f(y)| = |f(v_1) - f(v_k)|$$

$$= |(n+2) - [(n+2) + (2n+7)(k-1) + 2(k-1)(k-2)]|$$

$$= |(2n+7)(k-1) + 2(k-1)(k-2)|$$

$$\geq n, \text{ where } n = 4k+2$$

$$\geq diam(D_2(P_n)) + 1 - d(x,y)$$

case 7 If $\{x, y\} = \{v_1, v_{2k+1}\}$ then

$$|f(x) - f(y)| = |f(v_1) - f(v_{2k+1})|$$

$$= |(n+2) - [(n+2) + (2n+7)(k-1) + 2(k-1)(k-2) +$$

$$+ (2n+1) + (n+1)(k) + 2(k)(k-1)]|$$

$$= |(2n+7)(k-1) + 2(k-1)(k-2) + (2n+1) + (n+1)(k) + 2(k)(k-1)|$$

$$\geq n, \text{ where } n = 4k + 2, d(x,y) \geq 1$$

$$\geq diam(D_2(P_n)) + 1 - d(x,y)$$

case 8 If $\{x, y\} = \{v_1, v_{3k+2}\}$ then

$$\begin{split} |f(x)-f(y)| &= |f(v_1)-f(v_{3k+2})| \\ &= |f(v_1)-[f(v_{k+1})+(2k+1)]| \\ &= |f(v_1)-[f(v_k)+(2n+1)+(2k+1)]| \\ &= |(n+2)-[(n+2)+(2n+7)(k-1)+2(k-1)(k-2)+ \\ &+ (2n+1)+(2k+1)]| \\ &= |(2n+7)(k-1)+2(k-1)(k-2)+(2n+1)+(2k+1)| \\ &\geq n-(3k+1), \text{ where} \quad n=4k+2, d(x,y)=3k+1 \\ &\geq diam(D_2(P_n))+1-d(x,y) \end{split}$$

<u>case 9</u> $x \in V_u$ and $y \in V_v$ Let $x = u_i$ and $y = v_l$, where $1 \le i, l \le n$ In this case we have several subcases: **Subcase 9.1** If i = 1, j = k then

$$|f(x) - f(y)| = |f(u_1) - f(v_k)|$$

$$= |0 - [(n+2) + (2n+7)(k-1) + 2(k-1)(k-2)]|$$

$$= |(n+2) + (2n+7)(k-1) + 2(k-1)(k-2)|$$

$$\ge n - (k-1), \text{ where } , d(x,y) = k-1$$

$$\ge diam(D_2(P_n)) + 1 - d(x,y).$$

Otherwise, $|f(x) - f(y)| \ge n$.

Subcase 9.2, $1 \le i \le k+1$ and $k+1 \le l \le 2k+1$

$$|f(x) - f(y)| = |f(u_i) - f(v_l)|$$

$$= |f(u_i) - f(v_{k+j})|, \text{ where } 1 \le j \le k$$

$$= |(2n+3)(i-1) + 2(i-1)(i-2) - [f(v_k) + (2n+1) + (n+1)(j-1) + 2(j-1)(j-2)]|$$

$$= |(2n+3)(i-1) + 2(i-1)(i-2) - [(n+2) + (2n+7)(k-1) + 2(k-1)(k-2) + (2n+1) + (n+1)(j-1) + 2(j-1)(j-2)]|.$$

If i = 1, l = k + 1 i.e. j = 1 then

$$|f(x) - f(y)| = |f(u_i) - f(v_l)|$$

$$= |f(u_i) - f(v_{k+j})|, \text{ where } 1 \le j \le k$$

$$= |0 - [f(v_k) + (2n+1) + (n+1)(j-1) + 2(j-1)(j-2)]|$$

$$= |-[(n+2) + (2n+7)(k-1) + 2(k-1)(k-2) + (2n+1)|$$

$$= |(n+2) + (2n+7)(k-1) + 2(k-1)(k-2) + (2n+1)|$$

$$\ge n, \text{ where } n = 4k + 2, d(x, y) \ge 1$$

$$\ge diam(D_2(P_n)) + 1 - d(x, y).$$

<u>Subcase 9.3.</u> Suppose, $1 \le i \le k+1$ and $2k+2 \le l \le 3k+2$ If i=1, l=3k+2 i.e. j=1 then

$$|f(x) - f(y)| = |f(u_1) - f(v_{3k+2})|$$

$$= |f(u_i) - f(v_{n-k})|$$

$$= |0 - f(v_{k+1}) + 2k + 1|$$

$$= |(n+2) + (2n+7)(k-1) + 2(k-1)(k-2) + 2k + 1|$$

$$\geq n, \text{ where } n = 4k + 2, d(x, y) \geq 1$$

$$\geq diam(D_2(P_n)) + 1 - d(x, y).$$

Otherwise, $|f(x) - f(y)| \ge n$.

For more illustration, Figure 2 shows the radio labeling of $D_2(P_{14})$ according to Theorem 1.

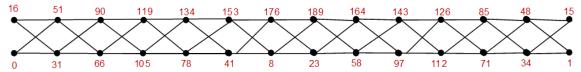


Figure 2: Radio labeling of $D_2(P_14)$ following Theorem 1.

Theorem 2. Let n > 6 be a positive integer such that $n \equiv 3 \pmod{4}$. Then

$$rn(D_2(P_n)) \le n^2 - 3.$$

Proof. Let $k \geq 1, n \equiv 3 \pmod{4}$ such that n = 4k + 3, we define $f: V(D_2(P_n)) \to N$ as follows:

$$f(u_i) = \begin{cases} (2n+3)(i-1)+2(i-1)(i-2), & \text{if} \quad \underline{1 \leq i \leq k+1} \\ f(u_{k+1})-(2n-2)-(3n-6)(j-1)+2(j-1)(j-2), \\ & \text{if} \quad \underline{k+2 \leq i \leq 2k+1}, \quad \text{where} \quad 1 \leq j \leq k, \quad \text{and} \quad i=k+1+j \\ n^2-n-1, & \text{if} \quad \underline{i=2k+2} \\ f(u_{k+1+j})+(6k+2)-2(j-1), & \text{if} \quad \underline{2k+3 \leq i \leq 3k+2} \\ & \text{where} \quad 1 \leq j \leq k, \quad \text{and} \quad i=3k+3-j) \\ f(u_j)+2j-1, & \text{if} \quad \underline{3k+3 \leq i \leq 4k+3=n} \\ & \text{where} \quad 1 \leq j \leq \overline{k+1}, \quad \text{and} \quad i=4k+4-j \end{cases}$$

And for the vertices belongs to V_v ,

$$f(v_i) = \begin{cases} &(n+3) + (2n+7)(i-1) + 2(i-1)(i-2), & \text{if} \quad \underline{1 \le i \le k} \\ &f(v_k) + (2n-1) + n(j-1) + 2(j-1)(j-2), \\ &\text{if} \quad \underline{k+1 \le i \le 2k+1}, \text{ where} \quad 1 \le j \le k+1, \quad \text{and} \quad i=k+j \\ &n^2 - 3, \quad \text{if} \quad \underline{i=2k+2} \\ &f(v_{k+j}) + (2k+1) + 2(j-1), \quad \text{if} \quad \underline{2k+3 \le i \le 3k+3} \\ &\text{where} \quad 1 \le j \le k+1, \quad \text{and} \quad i=3k+4-j \\ &f(v_{n+1-j}) = f(v_j) - 2j, \quad \text{if} \quad \underline{3k+4 \le i \le 4k+3=n} \\ &\text{where} \quad 1 \le j \le k, \quad \text{and} \quad \underline{i=4k+4-j} \end{cases}$$

Now we claim to prove that the function f given above is a radio labelling of $D_2(P_n)$ Consequently, It is required that f verifies the following condition with a span equal to the desired number. So, we need only to check it for $n \geq 6$, n = 4k + 3 where $k \geq 1$. It remains to verify that

$$|f(x) - f(y)| \ge diam(D_2(P_n)) + 1 - d(x, y)$$

for any two distinct vertices x, y of $D_2(P_n)$. We distinguish several cases:

case 1
$$x, y \in V_u$$
. If $\{x, y\} = \{u_1, u_n\}$ then

$$|f(x) - f(y)| = |f(u_1) - f(u_n)|$$

$$= |f(u_1) - [f(u_1) + 2 - 1]| = 1$$

$$\geq diam(D_2(P_n)) + 1 - d(x, y), \text{ where } d(x, y) = n - 1.$$

case 2 If $\{x, y\} = \{u_1, u_{k+1}\}$ then

$$|f(x) - f(y)| = |f(u_1) - f(u_{k+1})|$$

$$= |f(u_1) - [(2n+3)(k) + 2k(k-1)]|$$

$$= |-[(2n+3)(k) + 2k(k-1)]|$$

$$= (2n+3)(k) + 2k(k-1) \ge n$$

$$\ge diam(D_2(P_n)) + 1 - d(x, y)$$

<u>case 3</u> If $\{x, y\} = \{u_1, u_{2k+1}\}$ then

$$|f(x) - f(y)| = |f(u_1) - f(u_{2k+1})|$$

$$= |f(u_1) - [f(u_{k+1}) - (2n-2) - (3n-6)(k-1) + 2(k-1)(k-2)]|$$

$$= |f(u_{k+1}) - (2n-2) - (3n-6)(k-1) + 2(k-1)(k-2)|$$

$$= |(2n+3)(k) + 2k(k-1) - (2n-2) - (3n-6)(k-1) + 2(k-1)(k-2)|$$

$$\geq n - 2k$$

$$\geq diam(D_2(P_n)) + 1 - d(x, y)$$

case 4 If $\{x, y\} = \{u_1, u_{2k+2}\}$ then

$$|f(x) - f(y)| = |f(u_1) - f(u_{2k+2})|$$

$$= |f(u_1) - [n^2 - n - 1]|$$

$$= |n^2 - n - 1|$$

$$\ge n$$

$$\ge diam(D_2(P_n)) + 1 - d(x, y)$$

<u>case 5</u> If $\{x, y\} = \{u_1, u_{3k+2}\}$ then

$$|f(x) - f(y)| = |f(u_1) - f(u_{3k+2})|$$

$$= |f(u_1) - [f(u_{k+2}) + (6k+2)]|$$

$$= |f(u_{k+2}) + (6k+2)|$$

$$= |(n^2 - n - 1) + (6k+2)|$$

$$\ge n$$

$$\ge diam(D_2(P_n)) + 1 - d(x, y)$$

case 6 $x, y \in V_v$. If $\{x, y\} = \{v_1, v_n\}$ then

$$|f(x) - f(y)| = |f(v_1) - f(v_n)|$$

$$= |f(v_1) - [f(v_1) - 2]| = 2$$

$$\geq diam(D_2(P_n)) + 1 - d(x, y), \text{ where } d(x, y) = n - 1.$$

case 7 If $\{x, y\} = \{v_1, v_k\}$ then

$$|f(x) - f(y)| = |f(v_1) - f(v_k)|$$

$$= |(n+3) - [(n+3) + (2n+7)(k-1) + 2(k-1)(k-2)]|$$

$$= |(2n+7)(k-1) + 2(k-1)(k-2)|$$

$$\geq n, \text{ where } n = 4k+3, d(x,y) \geq 1$$

$$\geq diam(D_2(P_n)) + 1 - d(x,y)$$

<u>case 8</u> If $\{x, y\} = \{v_1, v_{2k+1}\}$ then

$$|f(x) - f(y)| = |f(v_1) - f(v_{2k+1})|$$

$$= |(n+3) - [(n+3) + (2n+7)(k-1) + 2(k-1)(k-2) +$$

$$+ (2n-1) + (n)(k) + 2(k)(k-1)]|$$

$$= |(2n+7)(k-1) + 2(k-1)(k-2) + (2n-1) + (n)(k) + 2(k)(k-1)|$$

$$\geq n, \text{ where } n = 4k + 3, d(x,y) \geq 1$$

$$\geq diam(D_2(P_n)) + 1 - d(x,y)$$

case 9 If $\{x,y\} = \{v_1, v_{2k+2}\}$ then

$$|f(x) - f(y)| = |f(v_1) - f(v_{2k+2})|$$

$$= |f(v_1) - [n^2 - 3]|$$

$$= |n^2 - 3|$$

$$\ge n$$

$$\ge diam(D_2(P_n)) + 1 - d(x, y)$$

case 10 If $\{x,y\} = \{v_1, v_{3k+3}\}$ then

$$|f(x) - f(y)| = |f(v_1) - f(v_{3k+3})|$$

$$= |f(v_1) - [f(v_{k+1}) + (2k+1)]|$$

$$= |f(v_1) - [f(v_k) + (2n-1) + (2k+1)]|$$

$$= |(n+2) - [(n+3) + (2n+7)(k-1) + 2(k-1)(k-2) + (2n+1) + (2k+1)]|$$

$$= |(2n+7)(k-1) + 2(k-1)(k-2) + (2n+1) + (2k+1) + 1|$$

$$\geq n$$

$$\geq diam(D_2(P_n)) + 1 - d(x, y)$$

case 11 $x \in V_u$ and $y \in V_v$

Let $x = u_i$ and $y = v_l$, where $1 \le i, l \le n$

In this case we have several subcases:

Subcase 11.1 If i = l, $1 \le i, l \le k$ then

$$|f(x) - f(y)| = |f(u_i) - f(v_i)|, \quad 1 \le i \le k$$

$$= |(2n+3)(i-1) + 2(i-1)(i-2) - [(n+3) + (2n+7)(i-1) + 2(i-1)(i-2)]|$$

$$= |-[(n+3) + (4)(i-1)]|$$

$$= |(n+3) + (4)(i-1)|, \quad 1 \le i \le k$$

$$\ge n$$

$$\ge diam(D_2(P_n)) + 1 - d(x, y).$$

Subcase 11.2 If i = l = 2k + 2

$$|f(x) - f(y)| = |f(u_i) - f(v_i)|, \quad i = 2k + 2$$

$$= |n^2 - n - 1 - [n^2 - 3]|$$

$$= |-[(n-2)]|$$

$$= |(n-2)|, \text{ where } d(x,y) = 2$$

$$\geq diam(D_2(P_n)) + 1 - d(x,y).$$

Subcase 11.3 If i = l, $3k + 4 \le i, l \le 4k + 3 = n$ then

$$|f(x) - f(y)| = |f(u_i) - f(v_i)|, \quad 3k + 4 \le i, l \le 4k + 3 = n$$

$$= |f(u_j) + 2j - 1 - [f(v_j) - 2j]|, \quad 1 \le j \le k$$

$$= |f(u_j) - f(v_j) + 4j - 1|, \quad 1 \le j \le k$$

$$\ge diam(D_2(P_n)) + 1 - d(x, y).$$

Otherwise, $|f(x) - f(y)| \ge n$.

Subcase 11.4 Assume $i \neq l$. Let, $1 \leq i \leq k+1$ and $k+1 \leq l \leq 2k+1$

$$|f(x) - f(y)| = |f(u_i) - f(v_l)|$$

$$= |f(u_i) - f(v_{k+j})|, \text{ where } 1 \le j \le k$$

$$= |(2n+3)(i-1) + 2(i-1)(i-2) - [f(v_k) + (2n-1) + (n)(j-1) + 2(j-1)(j-2)]|,$$

$$= |(2n+3)(i-1) + 2(i-1)(i-2) - [(n+3) + (2n+7)(k-1) + (2(n+3)(k-2) + (2n-1) + (n)(j-1) + 2(j-1)(j-2)]|$$

If i = 1, l = 2k + 1 i.e. j = k + 1 then

$$|f(x) - f(y)| = |f(u_i) - f(v_l)|$$

$$= |f(u_1) - f(v_{2k+1})|$$

$$= |0 - [f(v_k) + (2n-1) + (n)(j-1) + 2(j-1)(j-2)]|$$

$$= |-(n+3) + (2n+7)(k-1) + 2(k-1)(k-2) +$$

$$= |(n+3) + (2n+7)(k-1) + 2(k-1)(k-2) +$$

$$+ (2n-1) + (n)(k) + 2(k)(k-1)|$$

$$\geq n$$
, where $n = 4k + 3, d(x, y) \geq 1$
 $\geq diam(D_2(P_n)) + 1 - d(x, y)$.

Otherwise, $|f(x) - f(y)| \ge n$.

If i = 4k + 3 and l = 2k + 2 then

$$|f(x) - f(y)| = |f(u_i) - f(v_l)|$$

$$= |f(u_{4k+3}) - f(v_{2k+2})|$$

$$= |f(u_1) + 1 - f(v_{2k+2})|$$

$$= |0 + 1 - [n^2 - 3]|$$

$$= |-[n^2 - 3 - 1]|$$

$$= |n^2 - 4|$$

$$\geq n, \text{ where } n = 4k + 3, k \geq 1, d(x, y) \geq 1$$

$$\geq diam(D_2(P_n)) + 1 - d(x, y).$$

Otherwise, $|f(x) - f(y)| \ge n$. The radio condition is $|f(x) - f(y)| \ge n$ satisfied by every pair of vertices

Figure 3. , illustrates the proof of this case, presents the labeling $D_2(P_{15})$ According Theorem 2.

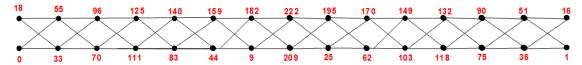


Figure 3: Radio labeling of $D_2(P_{15})$ following Theorem 2.

Theorem 3. Let n > 6 be a positive integer such that $n \equiv 0 \pmod{4}$. Then

$$rn(D_2(P_n)) \le n^2 - \frac{n}{2}.$$

Proof. For any positive integer $n \equiv 0 \pmod{4}$, such that $n = 4k, k \geq 2$, let $f: V(D_2(P_n)) \to N$ define as follows:

$$f(u_i) = \begin{cases} (2n+3)(i-1) + 2(i-1)(i-2), & \text{if} \quad \underline{1 \le i \le k} \\ f(u_k) + 2n - 3 & \text{if} \quad \underline{i = k+1} \\ f(u_k) - 2n + 2 - (3n - 7)(j-1) + 2(j-1)(j-2), \\ & \text{if} \quad \underline{k+2 \le i \le 2k}, \quad \text{where} \quad 1 \le j \le k-1, \quad \text{and} \quad i = k+1+j \\ f(u_{k+1+j}) + (6k-3) - 2(j-1), \quad \text{if} \quad \underline{2k+1 \le i \le 3k-1} \\ & \text{where} \quad 1 \le j \le k-1, \quad \text{and} \quad i = 3k-J \\ f(u_j) + 2j - 1, \quad \text{then} \quad \underline{3k \le i \le 4k = n} \\ & \text{where} \quad 1 \le j \le k+1 \quad \text{and} \quad i = 4k+1-j \end{cases}$$

And for the vertices belongs to V_v ,

$$f(v_i) = \begin{cases} &(n+2) + (2n+7)(i-1) + 2(i-1)(i-2), & \text{if} \quad \underline{1 \le i \le k-1} \\ &f(v_{k-1}) + 2n-1 \quad \text{if} \quad \underline{i = k} \\ &f(v_k) + (2n+1) + (n+3)(j-1) + 2(j-1)(j-2), \\ &\text{if} \quad \underline{k \le i \le 2k} \quad \text{where} \quad 1 \le j \le k, \text{ and} \quad i = k+j \\ &f(v_{k-1+j}) + (2k-1) + 2(j-1), \quad \text{if} \quad \underline{2k+1 \le i \le 3k+1} \\ &\text{where} \quad 1 \le j \le k+1 \text{and} \quad i = 3k+2-j \\ &f(v_j) - (2j-1), \quad \text{if} \quad \underline{3k+2 \le i \le 4k = n} \\ &\text{where} \quad 1 \le j \le k-1, \text{and} \quad i = 4k+1-j \end{cases}$$

Hereafter, we show that the function f satisfies the radio labeling condition for any two distinct vertices x, y of $D_2(P_n)$ for n > 6, n = 4k where $k \ge 2$.

<u>case 1</u> $x, y \in V_u$. If $\{x, y\} = \{u_1, u_n\}$ then

$$|f(x) - f(y)| = |f(u_1) - f(u_n)|$$

$$= |f(u_1) - [f(u_1) + 2 - 1]| = 1$$

$$\geq diam(D_2(P_n)) + 1 - d(x, y), \text{ where } d(x, y) = n - 1.$$

case 2 If $\{x, y\} = \{u_1, u_k\}$ then

$$|f(x) - f(y)| = |f(u_1) - f(u_k)|$$

$$= |f(u_1) - [(2n+3)(k-1) + 2(k-1)(k-2)]|$$

$$= |-[(2n+3)(k-1) + 2(k-1)(k-2)]|$$

$$= (2n+3)(k-1) + 2(k-1)(k-2) \ge n, \text{ where } n = 4k$$

$$\ge diam(D_2(P_n)) + 1 - d(x,y)$$

case 3 If $\{x, y\} = \{u_1, u_{k+1}\}$ then

$$|f(x) - f(y)| = |f(u_1) - f(u_{k+1})|$$

$$= |f(u_1) - [f(u_k) + 2n - 3]|$$

$$= |[f(u_k) + 2n - 3]|$$

$$= |(2n + 3)(k - 1) + 2(k - 1)(k - 2) + 2n - 3|$$

$$\geq n, \text{ where } n = 4k, d(x, y) \geq 1$$

$$\geq diam(D_2(P_n)) + 1 - d(x, y)$$

<u>case 4</u> If $\{x, y\} = \{u_1, u_{2k}\}$ then

$$|f(x) - f(y)| = |f(u_1) - f(u_{2k})|$$

$$= |f(u_1) - [f(u_k) - 2n + 2 - (3n - 7)(k - 2) + 2(k - 2)(k - 3)]|$$

$$= |f(u_k) - 2n + 2 - (3n - 7)(k - 2) + 2(k - 2)(k - 3)|$$

$$= |(2n + 3)(k - 1) + 2(k - 1)(k - 2) - 2n + 2 - (3n - 7)(k - 2) + 2(k - 2)(k - 3)|$$

$$+2(k-2)(k-3)|$$

 $\geq n$, where $n = 4k, d(x,y) \geq 1$
 $\geq diam(D_2(P_n)) + 1 - d(x,y)$

case 5 If $\{x, y\} = \{u_1, u_{3k+1}\}$ then

$$|f(x) - f(y)| = |f(u_1) - f(u_{3k-1})|$$

$$= |f(u_1) - [f(u_{k+2}) + (6k-3)]|$$

$$= |f(u_{k+2}) + (6k-3)|$$

$$= |f(u_k) - 2n + 2 + (6k-3)|$$

$$= |(2n+3)(k-1) + 2(k-1)(k-2) - 2n + 2 + (6k-3)|$$

$$\geq n, \text{ where } n = 4k, d(x,y) \geq 1$$

$$\geq diam(D_2(P_n)) + 1 - d(x,y)$$

<u>case 6</u> $x, y \in V_v$. If $\{x, y\} = \{v_1, v_n\}$ then

$$|f(x) - f(y)| = |f(v_1) - f(v_n)|$$

= $|f(v_1) - [f(v_1) - 1]| = 1$
 $\ge diam(D_2(P_n)) + 1 - d(x, y)$, where $d(x, y) = n - 1$.

case 7 If $\{x, y\} = \{v_1, v_{k-1}\}$ then

$$|f(x) - f(y)| = |f(v_1) - f(v_{k-1})|$$

$$= |(n+2) - [(n+2) + (2n+7)(k-2) + 2(k-2)(k-3)]|$$

$$= |(2n+7)(k-2) + 2(k-2)(k-3)|$$

$$\geq n, \text{ where } n = 4k$$

$$\geq diam(D_2(P_n)) + 1 - d(x, y).$$

case 8 If $\{x, y\} = \{v_1, v_{2k-1}\}$ then

$$|f(x) - f(y)| = |f(v_1) - f(v_{2k-1})|$$

$$= |(n+2) - [(n+2) + (2n+7)(k-2) + 2(k-2)(k-3) +$$

$$+ (2n+1) + (n+1)(k-1) + 2(k-1)(k-2)]|$$

$$= |(2n+7)(k-1) + 2(k-2)(k-3) + (2n+1) + (n+1)(k-1) +$$

$$+ 2(k-1)(k-2)|$$

$$\geq n, \text{ where } n = 4k, d(x,y) \geq 1$$

$$\geq diam(D_2(P_n)) + 1 - d(x,y)$$

<u>case 9</u>If $\{x, y\} = \{v_1, v_{3k-1}\}$ then

$$|f(x) - f(y)| = |f(v_1) - f(v_{3k-1})|$$

$$= |f(v_1) - [f(v_k) + (2k-1)]|$$

$$= |f(v_1) - [f(v_{k-1}) + (2n+1) + (2k-1)]|$$

$$= |(n+2) - [(n+2) + (2n+7)(k-2) + 2(k-2)(k-3) + (2n+1) + (2k-1)]|$$

$$= |(2n+7)(k-2) + 2(k-2)(k-3) + (2n+1) + (2k-1)|$$

$$\geq n, \text{ where } n = 4k, d(x,y) \geq 1$$

$$\geq diam(D_2(P_n)) + 1 - d(x,y)$$

case 10 $x \in V_u$ and $y \in V_v$

Let $x = u_i$ and $y = v_l$, where $1 \le i, l \le n$

In this case we have several subcases:

Subcase 10.1 If i = 1, j = k - 1 then

$$|f(x) - f(y)| = |f(u_1) - f(v_{k-1})|$$

$$= |0 - [(n+2) + (2n+7)(k-2) + 2(k-2)(k-3)]|$$

$$= |(n+2) + (2n+7)(k-2) + 2(k-2)(k-3)|$$

$$\geq n, \text{ where } n = 4k, d(x,y) \geq 1$$

$$\geq diam(D_2(P_n)) + 1 - d(x,y).$$

Otherwise, $|f(x) - f(y)| \ge n$.

Subcase 10.2. Suppose, $1 \le i \le k$ and $k \le l \le 2k-1$

$$|f(x) - f(y)| = |f(u_i) - f(v_l)|$$

$$= |f(u_i) - f(v_{k-1+j})|, \text{ where } 1 \le j \le k-1$$

$$= |(2n+3)(i-1) + 2(i-1)(i-2) - [f(v_{k-1}) + (2n+1) + (n+1)(j-1) + (2n+1)(j-2)]|$$

$$= |(2n+3)(i-1) + 2(i-1)(i-2) - [(n+2) + (2n+7)(k-2) + (2n+2)(k-3) + (2n+1) + (n+1)(j-1) + 2(j-1)(j-2)]|.$$

Subcase 10.3. If i = 1, l = k i.e. j = 1 then

$$|f(x) - f(y)| = |f(u_i) - f(v_l)|$$

$$= |f(u_i) - f(v_{k-1+j})|, \text{ where } 1 \le j \le k-1$$

$$= |0 - [f(v_{k-1}) + (2n+1) + (n+1)(j-1) + 2(j-1)(j-2)]|$$

$$= |-(n+2) + (2n+7)(k-2) + 2(k-2)(k-3) + (2n+1)|$$

$$= |(n+2) + (2n+7)(k-2) + 2(k-2)(k-3) + (2n+1)|$$

$$\ge n, \text{ where } n = 4k, d(x, y) \ge 1$$

$$\ge diam(D_2(P_n)) + 1 - d(x, y).$$

Subcase 10.4. Suppose, $1 \le i \le k$ and $2k \le l \le 3k-1$

$$|f(x) - f(y)| = |f(u_i) - f(v_l)|$$

$$= |f(u_i) - f(v_{n-(k+j-2)})|, \text{ where } 1 \le j \le k.$$

Subcase 10.5. If i = 1, l = 3k - 1 i.e. j = 1 then

Otherwise, $|f(x) - f(y)| \ge n$. Similarly, proved if $k + 2 \le i \le 2k + 1$ and $k + 1 \le l \le 2k + 1$, for this, the radio condition is $|f(x) - f(y)| \ge n$ satisfied by every pair of vertices.

Figure 4. , illustrates the proof of this case, presents the labeling $D_2(P_{16})$ According Theorem 3.

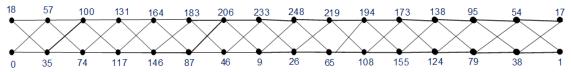


Figure 4: Radio labeling of $D_2(P_16)$ following Theorem 3.

Theorem 4. Let n > 6 be a positive integer such that $n \equiv 1 \pmod{4}$. Then

$$rn(D_2(P_n)) \le n^2 - 2.$$

Proof. For any positive integer $n \equiv 1 \pmod{4}$, such that $n = 4k + 1, k \geq 2$, let $f: V(D_2(P_n)) \to N$ define as follows:

$$f(u_i) = \begin{cases} (2n+3)(i-1)+2(i-1)(i-2), & \text{if} \quad \underline{1 \le i \le k} \\ f(u_k)+2n-3 & \text{if} \quad \underline{i=k+1} \\ f(u_k)-(2n-3)-(3n-8)(j-1)+2(j-1)(j-2), \\ & \text{if} \quad \underline{k+2 \le i \le 2k} \quad \text{where} \quad 1 \le j \le k-1, \text{and} \quad i=k+1+j \\ n^2-2, & \text{if} \quad \underline{i=2k+1} \\ f(u_{k+1+j})+(6k-2)-2(j-1), \text{if} \quad \underline{2k+2 \le i \le 3k}, \\ & \text{where} \quad 1 \le j \le k-1, \quad \text{and} \quad i=3k+1-j \\ f(u_j)+2j-1, & \text{if} \quad \underline{3k+1 \le i \le 4k+1=n} \\ & \text{where} \quad 1 \le j \le k+1 \quad \text{and} \quad i=4k+2-j \end{cases}$$

and

$$f(v_i) = \begin{cases} &(n+3) + (2n+7)(i-1) + 2(i-1)(i-2), & \text{if} \quad \underline{1 \le i \le k-1} \\ &f(u_{k-1}) + 2n-2 \quad \text{if} \quad \underline{i = k} \\ &f(v_k) + (2n) + (n+2)(j-1) + 2(j-1)(j-2), \\ &\text{if} \quad \underline{k+1 \le i \le 2k}, \quad \text{where} \quad 1 \le j \le k, \text{and} \quad i = k+j \\ &n^2 - 2, \quad \text{if} \quad \underline{i = 2k+1} \\ &f(v_{k-1+j}) + (2k+1) + 2(j-1), \quad \text{if} \quad \underline{2k+2 \le i \le 3k+2} \\ &\text{where} \quad 1 \le j \le k+1, \quad \text{and} \quad i = 3k+3-j \\ &f(v_j) - 2j, \quad \text{if} \quad \underline{3k+3 \le i \le 4k+1 = n} \\ &\text{where} \quad 1 \le \underline{j \le k-1}, \quad \text{and} \quad i = 4k+2-j \end{cases}$$

The proof is left to the reader. We omit the proof, but Figure 5, presents the labeling $D_2(P_{13})$ illustrates Theorem 4 namely, $n \equiv 1 \pmod{4}$, if n = 4k + 1, k = 3.

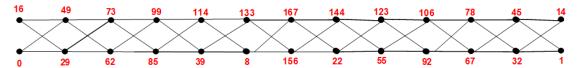


Figure 5: Radio labeling $D_2(P_{13})$ following Theorem 4.

4. Integer Linear Programming Model (ILPM)

For resolving optimization issues, mathematical programming is a crucial instrument. The references [18–20] provide specific information regarding the process of conceptualizing real-life problems as mathematical models. For a connected graph G of order n. Let $V(G) = \{x_1, x_2, \dots, x_n\}$. We construct the distance matrix $D = [d_{ij}]$ of G where $d_{ij} = d(x_i, x_j)$ for $1 \le i$, $j \le n$. For $1 \le i \le n$, assume that y_i is the radio label of the vertex x_i . Now, we can use integer programming to present the mathematical model for the radio labeling problem. The function F is denoted as

$$F = y_1 + y_2 + \dots + y_n$$

The claim is minimizing F subject to the $\binom{n}{2}$ constraints $|y_i-y_j| \geq n-d\left(x_i,x_j\right)$ for $1\leq i\leq n-1;\ 2\leq j\leq n$ and i< j where y_1,y_2,\cdots,y_n are integer numbers. Therefore, $rn\left(G\right)=\max_{1\leq i\leq n}\left\{y_i\right\}$.

5. Experimental Study

Hereafter, a set of experiments have been performed in order to compare the performance of algorithms presented in [6] with the obtained upper bounds by Theorems 1-4. Furthermore, a comparison is carried out between the findings of those theorems and the mathematical model that was presented in Section 4. In our experiments we have used a

PC with Core i7 processor with 2.8 GHz CPU and 8 GB of RAM. Our implementations are done with MATLAB R2016a and MS Windows 7 Professional system.

According to Table 2, the results presented in Lemma 4 demonstrate best performance compared to those in [6] for n = 5. For n = 2, 3, and 4, similar outcomes are observed. Conversely, the outcomes in Lemma 1, 2, 3, and 4 outperform those in [7] across all values of n. In terms of time complexity table 2 shows that the computations of Lemmas 1, 2, 3, and 4 give superior performance compared to those in [6, 7].

Table 2: Comparison among our approach, Saha [6] and ILPM [7] for the radio number of Shadow graph with n=2,3,4,5.

n	2n	Ler	nma 1,2,3,4		Saha [6]	ILPM [7]		
		rn	CPU Time	rn	CPU Time	rn	CPU Time	
2	4	4	O(1)	4	0.002396	5	0.003654	
3	6	6	O(1)	6	0.004862	9	0.004854	
4	8	12	O(1)	12	0.005359	19	0.019494	
5	10	22	O(1)	23	0.005539	33	0.034559	

Table 3: Comparison among Theorem 1, Saha [6] and ILPM [7] for the radio number of Shadow graph with $n=2(mod)\ 4$.

n	2n	Tł	neorem 1	5	Saha [6]	ILPM [7]		
		rn	CPU Time	rn	CPU Time	rn	CPU Time	
6	12	33	O(1)	33	0.042993	51	0.036009	
10	20	95	O(1)	95	0.043329	163	0.100475	
14	28	189	O(1)	189	0.043968	343	0.150742	
18	36	315	O(1)	315	0.048544	579	0.151717	
22	44	473	O(1)	473	0.054947	883	0.162229	
26	52	663	O(1)	663	0.082347	1251	0.182440	
30	60	885	O(1)	885	0.083501	1683	0.190866	
34	68	1139	O(1)	1139	0.096042	2179	0.218329	
38	76	1425	O(1)	1425	0.096626	2739	0.222084	
42	84	1743	O(1)	1743	0.117833	3363	0.264229	
46	92	2093	O(1)	2093	0.118883	4051	0.278491	
50	100	2475	O(1)	2475	0.121298	4803	0.301669	
54	108	2889	O(1)	2889	0.128889	5619	0.420457	
58	116	3335	O(1)	3335	0.131909	6499	0.475030	
62	124	3813	O(1)	3813	0.148007	7443	0.477373	
64	128	4064	O(1)	4064	0.178655	7939	0.527846	
68	136	4590	O(1)	4590	0.198579	8979	0.635992	
72	144	5148	O(1)	5148	0.20673	10083	0.720457	
76	152	5738	O(1)	5738	0.213292	11251	0.875030	
80	160	6360	O(1)	6360	0.231493	12483	0.976116	

Based on the upper bound of the radio number of shadow graph with $n = 2 \pmod{4}$, it can be observed from Table 3 and Figure 6 that the outcomes presented in Theorem 1 coincide with those in [6]. Conversely, the results from Theorem 1 surpass the findings in [7] for all values of n. Table 3 indicates that the results from Theorem 1 have a time

complexity of O(1), while those in [6] have a complexity of $O(n^3)$. Furthermore, the results from Theorem 1 require less time compared to the results in [7].

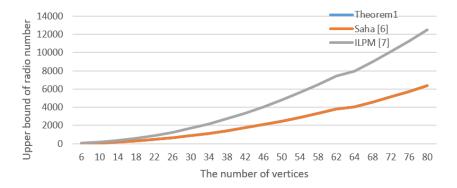


Figure 6: Comparison among Theorem 1, Saha [6] and ILPM [7] for the radio number of Shadow graph with $n=2(mod)\ 4.$

Table 4: Comparison among Theorem 2, Saha [6] and ILPM [7] for the radio number of Shadow graph with n=3(mod)4.

n	2n	Tł	neorem 2	S	Saha [6]	ILPM [7]		
		rn	CPU Time	rn	CPU Time	rn	CPU Time	
7	14	46	O(1)	46	0.043355	73	0.089586	
11	22	118	O(1)	118	0.048763	201	0.090475	
15	30	222	O(1)	222	0.050551	393	0.130588	
19	38	358	O(1)	358	0.050987	649	0.161792	
23	46	526	O(1)	526	0.051813	969	0.220337	
27	54	726	O(1)	726	0.081522	1353	0.305778	
31	62	958	O(1)	958	0.086948	1801	0.207713	
35	70	1222	O(1)	1222	0.092306	2313	0.266207	
39	78	1518	O(1)	1518	0.095106	2889	0.288857	
43	86	1846	O(1)	1846	0.102625	3529	0.368033	
47	94	2206	O(1)	2206	0.116411	4233	0.486650	
51	102	2598	O(1)	2598	0.121707	5001	0.530145	
55	110	3022	O(1)	3022	0.124297	5833	0.544023	
59	118	3478	O(1)	3478	0.140879	6729	0.551847	
63	126	3966	O(1)	3966	0.15269	7689	0.635992	
67	134	4486	O(1)	4486	0.164255	8713	0.720457	
71	142	5038	O(1)	5038	0.190907	9801	0.829255	
75	150	5622	O(1)	5622	0.206634	10953	0.972498	
79	158	6238	O(1)	6238	0.224507	12169	0.998945	
83	166	6886	O(1)	6886	0.273817	13449	1.034510	
87	174	7566	O(1)	7566	0.351691	14793	1.293168	

Table 4 and Figure 7 demonstrate that the results presented in Theorem 2 align with the findings in [6], considering the upper bound of the radio number of shadow graph with n=3(mod) 4. Additionally, it is worth noting that the results obtained in Theorem 2 outperform the results in [7] for all values of n. In terms of running time, Table 4 indicates that the results derived from Theorem 2 have a constant time complexity of O(1), whereas the results in [6] have a time complexity of $O(n^3)$. Furthermore, the results from Theorem 2 require less time compared to the results in [7].

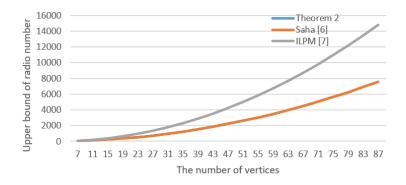


Figure 7: Comparison among Theorem 2, Saha [6] and ILPM [7] for the radio number of Shadow graph with n=3(mod)4

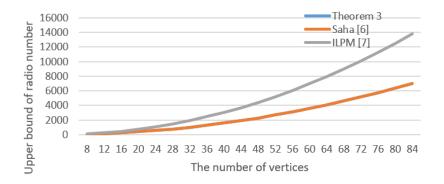


Figure 8: Comparison among Theorem 3, Saha [6] and ILPM [7] for the radio number of Shadow graph with n=0 (mod)4.

Table 5 and Figure 8 demonstrate that the results presented in Theorem 3 are identical to the results in [6], considering the upper bound of the radio number of shadow graph with $n = 0 \pmod{4}$. Additionally, it is worth noting that the results obtained in Theorem 3 outperform the results in [7] for all values of n. In terms of running time, Table 5 indicates that the results derived from Theorem 3 have a constant time complexity of O(1), whereas the results in [6] have a time complexity of $O(n^3)$. Furthermore, the results from Theorem 3 require less time compared to the results in [7].

Table 5: Comparison among Theorem 3, Saha and ILPM [7] for the radio number of Shadow graph with n=0 (mod)4.

n	2n	Tł	neorem 3	S	Saha [6]	ILPM [7]		
		rn	CPU Time	m	CPU Time	rn	CPU Time	
8	16	60	O(1)	60	0.036009	99	0.033053	
12	24	138	O(1)	138	0.046854	243	0.089839	
16	32	248	O(1)	248	0.052537	451	0.097359	
20	40	390	O(1)	390	0.053037	723	0.102315	
24	48	564	O(1)	564	0.054454	1059	0.124432	
28	56	770	O(1)	770	0.082983	1459	0.171284	
32	64	1008	O(1)	1008	0.086663	1923	0.185284	
36	72	1278	O(1)	1278	0.099965	2451	0.218490	
40	80	1580	O(1)	1580	0.102013	3043	0.235134	
44	88	1914	O(1)	1914	0.123509	3699	0.254231	
48	96	2280	O(1)	2280	0.123897	4419	0.287511	
52	104	2678	O(1)	2678	0.134616	5203	0.451393	
56	112	3108	O(1)	3108	0.141561	6051	0.466374	
60	120	3570	O(1)	3570	0.149171	6963	0.477208	
64	128	4064	O(1)	4064	0.178655	7939	0.527846	
68	136	4590	O(1)	4590	0.198579	8979	0.635992	
72	144	5148	O(1)	5148	0.20673	10083	0.976116	
76	152	5738	O(1)	5738	0.213292	11251	0.983264	
80	160	6360	O(1)	6360	0.231493	12483	0.998945	
84	168	7014	O(1)	7014	0.252509	13779	1.034510	

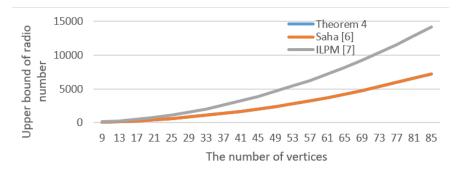


Figure 9: Comparison among Theorem 4, Saha [6] and ILPM [7] for the radio number of Shadow graph with n=1(mod)4.

Table 6 and Figure 9 demonstrate that the results presented in Theorem 4 align with the results in [6], considering the upper bound of the radio number of shadow graph with $n = 1 \pmod{4}$. Additionally, it is worth noting that the results in Theorem 4 outperform the results in [7] for all values of n. In terms of running time, Table 6 indicates that the results in Theorem 4 have a constant time complexity of O(1), whereas the results in [6]

have a time complexity of $O(n^3)$. Furthermore, the results in Theorem 4 require less time compared to the results in [7].

Table 6:	Comparison	among	Theorem	4, 5	Saha	[6]	and	ILPM	[7]	for	the	radio	number	of	Shadow	graph	with
n=1(m	od)4.																

n	2n	Tł	neorem 4	5	Saha [6]	ILPM [7]		
		rn	CPU Time	rn	CPU Time	rn	CPU Time	
9	18	79	O(1)	79	0.033053	129	0.091875	
13	26	167	O(1)	167	0.046598	289	0.124002	
17	34	287	O(1)	287	0.04728	513	0.134112	
21	42	439	O(1)	439	0.049498	801	0.158377	
25	50	623	O(1)	623	0.052472	1153	0.205898	
29	58	839	O(1)	839	0.08865	1569	0.218329	
33	66	1087	O(1)	1087	0.089514	2049	0.222084	
37	74	1367	O(1)	1367	0.092204	2593	0.264229	
41	82	1679	O(1)	1679	0.100206	3201	0.278491	
45	90	2023	O(1)	2023	0.102479	3873	0.305885	
49	98	2399	O(1)	2399	0.114788	4609	0.308508	
53	106	2807	O(1)	2807	0.133461	5409	0.451393	
57	114	3247	O(1)	3247	0.148361	6273	0.466374	
61	122	3719	O(1)	3719	0.166031	7201	0.477208	
65	130	4223	O(1)	4223	0.16886	8193	0.527846	
69	138	4759	O(1)	4759	0.21307	9249	0.644822	
73	146	5327	O(1)	5327	0.241707	10369	0.720457	
77	154	5927	O(1)	5927	0.260753	11553	0.829255	
81	162	6559	O(1)	6559	0.299115	12801	0.937023	
85	170	7223	O(1)	7223	0.307929	14113	1.069794	

6. Application of radio labeling of graph in cryptography

Recently, information technology has been widely used in various fields of life. Hence, information security becomes a vital issue. Cryptography is a significant method for information security. In cryptographic algorithms, keys used for encryption and decryption are lengthy number sequences which are created using random number generators. Such generators follow a uniform distribution that can be is easily determined by hackers, as any number has an equal chance of being generated. Using radio labeling of graphs, Keys can be generated in more faster and effective manner. The radio labeled graph is used as the cipher graph. At the receiver end the encrypted message is received in the form of edge or vertex sequence of this cipher graph. Consequently, it is difficult for an opponent to guess and hack, as the radio labeling problem is an NP-hard problem. The radio number of a graph may also be used to generate invertible matrices that serve for keys generation. In this manner, the radio labeling considered an efficient tool for cryptography as the problem of finding the radio number of a graph is an NP-complete problem. We refer the reader to [24–26] for applications of radio labeling in cryptography

7. Conclusions

Effective allocating of frequency resources in wireless networks is a challenging problem. The claim is avoiding the interference among stations and minimizing the usage of the available frequencies. Here we consider the radio graph labeling as a graph-theoretical approach to modeling the problem of frequency assignment. In such modeling an interference graph G is built. The vertices of the interference graph represent the stations. Two vertices are adjacent if their corresponding stations may interfere. Radio labeling of the interference graph is done to avoid the interference and moreover emphasizing on minimization the using of frequency resources. Then the minimum value of the maximum assigned frequency (radio label) among all radio labeling of G, called the radio number of the graph is obtained, this radio number represents the highest frequency should be used to avoid interference. In this paper, the radio labeling and the upper bound of radio number of networks as shadow of path graph are investigated. Wherein, a theoretical approach for finding such number is presented and mathematical model for finding upper bound of radio number of shadow of path graph is proposed. In order to validate the effectiveness of our approach, an experimental study is conducted, comparing our results to previous findings. The results of the study demonstrate that our proposed approach surpasses the previous results in terms of both the running time and the upper bound of the radio number. Moreover, we give an overview of the application of radio labeling in cryptography. For future work we claim that the integer linear programming model will be improved to obtain the exact radio number.

Conflicts of Interest

The authors declare no conflict of interest.

References

- [1] W. K. Hale. Frequency assignment: Theory and applications. *Proc. IEEE*, 68(12):1497–1514, 1980.
- [2] J. A. A. Gallian. Dynamic survey of graph labeling. *The Electronic Journal of Combinatorics*, 24, 2021.
- [3] J. Griggs and R. Yeh. Labelling graphs with a condition at distance 2. SIAM Journal on Discrete Mathematics, 5(4):586–595, 1992.
- [4] G. Chartrand, D. Erwin, P. Zhang, and F. Harary. Radio labeling of graphs. *Bulletin of the Institute of Combinatorics and its Applications*, 33:77–85, 2001.
- [5] M. Kehikech, R. Khemoufa, and O. Togni. Linear and cyclic radio k-labelings of trees. Discussiones Mathematicae Graph Theory, 27(1):105–123, 2007.
- [6] L. Saha and P. Panigrahi. A graph radio k-coloring algorithm. In *Lecture Notes in Computer Science*, volume 7643, pages 125–129, 2012.
- [7] E. M. Badr and M. I. Moussa. An upper bound of radio k-coloring problem and its integer linear programming model. *Wireless Networks*, 26(7):4955–4964, 2020.

- [8] S. Gomathi and P. Venugopal. Channel assignment of triangular and rhombic honeycomb networks using radio labeling techniques. *Communications in Mathematics* and Applications, 12(3):665–676, 2021.
- [9] R. Mahapatra, S. Samanta, T. Allahviranloo, and M. Pal. Radio fuzzy graphs and assignment of frequency in radio stations. *Computational and Applied Mathematics*, 38:1–20, 2019.
- [10] X. Li, V. Mak, and S. Zhou. Optimal radio labelings of complete m-array trees. Discrete Appl. Math., 158:507–515, 2010.
- [11] D. D.-F. Liu. Radio number for trees. Discrete Math., 308:1153–1164, 2008.
- [12] P. K. Niranjan and S. R. Kola. On the radio number for corona of paths and cycles. *AKCE Int. J. Graphs and Combinatorics*, 17(1):269–275, 2020.
- [13] D. D.-F. Liu and M. Xie. Radio number for square paths. Ars Combin., 90:307–319, 2009.
- [14] D. D.-F. Liu and X. Zhu. Multi-level distance labelings for paths and cycles. SIAM J. Discrete Math., 19:610–621, 2005.
- [15] H. Qi, S. Nazeer, I. Kousar, M. A. Umar, and N. A. Shah. Radio labeling for strong product $k_3 \boxtimes p_n$. *IEEE Access*, 8:109801–109806, 2020.
- [16] M. Morris-Rivera, M. Tomova, C. Wyels, and Y. Yeager. The radio number of $c_n \times c_n$. Ars Combin., 103:81–96, 2012.
- [17] J. P. Ortiz, P. Martinez, M. Tomova, and C. Wyels. Radio numbers of some generalized prism graphs. *Discuss. Math. Graph Theory*, 311:45–62, 2011.
- [18] V. S. Reddy and V. K. Iyer. Upper bounds on the radio number of some trees. *Int. J. Pure Applied Math.*, 71(2):207–215, 2011.
- [19] L. Saha and P. Panigrahi. On the radio number of toroidal grids. *Australian J. Combin.*, 55:273–288, 2013.
- [20] L. Saha and P. Panigrahi. A lower bound for radio k-chromatic number. *Discrete Appl. Math.*, 192:87–100, 2015.
- [21] P. Zhang. Radio labellings of cycles. Ars Combin, 65:21–32, 2002.
- [22] A. H. Alkasasbeh, E. Badr, H. Attiya, and H. M. Shabana. Radio number for friend-ship communication networks. *Mathematics*, 11:4232, 2023.
- [23] E. Badr, S. Nada, M. M. A. Al-Shamiri, A. Abdel-Hay, and A. ELrokh. A novel mathematical model for radio mean square labeling problem. *J. Math.*, page 3303, 2022.
- [24] N. M. NourEldeen, E. Badr, I. M. Hagag, and H. Shabana. Graph-based approach to the radio assignment problem in wireless communication networks with applications in cryptography. *Eur. J. Pure Appl. Math*, 18(1):5614, 2025.
- [25] M. Saraswathi and K. N. Meera. Bounds on radio mean number of graphs. *Journal of Intelligent & Fuzzy Systems*, 44(2):1691–1702, 2023.
- [26] M. Saraswathi and K. N. Meera. Radio mean labeled graphs to generate keys in cryptography. In 2021 2nd International Conference on Communication, Computing and Industry 4.0 (C214), pages 1–3, Bangalore, India, 2021.