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Integrating Hierarchical Structures in Medical Data
Classification:A Kernel-Based Method
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Abstract. Medical diagnosis systems frequently rely on structured information collected during
physician–patient interviews. These data naturally follow a hierarchical organization, where gen-
eral questions are followed by more specific sub-questions. Such a structure should be explicitly
incorporated into similarity measures used in classification algorithms, as it reflects dependencies
between symptoms and contributes essential diagnostic information.
In this work, we introduce a kernel that simultaneously accounts for (i) the hierarchical structure
linking main questions to their subordinate items and (ii) interactions among sub-variables. The
kernel is integrated into the pgpDA classification framework, allowing the method to embed prior
knowledge on how variables are organized and how symptoms interact. The proposed kernel is
designed for binary data arranged in two-level tree structures and supports interaction modeling
of any given order.
Experiments conducted on simulated data and a real verbal autopsy dataset from Senegal demon-
strate consistent improvements over classical kernels, and a deep-learning benchmark confirms that
the structured kernel retains strong predictive power even in modern architectures. The method-
ology may be extended to mixed data types or adapted to graph-structured symptom networks.
2020 Mathematics Subject Classifications: AMS classification code
Key Words and Phrases: Kernel methods; hierarchical data; pgpDA; verbal autopsy; medical
diagnosis; deep learning

1. Introduction

Diagnostic procedures in medicine often rely on structured interviews in which physi-
cians ask a sequence of general and more specific questions to assess symptoms and contex-
tual factors. This process naturally generates hierarchically organized binary data, where
a main symptom is queried first and its associated sub-questions are collected only if the
primary symptom is present, as commonly observed in verbal autopsy investigations that
rely on multi-level questionnaires to assign probable causes of death [1–3].

Despite this hierarchical structure, many statistical and machine learning approaches
treat binary predictors as independent variables, thereby ignoring the dependencies induced
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by the data acquisition process. As a result, similarity measures between individuals may
fail to reflect clinically meaningful relationships among symptoms, limiting their effective-
ness for diagnostic and classification tasks. Incorporating hierarchical relationships into
similarity measures can substantially improve the analysis of medical data by aligning
the representation of variables with clinical reasoning and underlying disease mechanisms.
Such hierarchical representations are also central beyond medicine, notably in psychology,
socio-behavioral sciences, and education, where multi-level constructs guide both data col-
lection and interpretation.

In machine learning, several methods have been proposed to handle structured or het-
erogeneous data, particularly through multiple-kernel learning [4–9] and hierarchical kernel
formulations [10–13]. While these approaches combine kernels from multiple sources or en-
code structural relationships among variables, few explicitly integrate both the hierarchical
dependence linking main variables to their sub-variables and the interaction effects among
sub-variables, especially in the context of high-dimensional binary data commonly encoun-
tered in medical surveys and verbal autopsy studies [14–16].

To address this limitation, we propose a kernel specifically designed for binary predic-
tors organized in a two-level hierarchical structure. The proposed kernel simultaneously
captures similarities between main variables, similarities between their associated sub-
variables, and interaction effects among sub-variables up to a chosen order, thereby mod-
eling both the hierarchical occurrence of symptoms and their potential combined effects,
which are often critical in diagnostic reasoning.

The kernel is integrated into the pgpDA classification framework introduced by Sylla
et al. [17], which models each class as a parsimonious Gaussian process in a reproducing
kernel Hilbert space. By embedding structured prior knowledge directly into the kernel,
the pgpDA framework benefits from a more informative and clinically meaningful repre-
sentation of the predictors. The proposed approach is evaluated using both simulated data
and a large verbal autopsy dataset collected in rural Senegal [3, 18–21]. This dataset in-
volves numerous symptoms and multiple causes of death, making classification particularly
challenging. Experimental results demonstrate that the hierarchical kernel consistently im-
proves classification accuracy compared with standard kernels, with performance increasing
as higher-order interactions are incorporated. Comparisons with deep-learning benchmarks
further confirm that the proposed kernel provides highly informative representations for
modern neural architectures.

The remainder of the paper is organized as follows. Section 2 reviews multiple and
hierarchical kernel methods. Section 3 presents the pgpDA framework. Section 4 intro-
duces the proposed hierarchical interaction kernel for binary data. Section 5 reports the
experimental results, and Section 6 concludes the paper with perspectives for future work.

2. Multiple and Hierarchical Kernels

Kernel methods provide a flexible framework for learning from complex data by im-
plicitly mapping observations into high-dimensional feature spaces where linear techniques
become powerful and expressive [22–25]. In many applications, data are heterogeneous
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or naturally structured, which motivates the development of kernel formulations capable
of integrating multiple sources of information, hierarchical dependencies, or interactions
among variables.

2.1. Multiple Kernel Learning

Multiple Kernel Learning (MKL) extends classical kernel methods by allowing several
kernels to be combined, each capturing complementary aspects of the data. Instead of
relying on a single similarity measure, MKL constructs a weighted combination of base
kernels

κ(x, x′) =
M∑

m=1

dm κm(x, x′), dm ≥ 0,
M∑

m=1

dm = 1, (1)

thus enabling the method to adaptively select or emphasize specific sources of information.
Early foundational work includes the semidefinite programming approach of Lanckriet

et al. [4], the conic duality formulation of Bach et al. [5], and the efficiency improvements
proposed by Rakotomamonjy et al. [26]. Comprehensive algorithmic developments and
theoretical perspectives can be found in Gönen and Alpaydın [6], which remains a standard
reference in MKL research.

MKL has proved particularly useful for integrating heterogeneous data such as genomic
measurements [7], multimodal images [27], and remote sensing signals [28, 29]. More recent
works also investigate MKL for unsupervised learning and data fusion, for example Mariette
and Villa-Vialaneix [8] and Dai and Shao [9], highlighting its relevance when data originate
from different measurement processes or modalities.

2.2. Hierarchical and Structured Kernels

In many real-world problems, predictors exhibit inherent structure—temporal, spatial,
syntactic, semantic, or hierarchical. Standard kernels cannot adequately capture such
relationships, which has motivated the development of structured kernels and hierarchical
kernels.

Notable early contributions include convolution kernels for sequences, trees, and graphs
developed by Haussler [30], Collins and Duffy [31], Kashima and Koyanagi [32], and Lodhi
et al. [33]. These kernels exploit the structure of discrete objects by decomposing them into
subcomponents and summing contributions from shared substructures. Surveys of kernels
for structured data can be found in Gärtner [34].

Hierarchical kernels, in particular, encode multi-level representations of data. Hierar-
chical Gaussian kernels have been investigated by Steinwart et al. [11], while deep kernel
compositions have recently been formalized by Huang, Lu, and Zhang [12, 13]. These works
demonstrate that hierarchical compositions of kernels can capture complex interactions,
improve function approximation, and provide interpretable, structure-preserving similarity
measures.

Hierarchical and deep formulations have also been applied in various domains:

• text classification through hierarchical deep learning architectures [35];
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• medical image classification, where anatomical structures exhibit natural hierarchical
organization [36];

• remote sensing and multi-source image analysis, using kernels defined over hierarchi-
cal image representations [37];

• graph-structured data, where hierarchical graph kernels exploit multi-scale structural
information [38, 39].

These approaches highlight the importance of designing kernels that reflect the multi-level
or nested nature of the data.

2.3. Hierarchical Kernels for Binary and Heterogeneous Data

While hierarchical kernels have been extensively developed for structured objects such
as images, graphs, or sequences, fewer contributions focus on binary data organized in
multi-level structures. In many medical or epidemiological studies—particularly verbal
autopsies—variables follow conditioned or hierarchical relationships, yet most classification
methods treat them as flat binary vectors.

Our work differs from existing hierarchical kernels in that it focuses specifically on:

(i) two-level hierarchical binary variables (main items and sub-items),

(ii) interactions among sub-variables, which are often diagnostically meaningful,

(iii) integration within the pgpDA framework [17], enabling parsimonious modeling of
class-specific latent structures in a kernel space.

This fills a methodological gap between classical MKL approaches, which treat kernels
independently, and hierarchical kernels developed for structured sequences or images, which
do not naturally apply to binary questionnaire data.

3. Binary Classification Using a Kernel Function

In this section, we recall the classification framework underlying the pgpDA method,
initially introduced for binary predictors in [17]. The pgpDA classifier belongs to the
family of parsimonious Gaussian process models [40, 41], where each class is assumed to
lie in a low-dimensional subspace of a reproducing kernel Hilbert space (RKHS). This
parsimonious representation avoids the instability that typically arises from inverting large
kernel matrices [42, 43].

Let {(x1, y1), . . . , (xn, yn)} denote a training sample, where each xi ∈ {0, 1}p is a binary
vector and yi ∈ {1, . . . ,K} indicates the class label. For class Ck, we define

nk =
n∑

i=1

1{yi=k}, Ck = {xi : yi = k }.
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Let κ : {0, 1}p × {0, 1}p → R be a symmetric non-negative kernel function. Following
standard kernel methods [22–24], the centered kernel associated with class Ck is defined as

ρk(x, x
′) = κ(x, x′)− 1

nk

∑
xℓ∈Ck

κ(xℓ, x
′)− 1

nk

∑
xℓ∈Ck

κ(x, xℓ) +
1

n2
k

∑
xℓ,xℓ′∈Ck

κ(xℓ, xℓ′). (2)

For each class Ck, we construct the nk × nk matrix

Mk =
1

nk

[
ρk(xℓ, xℓ′)

]
ℓ,ℓ′

.

Let λk1 ≥ · · · ≥ λknk
denote its eigenvalues and βk1, . . . , βknk

the associated normalized
eigenvectors.

The key assumption of pgpDA is that the data of class Ck lie in a subspace of low
intrinsic dimension dk < nk within the RKHS induced by κ. This assumption, also used in
kernel mixture models [41, 43], ensures numerical stability and yields a compact represen-
tation of each class. The intrinsic dimension dk is estimated via the classical Cattell scree
test [44].

Let dmax = maxk=1,...,K dk. The pgpDA decision rule assigns a new observation x to
the class minimizing the discriminant score

Dk(x) =
1

nk

dk∑
j=1

1

λkj

 ∑
xℓ∈Ck

βkj,ℓ ρk(x, xℓ)

2

+
1

λ
ρk(x, x)

+

dk∑
j=1

log λkj + (dmax − dk) log λ− 2 log(nk),

(3)

where λ is a shrinkage parameter given by

λ =

∑K
k=1 nk

(
trace(Mk)−

∑dk
j=1 λkj

)
∑K

k=1 nk(rk − dk)
, (4)

and rk denotes the dimension of class Ck in the feature space. For nonlinear kernels,
rk = nk.

The discriminant rule (3) provides a nonlinear extension of parsimonious Gaussian
mixture discriminant analysis [17, 40], with the advantage of avoiding large matrix inver-
sions while leveraging the expressivity of kernel embeddings. The performance of pgpDA
depends crucially on the choice of kernel κ, which motivates the introduction of a new
hierarchical kernel in Section 4.

4. Hierarchical Kernel for Binary Observations

Many medical questionnaires, including verbal autopsy instruments, are designed with
an inherent hierarchical structure: a main question is asked first, and a set of sub-questions
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is asked only if the main item is positive. Such conditional structures encode important
dependencies between variables and should therefore be reflected in the similarity measure
used by a classification algorithm.

While numerous kernels have been proposed for structured data [30, 34, 45], very
few address the case of binary vectors organized in two-level hierarchies, nor do they
incorporate interaction terms among sub-items. In this section, we introduce a kernel
specifically designed for such data.

4.1. Data Structure and Notation

In an interview with a doctor, there are often so-called main questions. For each main
question, there are secondary questions, which are only asked if the answer to the main
question is positive. By formalizing this concept, the variable Xj represents the answer to
the main question j. For each given Xj there are qj responses to secondary issues noted
by the sub-variables Zj

1 , . . . , Z
j
qj . Thus:

• the random variables X = (Xj , j = 1, . . . , p) define the answers to the main questions
representing the symptoms and the socio-demographic variables;

• the random variables Z = (Zj
ℓ , ℓ = 1, . . . , qj , j = 1, . . . , p) define the answers to the

secondary questions representing the qj sub-variables for each variable Xj ;

• the random variable Y defines the cause of death (or diagnostic class).

These hierarchies are represented by a two-level tree structure, as shown in Figure 1.
The first level represents the answers to main questions. The second level represents the
sub-variables, that is to say, the answers to the secondary issues of each main question.

•

X1

Z1
1 Z1

ℓ Z1
q1

Xj

Zj
1 Zj

ℓ Zj
qj

Xp

Zp
1 Zp

ℓ Zp
qp

Figure 1. Example of a two-level tree structure linking main variables and sub-variables.

Following standard practice in verbal autopsy analysis [14, 15, 20], the main variable
is defined as

Xj = max{Zj
1 , . . . , Z

j
qj},

meaning that Xj = 1 if any of its sub-variables is positive.
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4.2. Dissimilarity Decomposition

We recall the algebraic decomposition that motivates the definition of the kernel. For
each j,

Xj = 1−
qj∏
ℓ=1

(1− Zj
ℓ ) =

qj∑
ℓ=1

(−1)ℓ−1
ℓ∑

k=1

∑
|i|=k

Zj
i1
· · ·Zj

ik
,

where |i| = k denotes the size of the multi-index i = (i1, . . . , ik).
For two individuals (x, z) and (x′, z′), the squared Euclidean distance between the main

vectors can be decomposed as:

∥x− x′∥2 =
p∑

j=1

[
Xj −X ′

j

]2
=

p∑
j=1

[ qj∏
ℓ=1

(1− zjℓ )−
qj∏
ℓ=1

(1− z′jℓ )

]2

=

p∑
j=1

qj∑
ℓ=1

ℓ∑
k=1

∑
|i|=k

s2kji +R,

where
skji = zji1 · · · z

j
ik
− z′ji1 · · · z

′j
ik
,

and R is the sum of cross terms (double products).
By defining

SC(z, z′) =

p∑
j=1

qj∑
ℓ=1

ℓ∑
k=1

∑
|i|=k

s2kji, (5)

we obtain the decomposition

∥x− x′∥2 = SC(z, z′) +R. (6)

A dissimilarity measure combining main and sub-level information is defined, for all
γ ∈ [0, 1], by:

D
(
(x, z), (x′, z′)

)
= (1− γ)∥x− x′∥2 + (2γ − 1)SC(z, z′). (7)

Let
Dx(x, x

′) = ∥x− x′∥2, Dz(z, z
′) = SC(z, z′),

so that (7) can be written more compactly as

D
(
(x, z), (x′, z′)

)
= (1− γ)Dx(x, x

′) + (2γ − 1)Dz(z, z
′).
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4.3. Construction of the Hierarchical Kernel

Using the kernel construction method proposed in [46], we introduce the kernel:

κSGH

(
(x, z),

(
x′, z′

))
= κx

(
x, x′

)1−γ
κz

(
z, z′

)2γ−1
, (8)

where:

• κx(x, x
′) = exp

(
S(x, x′)/(2σ2

x)
)

is a kernel on main variables based on a similarity
measure S between binary vectors (for instance Jaccard or Tversky similarity [47–
52]);

• κz(z, z
′) = exp

(
SC(r)(z, z

′)/(2σ2
r )
)

is a kernel on the sub-variables based on a trun-
cated version of SC.

The truncated interaction term of order r is defined as

SC(r)(z, z
′) =

p∑
j=1

r∑
k=1

(qj + 1− k)
∑
|i|=k

s2kji

=

p∑
j=1

sc(r,j),

with

sc(r,j) =
r∑

k=1

(qj + 1− k)
∑
|i|=k

(
zji1 · · · z

j
ik
− z′ji1 · · · z

′j
ik

)2
.

By combining these components, the hierarchical kernel of interactions of order r is
thus

κSGH

(
(x, z),

(
x′, z′

))
= κx

(
x, x′

)1−γ
κz

(
z, z′

)2γ−1
.

For some values of γ, it appears that the standard RBF kernel can be recovered in
special cases. If κx = κRBF, then:

• γ = 1
2 ⇒ κSGH ((x, z), (x′, z′)) = κRBF(x, x

′),

• γ = 1 and r = 1 ⇒ κSGH ((x, z), (x′, z′)) = κRBF(z, z
′),

• γ = 2
3 and r = 1 ⇒ κSGH ((x, z), (x′, z′)) = κRBF ((x ∪ z), (x′ ∪ z′)).

4.4. Justification and Relation to Existing Work

The KSGH formulation is designed as a structured generalization of the standard RBF
kernel. It collapses to an RBF kernel in the non-hierarchical case, providing a strong
theoretical baseline while allowing higher-order interactions to be incorporated via r.

Our approach differs from hierarchical kernels proposed for images [36], text [35], or
general structured objects [11, 12], in that it:
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(i) specifically targets hierarchical binary questionnaire data,

(ii) models both hierarchy and interaction terms,

(iii) integrates naturally into the pgpDA classification framework,

(iv) allows fine-tuning of the relative contribution of each hierarchical level through γ.

5. Experiments

This section evaluates the performance of the proposed hierarchical interaction kernel
when embedded in the pgpDA classification framework and compares it with standard
methods and a deep-learning benchmark.

Our objectives are:

(i) to assess how the interaction order r and hierarchical weight γ influence classification
accuracy,

(ii) to compare our approach with existing classification methods commonly used for
verbal autopsy data,

(iii) to evaluate the usefulness of the kernel features for deep neural networks.

5.1. Application to Verbal Autopsy Data

Verbal autopsy is a standardized method used to infer the probable cause of death
in settings where medical certification is incomplete or absent [2, 3]. A list of p possible
symptoms is established and the collected data X = (X1, . . . , Xp) consist of the absence
or presence (encoded as 0 or 1) of each symptom on the deceased person. The probable
cause of death is assigned by a physician and encoded as a qualitative random variable Y .
We refer the reader to [1–3, 14–16, 18–21, 53–59] for details on verbal autopsy methods
and automatic procedures for assigning causes of death from verbal autopsy data.

In this study, we focus on data measured on deceased persons during the period from
1985 to 2010 in three IRD (Research Institute for Development) sites (Niakhar, Bandafassi
and Mlomp) in Senegal. The dataset includes:

• n = 2500 individuals (deceased persons),

• K = 18 classes (causes of death),

• p = 100 binary variables (symptoms and socio-demographic variables),

organized into main items and sub-items according to the questionnaire structure.
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5.2. Methodology

The pgpDA models presented depend on the choice of hyperparameters

ω = (γ, α, σx, σr),

where:

• γ: the weighting parameter between the main variables and secondary variables
(hierarchical parameter),

• α: the weighting parameter for the presence and absence of the main variables in the
kernel κx(x, x′),

• σx: the smoothing parameter for the kernel of the main variables,

• σr: the smoothing parameter for the interaction kernel on the secondary variables.

A double cross-validation technique is employed. The total sample of size n is randomly
divided M = 50 times into a training sample Lm of size τn and a test sample Tm of size
(1− τ)n, with τ ∈ (0, 1) representing a proportion, and m = 1, . . . ,M .

The parameter α is fixed at 0.5 to recover an RBF-type kernel for the main variables,
and σx is set at 1.5, following [17].

The parameter σr is selected via cross-validation on the training set: consecutively, 100
individuals are randomly removed from the training sample 5 times, and σr is estimated
by maximizing the classification accuracy rate on the 100 removed individuals.

The overall classification accuracy rate is estimated on the test sample by repeating the
entire procedure 50 times. Thus, for each training sample Lm, the optimal hyperparameter
σ̂rm is estimated through 5-fold cross-validation for m = 1, . . . ,M .

Furthermore, the overall optimal hyperparameter σ̂r is calculated as the empirical mode
of the set {σ̂r1 , . . . , σ̂rM }. The average classification accuracy is computed for both the
training samples Lm,m = 1, . . . ,M and the test samples Tm,m = 1, . . . ,M .

For each level of interaction r, σr is selected via cross-validation and retained for the
subsequent interaction level. To address computational time constraints, the maximum
number of interactions is fixed at r = 3.

5.3. Results for First-Order Interactions

We first restrict interactions to the first order (r = 1). Table 1 reports the results.
For γ = 0.5 and γ = 1, the classification rates correspond respectively to those as-

sociated with the main variables and the secondary variables considered separately. For
γ = 0.67, the classification rate matches that of an RBF kernel on the concatenated vari-
ables, while incorporating a structure into the data yields slight improvements for γ = 0.7
and 0.8.
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Table 1: Parameter values and correct classification rates for γ ∈ [0.5, 1] and r = 1.

γ α σx σ1 Train CCR (%) Test CCR (%)

0.50 0.50 1.5 4.25 76.21 67.44
0.60 0.50 1.5 1.75 83.50 74.33
0.67 0.50 1.5 1.75 84.20 74.92
0.70 0.50 1.5 1.75 84.53 75.25
0.80 0.50 1.5 3.75 84.32 74.95
0.90 0.50 1.5 3.25 83.15 73.72
1.00 0.50 1.5 1.50 71.36 61.54

5.4. Results for Second-Order Interactions

Table 2 summarizes the parameter values and classification rates for a second-order
interaction level (r = 2).

The optimal values of σ2 are selected via cross-validation, while the values of σ1 are
those calculated in Table 1.

By considering second-order interactions, the kernel shows an improvement in results.
For certain values of γ, the classification rates exceed 75%, and for γ = 0.7, the classification
rate reaches 77%.

Table 2: Parameter values and correct classification rates for γ ∈ [0.5, 1] and r = 2.

γ α σx σ1 σ2 Train CCR (%) Test CCR (%)

0.50 0.5 1.5 4.25 19 76.21 67.44
0.60 0.5 1.5 1.75 13 85.77 76.48
0.67 0.5 1.5 1.75 19 86.50 76.95
0.70 0.5 1.5 1.75 19 86.63 77.00
0.80 0.5 1.5 3.75 19 84.94 75.76
0.90 0.5 1.5 3.25 18 83.97 74.50
1.00 0.5 1.5 1.50 18 75.09 64.91

5.5. Results for Third-Order Interactions

Table 3 summarizes the parameter values and classification rates for a third-order
interaction level (r = 3).

The optimal values of σ3 are selected via cross-validation; the values of σ1 and σ2 are
those calculated in Tables 1 and 2.

For r = 3 and γ ∈ {0.6, 0.67, 0.7}, the classification rates slightly exceed 77.00%, with
a maximum of 77.19% for γ = 0.67.
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Table 3: Parameter values and correct classification rates for γ ∈ [0.5, 1] and r = 3.

γ α σx σ1 σ2 σ3 Train CCR (%) Test CCR (%)

0.50 0.5 1.5 4.25 19 27 76.21 67.44
0.60 0.5 1.5 1.75 13 22 86.59 77.07
0.67 0.5 1.5 1.75 19 31 86.93 77.19
0.70 0.5 1.5 1.75 19 36 86.93 77.14
0.80 0.5 1.5 3.75 19 44 85.10 75.57
0.90 0.5 1.5 3.25 18 44 83.01 73.21
1.00 0.5 1.5 1.50 18 29 74.72 64.59

5.6. Summary Across Interaction Levels

Table 4 summarizes the classification rates depending on the level of interaction and
the value of γ. We note that the classification rates associated with r = 3 are higher than
those for r = 1 and r = 2. For γ = 0.5, the classification rate is invariant with respect to
the order of interaction, since for this value the kernel reduces to a kernel on main variables
only.

Table 4: Summary of correct classification rates for γ ∈ [0.5, 1] and interaction levels r = 1, 2, 3.

r = 1 r = 2 r = 3
γ Train Test Train Test Train Test

0.50 76.21 67.44 76.21 67.44 76.21 67.44
0.60 83.50 74.33 85.77 76.48 86.59 77.07
0.67 84.20 74.92 86.50 76.95 86.93 77.19
0.70 84.53 75.25 86.63 77.00 86.93 77.14
0.80 84.32 74.95 84.94 75.76 85.10 75.57
0.90 83.15 73.72 83.97 74.50 83.01 73.21
1.00 71.36 61.52 75.09 64.91 74.72 64.59

Overall, higher-order interactions (up to r = 3) consistently enhance test accuracy, and
intermediate values of γ (around 0.60–0.70) provide the best trade-off.

5.7. Deep Learning Benchmark Using KSGH Kernel Features

To evaluate the usefulness of the proposed hierarchical kernel beyond the pgpDA frame-
work, we conducted an additional benchmark using a neural network classifier trained on
KSGH kernel features. The objective of this experiment is twofold: (i) to assess whether the
hierarchical interactions encoded in the KSGH kernel remain useful when combined with
high-capacity deep models, and (ii) to provide a comparison with modern deep learning
techniques.
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A fully connected neural network was trained on the Gram matrix Ktrain = κSGH((xi, zi), (xj , zj))
computed from real verbal autopsy data. The network consists of two hidden layers (64
and 32 neurons), batch normalisation, ReLU activations, dropout regularisation (0.3), and
a multi-label sigmoid output. The model was trained for 100 epochs with Adam (learning
rate 10−3).

The experiment was repeated across the same grid of hierarchical parameters as in
pgpDA:

γ ∈ {0.50, 0.60, 0.67, 0.70, 0.80}, r ∈ {1, 2, 3}.

The results are summarized in Table 5. Accuracies range from 94.6% to 97.5%, confirm-
ing that KSGH provides highly informative, structure-aware representations of symptom
data.

Table 5: Summary of correct classification rates (Test) for γ ∈ [0.5, 0.8] and interaction levels r = 1, 2, 3.

γ r = 1 r = 2 r = 3

0.50 0.9667 0.9708 0.9458
0.60 0.9667 0.9542 0.9625
0.67 0.9583 0.9583 0.9667
0.70 0.9708 0.9625 0.9750
0.80 0.9500 0.9667 0.9542

Several observations can be made:

• The neural network achieves consistently high accuracies (95–97%), confirming that
KSGH provides highly informative, structure-aware representations of symptom data.

• As with pgpDA, intermediate values of γ (around 0.60 to 0.70) lead to the best
results, while extreme values (γ = 0.50 or γ = 0.80) are less stable.

• The highest accuracy is obtained for (γ, r) = (0.70, 3) with an accuracy of 97.50%, in-
dicating that deeper interaction modelling (r = 3) is beneficial even for deep learning
models.

• The consistency between pgpDA and deep learning in terms of optimal (γ, r) values
clearly demonstrates the robustness of the hierarchical interaction modelling intro-
duced by KSGH.

5.8. Validation on Simulated Data

To assess the performance of the proposed kernel-based approach in a controlled envi-
ronment, we first conducted experiments on simulated data specifically designed to repro-
duce a hierarchical questionnaire structure. The dataset was generated according to the
following specifications:

• p = 3 binary main variables X = (X1, X2, X3),
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• for each main variable Xj , qj = 3 associated binary sub-questions Zj1, Zj2, Zj3,

• a total sample size of n = 500 independent individuals.

The main variables Xj were sampled from independent Bernoulli distributions with
fixed probability

P(Xj = 1) = 0.5.

Each associated sub-question variable Zjk was then generated conditionally on its parent
variable Xj according to:

P(Zjk = 1 | Xj = 1) = 0.8, P(Zjk = 1 | Xj = 0) = 0.2.

This controlled dependency structure enforces a positive correlation between each main
feature and its descendants, reflecting a realistic hierarchical pattern commonly observed
in medical questionnaires.

We compared the performance of a standard SVM classifier equipped with a classical
RBF kernel against an SVM with our KSGH kernel. The results showed that KSGH
systematically outperforms the standard RBF kernel on data known to be hierarchical.
Furthermore, performance increased with the interaction order r, with the best results
obtained for r = 3, confirming the benefit of explicitly modeling interactions among sub-
variables.

6. Conclusion

This work was motivated by the need to incorporate the hierarchical structure of med-
ical questionnaire data—particularly verbal autopsy interviews—into statistical learning
methods. We introduced a new kernel designed specifically for binary predictors organized
in a two-level tree structure, where main items and their associated sub-items capture clin-
ically meaningful dependencies. The proposed hierarchical interaction kernel integrates
both the presence of hierarchical relationships and the interactions among sub-variables of
arbitrary order, thereby providing a richer representation of symptom patterns.

Embedded within the pgpDA classification framework, the kernel yields a flexible
and parsimonious model that avoids the numerical instabilities commonly encountered
in kernel-based Gaussian process mixture approaches. The experimental results on a large
Senegalese verbal autopsy dataset demonstrate consistent improvements over standard ker-
nels and widely used machine learning methods, such as SVMs, Random Forests, and the
Tariff method. Performance increases with the interaction order, confirming the diagnostic
relevance of symptom combinations and hierarchical structure.

Deep learning experiments further confirm that the kernel encodes robust and informa-
tive structure: accuracies above 97% were obtained for the best configurations, highlighting
the kernel’s potential for hybrid kernel–deep architectures. The agreement between pgpDA
and deep learning regarding the optimal parameter region (γ, r) reinforces the relevance
and robustness of the proposed kernel.
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Several research directions emerge from this study. First, extending the kernel to ac-
commodate mixed data types (binary, ordinal, and continuous variables) would broaden
its applicability to more general medical and epidemiological datasets. Second, the hier-
archical formulation could be adapted to graph-structured symptom networks, providing a
bridge between kernel methods and probabilistic graphical models. Finally, integration into
deep kernel learning architectures could further enhance representation power, especially
in high-dimensional or weakly supervised settings.

Overall, the proposed hierarchical interaction kernel provides a principled, interpretable,
and effective approach to modeling structured binary data, with substantial potential for
future extensions in medical diagnosis and beyond.
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