EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 2, Article Number 5859 ISSN 1307-5543 – ejpam.com Published by New York Business Global

On Filters of Implicative Negatively Partially Ordered Ternary Semigroups

Kansada Nakwan¹, Panuwat Luangchaisri¹, Thawhat Changphas^{1,*}

¹ Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

Abstract. In this paper, we study a special set in an implicative n.p.o.(negatively partially ordered) ternary semigroup, and prove that a filter can be represented by the union of such sets. Indeed, let $(T, [\], \leq, [\]^*)$ be an implicative n.p.o. ternary semigroup. For any $a, b \in T$, we define

$$S(a,b) := \{c \in T : [aa[bbc]^*]^* = 1\}.$$

We have the following:

- (1) A non-empty subset F of T is a filter if and only if it satisfies the following conditions:
 - (F3) $1 \in F$;
 - (F4) for any $a, b, c \in T$, if $[abc]^* \in F$ and $a, b \in F$, then $c \in F$.
- (2) If T is commutative and F is a filter of T, then

$$F = \bigcup_{a,b \in F} S(a,b).$$

 $\textbf{2020 Mathematics Subject Classifications: } 20M12,\,06F99,\,06A06,\,06A12$

Key Words and Phrases: Implicative negatively partially ordered ternary semigroup (INPOTS), filter, left self-distributive

1. Introduction

Implicative negatively partially ordered semigroups and filters were introduced and studied in [3] by Chan and Shum. The implicative negatively partially ordered semigroup is a generalization of the implicative semilattice (cf. [2], [8]), it is closed to implications in mathematical logic (cf. [1], [4]). As demonstrated in [8], filters play a crucial role in implicative semilattice theory. Quotient structures of implicative negatively partially

DOI: https://doi.org/10.29020/nybg.ejpam.v18i2.5859

Email addresses: kansada.n@kkumail.com (K. Nakwan), panulu@kku.ac.th (P. Luangchaisri), thacha@kku.ac.th (T. Changphas)

1

^{*}Corresponding author.

ordered semigroups through filters were constructed in [3]. Additionally, in [6], filters within commutative implicative negatively partially ordered semigroups were examined. In [5], the author introduced a set in an implicative negatively partially ordered semigroup, and gave an equivalent condition of a filter. Moreover, it is obtained that a filter is the union of that special sets.

In this paper, we follow these concepts to derive a special set in an implicative negatively partially ordered ternary semigroup, and prove that a filter can be represented by the union of such sets. Also, some important results are investigated.

2. Preliminaries

We collects results obtained in negatively partially ordered ternary semigroups.

Definition 1. [7] A system $(T, [\], \leq)$ is called a NPOTS (negatively partially ordered ternary semigroup) if

- (1) $(T, [\])$ is a ternary semigroup;
- (2) a partially order \leq on T is compatible with $[\]$;
- (3) $\forall a, b, c \in T, [abc] \le a, [abc] \le b, [abc] \le c.$

Definition 2. [7] A NPOTS $(T, [\], \leq)$ is called an INPOTS (implicative negatively partially ordered ternary semigroup) if there is an additional ternary multiplication $[\]^*$ on T such that for all $a, b, c, u \in T$,

$$u \le [cbc]^* \Leftrightarrow [uab] \le c.$$

Here, []* is a ternary implication.

A multiplicative identity of a ternary semigroup $(T, [\])$ is an element 1 of T satisfying the condition [1a1] = [11a] = [a11] = a for any $a \in T$.

Example 1. Consider the INPOTS $(T,[\],\leq,[\]^*)$ defined as follows:

a	0	[]	1	a	0		[]	1	a	0
		aa	0	0	0		00	0	0	0
0	0	a1	0	0	0		01	0	0	0
0	0	a0	0	0	0		0a	0	0	0
		'					,			
							00	1	1	1
1	1	a1	1	1	1		$01 \\ 0a$			
	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

and

$$\leq = \{(0,0), (1,1), (a,a), (a,1), (0,a), (0,1)\}.$$

We place x_1x_2 in the first column and x_3 in the first row to express the calculation $[x_1x_2x_3]$ using a multiplication table. Observed that the greatest element 1 is not identity since $[1a1] = 0 \neq a$.

The following shows that not every NPOTS with identity admits the INPOTS.

Example 2. Let us consider a NPOTS $(T, [\], \leq)$ defined as follows:

[]	1	2	3	4	6	[]	1	2	3	4	
11	1	2	3	4	6	$\frac{1}{21}$	2	2	6	4	
12	2	2	6	4	6	22	2	2	6	4	
13	3	3	3	6	6	23	6	6	6	6	
14	4	4	6	4	6	24	4	4	6	4	
16	6	6	6	6	6	26	6	6	6	6	
[]	1	2	3	4	6	[]	1	2	3	4	(
31	3	6	3	6	6	41	4	4	6	4	(
32	6	6	6	6	6	42	4	4	6	4	(
33	3	6	3	6	6	43	6	6	6	6	(
34	6	6	6	6	6	44	4	4	6	4	(
36	6	6	6	6	6	46	6	6	6	6	(
[]	1	2	3	4	6						
61	6	6	6	6	6						
62	6	6	6	6	6						
63	6	6	6	6	6						
64	6	6	6	6	6						
66	6	6	6	6	6						

and

$$\leq = \{(1,1), (2,2), (3,3), (4,4), (6,6), (3,1), (2,1), (4,a), (4,1), (6,4), (6,2), (6,3), (6,1)\}.$$

The element 1 is the greatest element. Suppose T is an INPOTS with ternary implication []*. Clearly, [322] = $6 \le 4$ and [422] = $2 \le 2$. Then $3 \le [224]^*$ and $4 \le [224]^*$, so [224]* = 1. As $1 \le [224]^*$, we have $2 = [122] \le 4$. This is a contradiction. Hence, T is not an INPOTS.

Definition 3. [9] An INPOTS $(T, [\], \leq, [\]^*)$ is called commutative if

$$[a_1 a_2 a_3] = [a_{\alpha(1)} a_{\alpha(2)} a_{\alpha(3)}]$$

for any permutation $\alpha \in S_3$.

The example shows an infinite commutative INPOTS.

Example 3. [7] Let \mathbb{Z}^+ be a TS such that [abc] = abc for all $a, b, c \in \mathbb{Z}^+$. Consider

$$\leq = \{(a, b) \in \mathbb{Z}^+ \times \mathbb{Z}^+ : b \mid a\}.$$

Here, $b \mid a$ means b divides a. Then $(\mathbb{Z}^+, [\], \leq)$ is a commutative NPOTS; 1 is the greatest element. Define

$$[abc]^* = \frac{c}{\gcd(ab, c)}$$

for all $a, b, c \in \mathbb{Z}^+$. Then $(\mathbb{Z}^+, [\], \leq, [\]^*)$ is a commutative INPOTS.

Theorem 1. [7] Let $(T, [\], \leq, [\]^*)$ be an INPOTS. Then, for $a, b \in T$,

- (1) $a \leq [aaa]^*$;
- (2) $[aaa]^* = [bbb]^*;$
- (3) [aaa]* is the greatest element of T; then an INPOTS always contains the greatest element.

Let 1 be the greatest element of a NPOTS $(T,[\],\leq)$ if exists. Assume 1 is the multiplicative identity. Then, for any $u,v,w\in T,$ $[uvw]=1\Leftrightarrow u=1,$ v=1, w=1.

Throughout this paper, we assume 1 is both the multiplicative identity and the greatest element of an INPOTS.

Theorem 2. [7] Let $(T, [\], \leq, [\]^*)$ be an INPOTS. Then, for $a, b, c, u, v \in T$,

- (1) $a \le 1$, $[aaa]^* = 1$, $a = [11a]^*$;
- (2) $a \leq [bc[abc]]^*$;
- (3) $a < [aa[aaa]]^*$;
- $(4) \ a < [bca]^*$;
- (5) if a < b, then $[buv]^* < [auv]^*$ and $[uva]^* < [uvb]^*$;
- (6) $a < b \Leftrightarrow [a1b]^* = 1 \Leftrightarrow [1ab]^* = 1$;
- (7) $[ab[cuv]^*]^* = [[abc]uv]^* = [a[bcu]v]^*.$

3. Filters of implicative negatively partially ordered ternary semigroups

We begin with filters of an INPOTS.

Definition 4. [7] Let $(T, [\], \leq, [\]^*)$ be an INPOTS. Then $\emptyset \neq F \subseteq T$ is called a filter of T if

- (F1) $[abc] \in F$ for any $a, b, c \in F$;
- (F2) for any $x, y \in T$, $a \leq b$ and $a \in F$ imply $b \in F$.

Proposition 1. Let $(T, [\], \leq, [\]^*)$ be an INPOTS. Then $\emptyset \neq F \subseteq T$ is a filter if and only if it holds the conditions:

- (*F*3) $1 \in F$;
- (F4) for any $a, b, c \in T$, if $[abc]^* \in F$ and $a, b \in F$, then $c \in F$.

Proof. Assume that F is a filter of T. Since 1 is the greatest element of T, $1 \in F$. It is observed that for any $a, b, c \in T$, from $[abc]^* \leq [abc]^*$, we have

$$[[abc]^*ab] \le c. \tag{2.1}$$

Let $a, b, c \in T$ be such that $[abc]^* \in F$ and $a, b \in F$. By assumption, we have $[[abc]^*ab] \in F$. Using (2.1), we get $[[abc]^*ab] \leq c$. This implies that $c \in F$. Hence, F satisfies (F3) and (F4).

Conversely, assume that F satisfies (F3) and (F4). If $a,b \in T$ such that $a \leq b$ and $a \in F$, then by Theorem 2 (6) we have $[1ab]^* = 1 \in F$. By (F4), $b \in F$. Thus, F satisfies (F2). Let $a,b,c \in F$. By Theorem 2 (2), $a \leq [bc[abc]]^*$, and so by (F2) we get $[bc[abc]]^* \in F$. From (F4), $[abc] \in F$. Hence, F satisfies (F1). Consequently, F is a filter of T.

Definition 5. Let $(T, [\], \leq, [\]^*)$ be an INPOTS. For any $a, b \in T$, define

$$S(a,b) := \{c \in T : [aa[bbc]^*]^* = 1\}.$$

Observe that $1, b \in S(a, b)$ for any $a, b \in T$.

Proposition 2. For a commutative INPOTS $(T, [\], \leq, [\]^*)$, $a \in S(a, b)$ for all $a, b \in T$.

Proof. Let $a, b \in T$. By Theorem 2 (7),

$$[aa[bba]^*]^* = [a[abb]a]^*$$

$$= [a[bba]a]^*$$

$$= [ab[baa]^*]^*$$

$$= [[abb]aa]^*$$

$$= [[bba]aa]^*$$

$$= [bb[aaa]^*]^*$$

$$= [bb1]^*.$$

From Theorem 2 (4), $1 \leq [bb1]^* \leq 1$. This implies that $[aa[bba]^*]^* = 1$, and so $a \in S(a,b)$.

Proposition 3. Let $(T,[\],\leq,[\]^*)$ be an INPOTS, and $b\in T$. If $[buv]^*=1$ for all $u,v\in T$, then S(a,b)=T=S(b,a) for all $a\in T$.

Proof. Assume that $[buv]^*=1$ for all $u,v\in T$ and $a\in T$. Clearly, $S(a,b)\subseteq T$ and $S(b,a)\subseteq T$. By assumption, we have $[aa[bba]^*]^*=[aa1]^*$. Since $1\leq [aa1]^*\leq 1$, we have $[aa[bba]^*]^*=1$, and then $a\in S(a,b)$. Thus, $T\subseteq S(a,b)$. By assumption, $[bb[aaa]^*]^*=[bb1]^*=1$. This shows that $a\in S(b,a)$, and so $T\subseteq S(b,a)$.

Example 4. Let us consider the INPOTS $(T,[\],\leq,[\]^*)$ defined as follows:

[]	1	2	3	4	5	7		[]	1	2	3	4	5	7
11	1	2	3	4	5	7	-	21	2	3	3	5	7	7
12	2	3	3	5	7	7		22	3	3	3	7	7	7
13	3	3	3	7	7	7		23	3	3	3	7	7	7
14	4	5	7	4	5	7		24	5	7	7	5	7	7
15	5	7	7	5	7	7		25	7	7	7	7	7	7
17	7	7	7	7	7	7		27	7	7	7	7	7	7
[]	1	2	3	4	5	7		[]	1	2	3	4	5	7
31	3	3	3	7	7	7		41	4	5	7	4	5	7
3a	3	3	3	7	7	7		42	5	7	7	5	7	7
33	3	3	3	7	7	7		43	7	7	7	7	7	7
34	7	7	7	7	7	7		44	4	5	7	4	5	7
35	7	7	7	7	7	7		45	5	7	7	5	7	7
37	7	7	7	7	7	7		47	7	7	7	7	7	7
гэ	1	0	9	4	_	-		r ı l	1	0	9	4	_	7
[]	1	2	3	4	5	7		[]	1	2	3	4	5	7
51	5	7	7	5	7	7		[] 71	7	7	7	7	7	7
52	5 7	7 7	7 7	5 7	7 7	7 7		72	7 7	7 7	7 7	7 7	7 7	7 7
52 53	5 7 7	7 7 7	7 7 7	5 7 7	7 7 7	7 7 7		72 73	7 7 7	7 7 7	7 7 7	7 7 7	7 7 7	7 7 7
52 53 54	5 7 7 5	7 7 7 7	7 7 7 7	5 7 7 5	7 7 7 7	7 7 7 7		72 73 74	7 7 7 7	7 7 7 7	7 7 7 7	7 7 7 7	7 7 7 7	7 7 7 7
52 53 54 55	5 7 7 5 7	7 7 7 7	7 7 7 7 7	5 7 7 5 7	7 7 7 7	7 7 7 7 7		72 73 74 75	7 7 7 7	7 7 7 7	7 7 7 7	7 7 7 7	7 7 7 7	7 7 7 7
52 53 54	5 7 7 5	7 7 7 7	7 7 7 7	5 7 7 5	7 7 7 7	7 7 7 7	-	72 73 74	7 7 7 7	7 7 7 7	7 7 7 7	7 7 7 7	7 7 7 7	7 7 7 7
52 53 54 55	5 7 7 5 7	7 7 7 7 7	7 7 7 7 7	5 7 7 5 7	7 7 7 7	7 7 7 7 7		72 73 74 75	7 7 7 7	7 7 7 7	7 7 7 7	7 7 7 7	7 7 7 7	7 7 7 7
52 53 54 55 57	5 7 7 5 7	7 7 7 7 7	7 7 7 7 7	5 7 7 5 7	7 7 7 7 7	7 7 7 7 7		72 73 74 75 77	7 7 7 7 7	7 7 7 7 7	7 7 7 7 7	7 7 7 7 7	7 7 7 7 7	7 7 7 7 7
52 53 54 55 57	5 7 7 5 7 7	7 7 7 7 7 7	7 7 7 7 7 7	5 7 7 5 7 7	7 7 7 7 7 7 5	7 7 7 7 7 7		72 73 74 75 77	7 7 7 7 7 7	7 7 7 7 7 7	7 7 7 7 7 7	7 7 7 7 7 7	7 7 7 7 7 7	7 7 7 7 7 7
52 53 54 55 57 	5 7 7 5 7 7	7 7 7 7 7 7 2	7 7 7 7 7 7 3	5 7 7 5 7 7 4	7 7 7 7 7 7 5	7 7 7 7 7 7		72 73 74 75 77 []* 21	$ \begin{array}{c c} 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ \hline 7 \\ \hline 1 \\ \hline 1 \\ \hline 1 \end{array} $	7 7 7 7 7 7	7 7 7 7 7 7	7 7 7 7 7 7 4	7 7 7 7 7 7 4	7 7 7 7 7 7 7
52 53 54 55 57 	5 7 7 5 7 7 1 1	7 7 7 7 7 7 2 2	7 7 7 7 7 7 3 3 2	5 7 7 5 7 7 4 4 4	7 7 7 7 7 7 5 4	7 7 7 7 7 7 7 5		72 73 74 75 77 []* 21 22	$ \begin{array}{c c} 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ \hline 7 \\ \hline 1 \\ 1 \\ 1 \end{array} $	7 7 7 7 7 7 1	7 7 7 7 7 7 2 1	7 7 7 7 7 7 4 4	7 7 7 7 7 7 4 4	7 7 7 7 7 7 7 4
52 53 54 55 57 []* 11 12 13	5 7 7 5 7 7 1 1 1	7 7 7 7 7 7 2 2 1	7 7 7 7 7 7 3 3 2	5 7 7 5 7 7 4 4 4	7 7 7 7 7 7 5 4 4	7 7 7 7 7 7 7 7 5 4		72 73 74 75 77 21 22 23	$ \begin{array}{c c} 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ \hline 7 \\ \hline 1 \\ 1 \\ 1 \\ 1 \end{array} $	7 7 7 7 7 7 1 1	7 7 7 7 7 7 2 1	7 7 7 7 7 7 4 4 4 4	7 7 7 7 7 7 5 4 4 4	7 7 7 7 7 7 7 5 4 4
52 53 54 55 57 []* 11 12 13 14	5 7 7 5 7 7 7	7 7 7 7 7 7 7 2 2 1 1 2	7 7 7 7 7 7 7 7 3 2 1 3	5 7 7 5 7 7 7 4 4 4 4 4 1	7 7 7 7 7 7 7 5 5 4 4 2	7 7 7 7 7 7 7 7 5 4 3		72 73 74 75 77 21 22 23 24	$ \begin{array}{c c} 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ \hline 7 \\ \hline 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	7 7 7 7 7 7 7 1 1 1	7 7 7 7 7 7 7 7 1 1 1 3	7 7 7 7 7 7 7 4 4 4 4 4 1	7 7 7 7 7 7 7 7 4 4 4 4 1	7 7 7 7 7 7 7 5 4 4 2

[]*	1	2	3	4	5	7	[]*	1	2	3	4	5	7
31	1	1	1	4	4	4	41	1	2	3	1	2	3
3a	1	1	1	4	4	4	42	1	1	2	1	1	2
33	1	1	1	4	4	4	43	1	1	1	1	1	1
34	1	1	1	1	1	1	44	1	2	3	1	2	3
35	1	1	1	1	1	1	45	1	1	2	1	1	2
37	1	1	1	1	1	1	47	1	1	1	1	1	1
[]*	1	2	3	4	5	7	[]*	1	2	3	4	5	7
[]* 51	1	2	3	4	5	7	71	1	2	3	4	5	7
_[]							_[]				4 1 1	5 1 1	
51	1	1	2	1	1	2	71	1	1	1	1	1	1
$ \begin{array}{r} $	1 1	1 1	2	1 1	1 1	2	$ \begin{array}{c c} \hline 71 \\ 72 \end{array} $	1 1	1 1	1 1	1 1	1 1	1 1
51 52 53	1 1 1	1 1 1	2 1 1	1 1 1	1 1 1	2 1 1	71 72 73	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1

and

$$\leq = \{(1,1), (2,2), (3,3), (4,4), (5,5), (7,7), (3,1), (3,2), (2,1), (4,1), (5,4), (5,1), (5,2), (7,1), (7,2), (7,3), (7,4), (7,5)\}.$$

By Proposition 3, we have S(a,7) = S(7,a) = T for all $a \in T$. Furthermore, we have $S(1,1) = \{1\}$, $S(1,2) = S(2,1) = S(1,3) = S(3,1) = S(2,3) = S(3,2) = S(2,2) = S(3,3) = \{1,2,3\}$, $S(1,4) = S(4,1) = S(4,4) = \{1,4\}$, and S(2,4) = S(4,2) = S(3,4) = S(4,3) = S(1,5) = S(2,5) = S(3,5) = S(4,5) = S(5,5) = S(5,1) = S(5,2) = S(5,3) = S(5,4) = T. We observe that for any $a,b \in T$, S(a,b) is a filter of T.

Theorem 3. Let $(T, [\], \leq, [\]^*)$ be a commutative INPOTS. If F is a filter, then $S(a, b) \subseteq F$ for all $a, b \in F$.

Proof. Let F be a filter of T and let $a, b \in F$. If $c \in S(a, b)$, then $[aa[bbc]^*]^* = 1 \in F$, and by (F4) we have $c \in F$.

Theorem 4. Let $(T, [\], \leq, [\]^*)$ be a commutative INPOTS. If F is a filter of T, then

$$F = \bigcup_{a,b \in F} S(a,b).$$

Proof. Let F be a filter of T. By Proposition 2, $c \in S(c,1)$ for any $c \in F$. Then

$$F\subseteq \bigcup_{c\in F}S(c,1)\subseteq \bigcup_{a,b\in F}S(a,b).$$

For the reverse inclusion, let $c' \in \bigcup_{a,b \in F} S(a,b)$. Then there exist $x,y \in F$ such that

 $c' \in S(x,y)$. By Theorem 3, $c' \in F$. This shows that $\bigcup_{a,b \in F} S(a,b) \subseteq F$.

Corollary 1. Let $(T, [\], \leq, [\]^*)$ be a commutative INPOTS. If F is a filter of T, then

$$F = \bigcup_{a \in F} S(a, 1).$$

4. Conclusions

In this paper, we introduce the concept of filters in implicative negatively partially ordered ternary semigroups (Definition 4) and give a characterization of filters (Proposition 1). Then we consider the set $S(a,b) := \{c \in T : [aa[bbc]^*]^* = 1\}$ where a,b are elements of an implicative negatively partially ordered ternary semigroup $(T,[\],\leq,[\]^*)$. The main result obtained is that any filter can be represented by the union of such sets (Theorem 4), if $(T,[\],\leq,[\]^*)$ is commutative.

Acknowledgements

The Research on "On filters of implicative negatively partially ordered ternary semi-groups" by Khon Kaen University has received funding support from the National Science, Research and Innovation Fund (NSRF).

References

- [1] G. Birkhoff. Lattice theory. Amer. Math. Soc. Coll. Publ. Vol. XXV, Providence, 1967.
- [2] T. S. Blyth. Pseudo-residuals in semigroups. J. London Math. Soc., 1(1):441–454, 1965.
- [3] M. W. Chan and K. P. Shum. Homomorphisms of implicative semigroups. *Semigroup Forum*, 46:7–15, 1993.
- [4] H. B. Curry. Foundations of mathematical logic. McGrow-Hill, New York, 1963.
- [5] Y. B. Jun. A note on ordered filters of implicative semigroups. *Bull. Korean Math. Soc.*, 34(2):185–191, 1997.
- [6] Y. B. Jun, J. Meng, and X. L. Xin. On ordered filters of implicative semigroups. Semigroup Forum, 54(1):75–82, 1997.
- [7] K. Nakwan, P. Luangchaisri, and T. Changphas. Implicative negatively partially ordered ternary semigroups. Eur. J. Pure Appl. Math., 17(4):4180–4194, 2024.
- [8] W. C. Nemitz. Implicative semi-lattices. Trans. Amer. Math. Soc., 117:128–142, 1965.
- Y. Sarala, A. Anjaneyulu, and D. Madhusudhana Rao. Ternary semigroups. International Journal of Mathematics Sciences, Technology and Humanities, 76:848–859, 2013.