EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 2, Article Number 5869 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Certain Subclass of Multivalently Bazilevič and Non-Bazilevič Functions Involving the Lemniscate of Bernoulli

Tamer M. Seoudy^{1,*}, Amnah E. Shammaky²

Abstract. Making use of the principle of subordination, we define a certain subclass of p-valently Bazilevič and non-Bazilevič functions associated with the Lemniscate of Bernoulli. Also, subordination results, convolution properties, coefficients estimate and Fekete-Szegö inequalities for this subclass are derived.

2020 Mathematics Subject Classifications: 30C45

Key Words and Phrases: Analytic functions, subordination, convolution, Bazilevič function, non-Bazilevič function, Fekete—Szegö problem

1. Introduction

Let $\mathcal{H}(\mathbb{U})$ be the class of all analytic functions in $\mathbb{U} = \{\xi \in \mathbb{C} : |\xi| < 1\}$. For $\chi, \rho \in \mathcal{H}(\mathbb{U})$, we say that $\chi(\xi)$ is subordinate to $\rho(\xi)$, written $\chi \prec \rho$ in \mathbb{U} or $\chi(\xi) \prec \rho(\xi)$ ($\xi \in \mathbb{U}$), if there exists a Schwarz function $\omega(\xi)$, which (by definition) is analytic in \mathbb{U} with $\omega(0) = 0$ and $|\omega(\xi)| < 1(\xi \in \mathbb{U})$ such that $\chi(\xi) = \rho(\omega(\xi))$ ($\xi \in \mathbb{U}$). In addition, if $\rho(\xi)$ is a univalent function in \mathbb{U} , then we have the following equivalence (see [1] and [2]):

$$\chi(\xi) \prec \rho(\xi) \quad (\xi \in \mathbb{U}) \Longleftrightarrow \chi(0) = \rho(0) \text{ and } \chi(\mathbb{U}) \subset \rho(\mathbb{U}).$$

Also, let \mathcal{A}_p denote the subclass of $\mathcal{H}(\mathbb{U})$ consisting of functions of the form:

1

$$\chi(\xi) = \xi^p + \sum_{k=p+1}^{\infty} \varrho_k \xi^k \qquad (p \in \mathbb{N} = \{1, 2, 3, ...\}; \xi \in \mathbb{U}),$$
(1)

DOI: https://doi.org/10.29020/nybg.ejpam.v18i2.5869

Email addresses: tmsaman@uqu.edu.sa (T.M. Seoudy), aeshamakhi@jazan.edu.sa (A.E. Shammaky)

¹ Department of Mathematics, Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia

² Department of Mathematics, Faculty of Science, Jazan University, Jazan, Saudi Arabia

 $^{^*}$ Corresponding author.

which are p-valent in \mathbb{U} with $\mathcal{A}_p = \mathcal{A}$. Sokól and Stankiewicz [3] defined the class \mathcal{SL}^* consisting of analytic functions $\chi \in \mathcal{A}$ satisfying the next inequality

$$\left| \left[\frac{\xi \chi'\left(\xi\right)}{\chi\left(\xi\right)} \right]^2 - 1 \right| < 1,$$

which is equivalent to

$$\frac{\xi \chi'\left(\xi\right)}{\chi\left(\xi\right)} \prec q\left(\xi\right) = \sqrt{1+\xi}$$

where the function

$$q(\xi) = \sqrt{1+\xi} \quad (\xi \in \mathbb{U}) \tag{2}$$

maps \mathbb{U} into the domain $\mathcal{O} = \{w \in \mathbb{C} : \Re\{w\} > 0, |w^2 - 1| < 1\}$ and its boundary $\partial \mathcal{O}$ is the right-half of the lemniscate of Bernoulli $(x^2 + y^2)^2 - 2(x^2 - y^2) = 0$. Several geometric properties of \mathcal{SL}^* were studied by many authors (see, for example, [4–7]).

Using the principle of differential subordination and the function $q(\xi) = \sqrt{1+\xi}$ of the Bernoulli domain of lemniscate, we now define a new subclass $\mathcal{BN}_p(\lambda, \alpha, \beta)$ of Bazilevič and non-Bazilevič functions as follows:

Definition 1. A function $\chi \in \mathcal{A}_p$ is said to be the subclass $\mathcal{BN}_p(\lambda, \alpha, \beta)$ when it satisfies the next subordination condition:

$$\left(1 - \frac{\alpha - \beta}{\alpha + \beta}\lambda\right) \left[\frac{\chi(\xi)}{\xi^p}\right]^{\alpha - \beta} + \frac{\alpha - \beta}{\alpha + \beta}\lambda \frac{\xi\chi'(\xi)}{p\chi(\xi)} \left[\frac{\chi(\xi)}{\xi^p}\right]^{\alpha - \beta} \prec \sqrt{1 + \xi} \tag{3}$$

all the powers are principal values and throughout the paper unless otherwise mentioned the real parameters λ , α , β are constrained as $\alpha \neq \beta$, $p \in \mathbb{N}$ and $\xi \in \mathbb{U}$.

We note that

(i)
$$\mathcal{BN}_p(\lambda, \alpha, 0) = \mathcal{B}_p(\lambda, \alpha) = \left\{ \chi \in \mathcal{A}_p : (1 - \lambda) \left(\frac{\chi(\xi)}{\xi^p} \right)^{\alpha} + \lambda \frac{\xi \chi'(\xi)}{p \chi(\xi)} \left(\frac{\chi(\xi)}{\xi^p} \right)^{\alpha} \prec \sqrt{1 + \xi} \right\}$$
 (see [8]);

(ii)
$$\mathcal{BN}_{p}(\lambda,0,\beta) = \mathcal{N}_{p}(\lambda,\beta) = \left\{ \chi \in \mathcal{A}_{p} : (1+\lambda) \left(\frac{\xi^{p}}{\chi(\xi)} \right)^{\beta} - \lambda \frac{\xi \chi'(\xi)}{p\chi(\xi)} \left(\frac{\xi^{p}}{\chi(\xi)} \right)^{\beta} \prec \sqrt{1+\xi} \right\};$$

(iii)
$$\mathcal{BN}_1(\lambda, \alpha, 0) = \mathcal{B}(\lambda, \alpha) = \left\{ \chi \in \mathcal{A} : (1 - \lambda) \left(\frac{\chi(\xi)}{\xi} \right)^{\alpha} + \lambda \frac{\xi \chi'(\xi)}{\chi(\xi)} \left(\frac{\chi(\xi)}{\xi} \right)^{\alpha} \prec \sqrt{1 + \xi} \right\}$$
 (see [8]);

$$\text{(iv)} \ \mathcal{BN}_1\left(\lambda,0,\beta\right) = \mathcal{N}\left(\lambda,\beta\right) = \left\{\chi \in \mathcal{A}: (1+\lambda)\left(\frac{\xi}{\chi(\xi)}\right)^{\beta} - \lambda \frac{\xi\chi'(\xi)}{\chi(\xi)}\left(\frac{\xi}{\chi(\xi)}\right)^{\beta} \prec \sqrt{1+\xi}\right\};$$

(v)
$$\mathcal{BN}_{p}(\lambda, 1, 0) = \mathcal{B}_{p}(\lambda) = \left\{ \chi \in \mathcal{A}_{p} : (1 - \lambda) \frac{\chi(\xi)}{\xi^{p}} + \lambda \frac{\chi'(\xi)}{p\xi^{p-1}} \prec \sqrt{1 + \xi} \right\} \text{ and } \mathcal{B}_{1}(\lambda) = \left\{ \chi \in \mathcal{A} : (1 - \lambda) \frac{\chi(\xi)}{\xi} + \lambda \chi'(\xi) \prec \sqrt{1 + \xi} \right\} \text{ (see [8])};$$

(vi)
$$\mathcal{BN}_{p}(\lambda, 0, 1) = \mathcal{N}_{p}(\lambda) = \left\{ \chi \in \mathcal{A}_{p} : (1 + \lambda) \frac{\xi^{p}}{\chi(\xi)} - \lambda \frac{\xi^{p+1} \chi'(\xi)}{p\chi^{2}(\xi)} \prec \sqrt{1 + \xi} \right\} \text{ and } \mathcal{N}_{1}(\lambda) = \left\{ \chi \in \mathcal{A} : (1 + \lambda) \frac{\xi}{\chi(\xi)} - \lambda \frac{\xi^{2} \chi'(\xi)}{\chi^{2}(\xi)} \prec \sqrt{1 + \xi} \right\};$$

(vii)
$$\mathcal{BN}_{p}(1,\alpha,0) = \mathcal{B}_{p}(\alpha) = \left\{ \chi \in \mathcal{A}_{p} : \frac{\xi\chi'(\xi)}{p\chi(\xi)} \left(\frac{\chi(\xi)}{\xi^{p}} \right)^{\alpha} \prec \sqrt{1+\xi} \right\} \text{ and } \mathcal{B}_{1}(\alpha) = \mathcal{B}(\alpha) = \left\{ \chi \in \mathcal{A} : \frac{\xi\chi'(\xi)}{\chi(\xi)} \left(\frac{\chi(\xi)}{\xi} \right)^{\alpha} \prec \sqrt{1+\xi} \right\} \text{ (see [8])};$$

(viii)
$$\mathcal{BN}_{p}\left(-1,0,\beta\right) = \mathcal{N}_{p}\left(\beta\right) = \left\{\chi \in \mathcal{A}_{p} : \frac{\xi\chi'(\xi)}{p\chi(\xi)} \left(\frac{\xi^{p}}{\chi(\xi)}\right)^{\beta} \prec \sqrt{1+\xi}\right\} \text{ and } \mathcal{N}_{1}\left(\beta\right) = \mathcal{N}\left(\beta\right) = \left\{\chi \in \mathcal{A} : \frac{\xi\chi'(\xi)}{\chi(\xi)} \left(\frac{\xi}{\chi(\xi)}\right)^{\beta} \prec \sqrt{1+\xi}\right\};$$

(ix)
$$\mathcal{BN}_p(1,0,0) = \mathcal{SL}_p^* = \left\{ \chi \in \mathcal{A}_p : \frac{\xi \chi'(\xi)}{p\chi(\xi)} \prec \sqrt{1+\xi} \right\} \text{ and } \mathcal{SL}_1^* = \mathcal{SL}^* = \left\{ \chi \in \mathcal{A} : \frac{\xi \chi'(\xi)}{\chi(\xi)} \prec \sqrt{1+\xi} \right\}.$$

In order to establish our main results, we need the following lemmas.

Lemma 1. [9] Let $h(\xi)$ be univalent and convex the function in \mathbb{U} with h(0) = 1. Suppose also that $\rho(\xi)$ given by

$$\rho(\xi) = 1 + c_1 \xi + c_2 \xi^2 + \dots \tag{4}$$

is analytic in \mathbb{U} . If

$$\rho(\xi) + \frac{\xi \rho'(\xi)}{\gamma} \prec h(\xi) \quad (\Re(\gamma) \ge 0; \gamma \ne 0; \xi \in \mathbb{U}),$$
 (5)

then

$$\rho\left(\xi\right) \prec q\left(\xi\right) = \gamma \xi^{-\gamma} \int_{0}^{\xi} h\left(t\right) t^{\gamma - 1} \ dt \prec h\left(\xi\right),$$

and $q(\xi)$ is the best dominant.

Lemma 2. [10] For real or complex numbers $a, b, c(c \neq 0, -1, -2, ...)$ and $\xi \in \mathbb{U}$,

$$\int_0^1 t^{b-1} (1-t)^{c-b-1} (1-t\xi)^{-a} dt = \frac{\Gamma(b)\Gamma(c-b)}{\Gamma(c)} {}_2\Omega_1(a,b;c;\xi) \quad (\Re(c) > \Re(b) > 0); \quad (6)$$

$$_{2}\Omega_{1}(a,b;c;\xi) = (1-\xi)^{-a} _{2}\Omega_{1}\left(a,c-b;c;\frac{\xi}{\xi-1}\right);$$
 (7)

Lemma 3. [11] Let $\chi(\xi) = \sum_{k=1}^{\infty} \varrho_k \xi^k$ be analytic in \mathbb{U} and $\rho(\xi) = \sum_{k=1}^{\infty} b_k \xi^k$ be analytic and convex in \mathbb{U} . If $\chi \prec \rho$, then

$$|\varrho_k| < |b_1| \quad (k \in \mathbb{N}).$$

Lemma 4. [12] Let $\rho(\xi) = 1 + \sum_{k=1}^{\infty} c_k \xi^k \in \mathcal{P}$, i.e., let ρ be analytic in \mathbb{U} and satisfy $\Re \{\rho(\xi)\} > 0$ for $\xi \in \mathbb{U}$, then the following sharp estimate holds

$$|c_2 - vc_1^2| \le 2 \max\{1, |2v - 1|\} \quad \text{for all } v \in \mathbb{C}.$$
 (8)

The result is sharp for the functions given by

$$\rho(\xi) = \frac{1+\xi^2}{1-\xi^2} \quad or \quad \rho(\xi) = \frac{1+\xi}{1-\xi}.$$

Lemma 5. [12] If $\rho(\xi) = 1 + \sum_{k=1}^{\infty} c_k \xi^k \in \mathcal{P}$, then

$$|c_2 - \nu c_1^2| \le \begin{cases} -4\nu + 2 & if \quad \nu \le 0, \\ 2 & if \quad 0 \le \nu \le 1, \\ 4\nu - 2 & if \quad \nu \ge 1, \end{cases}$$
 (9)

when v < 0 or $\nu > 1$, the equality holds if and only if $\rho(\xi) = (1 + \xi)/(1 - \xi)$ or one of its rotations. If $0 < \nu < 1$, then the equality holds if and only if $\rho(\xi) = (1 + \xi^2)/(1 - \xi^2)$ or one of its rotations. If $\nu = 0$, the equality holds if and only if

$$\rho\left(\xi\right) = \left(\frac{1+\lambda}{2}\right)\frac{1+\xi}{1-\xi} + \left(\frac{1-\lambda}{2}\right)\frac{1-\xi}{1+\xi} \qquad \left(0 \le \lambda \le 1\right)$$

or one of its rotations. If $\nu = 1$, the equality holds if and only if ρ is the reciprocal of one of the functions such that equality holds in the case of $\nu = 0$.

Also the above upper bound is sharp, and it can be improved as follows when $0 < \nu < 1$:

$$\left| c_2 - \nu c_1^2 \right| + \nu \left| c_1 \right|^2 \le 2$$
 $\left(0 \le \nu \le \frac{1}{2} \right)$

and

$$|c_2 - \nu c_1^2| + (1 - \nu) |c_1|^2 \le 2$$
 $\left(\frac{1}{2} \le \nu \le 1\right)$.

In some literature, we found many works related to the subclasses of Bazilevi č or non-Bazilevič analytic functions which are sometimes defined by linear operators. For example, we can see those subclasses in the papers in [13–22]. The novelty in our paper is that we have combined Bazilevič and non-Bazilevič analytic functions in one subclass $\mathcal{BN}_p(\lambda, \alpha, \beta)$ to study some geometric properties such as subordination properties, inclusion relationship, convolution result, coefficients estimate and Fekete–Szegö inequalities.

2. Geometric Properties for $\mathcal{BN}_{p}(\lambda, \alpha, \beta)$

Theorem 1. If $\chi \in \mathcal{BN}_p(\lambda, \alpha, \beta)$ with $\frac{\lambda}{\alpha + \beta} > 0$, then

$$\left[\frac{\chi\left(\xi\right)}{\xi^{p}}\right]^{\alpha-\beta} \prec Q\left(\xi\right) = (1+\xi)^{\frac{1}{2}} \, _{2}\Omega_{1}\left(-\frac{1}{2}, 1; \frac{p\left(\alpha+\beta\right)}{\lambda} + 1; \frac{\xi}{1+\xi}\right) \prec \sqrt{1+\xi}, \tag{10}$$

where the function $Q(\xi)$ is the best dominant.

Proof. Let

$$\rho(\xi) = \left[\frac{\chi(\xi)}{\xi^p}\right]^{\alpha - \beta} \quad (\xi \in \mathbb{U}). \tag{11}$$

Then the function $\rho(\xi)$ is of the form (4), analytic in \mathbb{U} and $\rho(0) = 1$. By taking the derivatives in the both sides of (11), we get

$$\left(1 - \frac{\alpha - \beta}{\alpha + \beta}\lambda\right) \left[\frac{\chi(\xi)}{\xi^p}\right]^{\alpha - \beta} + \frac{\alpha - \beta}{\alpha + \beta}\lambda \frac{\xi\chi'(\xi)}{p\chi(\xi)} \left[\frac{\chi(\xi)}{\xi^p}\right]^{\alpha - \beta} = \rho(\xi) + \frac{\lambda\xi\rho'(\xi)}{p(\alpha + \beta)}.$$
(12)

Since $\chi \in \mathcal{BN}_p(\lambda, \alpha, \beta)$, we have

$$\rho\left(\xi\right) + \frac{\lambda\xi\rho'\left(\xi\right)}{p\left(\alpha+\beta\right)} \prec \sqrt{1+\xi}.$$

Now, by applying Lemma 1 for $\gamma = \frac{p(\alpha+\beta)}{\lambda}$, we derive that

$$\left[\frac{\chi(\xi)}{\xi^{p}}\right]^{\alpha-\beta} \prec Q(\xi) = \frac{p(\alpha+\beta)}{\lambda} \xi^{-\frac{p(\alpha+\beta)}{\lambda}} \int_{0}^{\xi} t^{\frac{p(\alpha+\beta)}{\lambda}-1} (1+t)^{\frac{1}{2}} dt$$

$$= \frac{p(\alpha+\beta)}{\lambda} \int_{0}^{1} u^{\frac{p(\alpha+\beta)}{\lambda}-1} (1+\xi u)^{\frac{1}{2}} du$$

$$= (1+\xi)^{\frac{1}{2}} {}_{2}\Omega_{1} \left(-\frac{1}{2}, 1; \frac{p(\alpha+\beta)}{\lambda} + 1; \frac{\xi}{1+\xi}\right), \tag{13}$$

where we have made a change of variables followed by the use of identities in Lemma 2 with $a=-\frac{1}{2},\ b=\frac{p\alpha}{\lambda n}$ and c=b+1. This finishes the proof of Theorem 1.

Taking $\beta = 0$ in Theorem 1, we get

Corollary 1. If $\chi \in \mathcal{B}_p(\lambda, \alpha)$ with $\frac{\lambda}{\alpha} > 0$, then

$$\left[\frac{\chi\left(\xi\right)}{\xi^{p}}\right]^{\alpha} \prec Q_{2}\left(\xi\right) = (1+\xi)^{\frac{1}{2}} \, _{2}\Omega_{1}\left(-\frac{1}{2},1;\frac{p\alpha}{\lambda}+1;\frac{\xi}{1+\xi}\right) \prec \sqrt{1+\xi},$$

where $Q_2(\xi)$ is the best dominant.

Taking $\alpha = 0$ in Theorem 1, we get

Corollary 2. If $\chi \in \mathcal{N}_p(\lambda, \beta)$ with $\frac{\lambda}{\beta} > 0$, then

$$\left[\frac{\xi^p}{\chi(\xi)}\right]^{\beta} \prec Q_3(\xi) = (1+\xi)^{\frac{1}{2}} \,_2\Omega_1\left(-\frac{1}{2},1;\frac{p\beta}{\lambda}+1;\frac{\xi}{1+\xi}\right) \prec \sqrt{1+\xi},$$

where $Q_3(\xi)$ is the best dominant.

For a function $\chi \in \mathcal{A}_p$ given by (1), the generalized Bernardi-Libera-Livingston integral operator $L_{p,\mu}: \mathcal{A}_p \to \mathcal{A}_p$, with $\mu > -p$, is defined by (see [23–26])

$$L_{p,\mu}\chi(\xi) = \frac{\mu + p}{\xi^{\mu}} \int_{0}^{\xi} t^{\mu - 1} \chi(t) dt \quad (\mu > -p).$$
 (14)

It is easy to verify that for all $\chi \in \mathcal{A}_p$ we have

$$\xi (L_{p,\mu}\chi(\xi))' = (\mu + p)\chi(\xi) - \mu L_{p,\mu}\chi(\xi). \tag{15}$$

Theorem 2. If the function $\chi \in A_p$ satisfies the next subordination condition

$$\left(1 - \frac{\alpha - \beta}{\alpha + \beta}\lambda\right) \left[\frac{L_{p,\mu}\chi(\xi)}{\xi^p}\right]^{\alpha - \beta} + \frac{\alpha - \beta}{\alpha + \beta}\lambda \frac{\chi(\xi)}{L_{p,\mu}\chi(\xi)} \left[\frac{L_{p,\mu}\chi(\xi)}{\xi^p}\right]^{\alpha - \beta} \prec \sqrt{1 + \xi},$$
(16)

with $\frac{\lambda}{\alpha+\beta} > 0$ and $L_{p,\mu}$ is the integral operator defined by (14), then

$$\left[\frac{L_{p,\mu}\chi(\xi)}{\xi^{p}}\right]^{\alpha-\beta} \prec K(\xi) = (1+\xi)^{\frac{1}{2}} \,_{2}\Omega_{1}\left(-\frac{1}{2},1;\frac{(\alpha+\beta)(p+\mu)}{\lambda}+1;\frac{\xi}{1+\xi}\right) \prec \sqrt{1+\xi},$$

where the function K is the best dominant of (16).

Proof. Let

$$\rho(\xi) = \left\lceil \frac{L_{p,\mu}\chi(\xi)}{\xi^p} \right\rceil^{\alpha-\beta} \quad (\xi \in \mathbb{U}), \tag{17}$$

then ρ is analytic function in \mathbb{U} . Differentiating (17) with respect to ξ and using (16) in the resulting relation, we get

$$\left(1 - \frac{\alpha - \beta}{\alpha + \beta}\lambda\right) \left[\frac{L_{p,\mu}\chi(\xi)}{\xi^p}\right]^{\alpha - \beta} + \frac{\alpha - \beta}{\alpha + \beta}\lambda \frac{\chi(\xi)}{L_{p,\mu}\chi(\xi)} \left[\frac{L_{p,\mu}\chi(\xi)}{\xi^p}\right]^{\alpha - \beta}$$

$$= \rho(\xi) + \frac{\lambda\xi\rho'(\xi)}{(\alpha + \beta)(p + \mu)} \prec \sqrt{1 + \xi}.$$

Using the same method we used to prove Theorem 1, the remaining part of this theorem can be derived in a similar way.

Theorem 3. $\chi \in \mathcal{BN}_p(\lambda, \alpha, \beta)$ if and only if

$$\left[\frac{\chi\left(\xi\right)}{\xi^{p}}\right]^{\alpha-\beta} * \left(\frac{1-\left[\left(1+\frac{\lambda}{p(\alpha+\beta)}\right)e^{-i\theta}\left(1+\sqrt{1+e^{i\theta}}\right)+2\right]\xi+\left[e^{-i\theta}\left(1+\sqrt{1+e^{i\theta}}\right)+1\right]\xi^{2}}{\left(1-\xi\right)^{2}}\right) \neq 0.$$
(18)

Proof. For any function $\chi \in \mathcal{A}_p$, we can confrim that

$$\left[\frac{\chi(\xi)}{\xi^p}\right]^{\alpha-\beta} = \left[\frac{\chi(\xi)}{\xi^p}\right]^{\alpha-\beta} * \frac{1}{1-\xi}$$
(19)

and

$$\frac{\xi \chi'(\xi)}{p\chi(\xi)} \left[\frac{\chi(\xi)}{\xi^p} \right]^{\alpha-\beta} = \left[\frac{\chi(\xi)}{\xi^p} \right]^{\alpha-\beta} * \frac{1 - \left(1 - \frac{1}{p(\alpha-\beta)}\right)\xi}{(1 - \xi)^2}. \tag{20}$$

First, in order to prove that (18) holds, we will write (3) by using the principle of subordination, that is,

$$\left(1 - \frac{\alpha - \beta}{\alpha + \beta}\lambda\right) \left[\frac{\chi(\xi)}{\xi^p}\right]^{\alpha - \beta} + \frac{\alpha - \beta}{\alpha + \beta}\lambda \frac{\xi\chi'(\xi)}{p\chi(\xi)} \left[\frac{\chi(\xi)}{\xi^p}\right]^{\alpha - \beta} = \sqrt{1 + w(\xi)},$$

where $w(\xi)$ is a Schwarz function, hence

$$\left(1 - \frac{\alpha - \beta}{\alpha + \beta}\lambda\right) \left[\frac{\chi(\xi)}{\xi^p}\right]^{\alpha - \beta} + \frac{\alpha - \beta}{\alpha + \beta}\lambda \frac{\xi\chi'(\xi)}{p\chi(\xi)} \left[\frac{\chi(\xi)}{\xi^p}\right]^{\alpha - \beta} \neq \sqrt{1 + e^{i\theta}},$$
(21)

for all $\xi \in \mathbb{U}$ and $0 \le \theta < 2\pi$. From (19) and (20), the relation (21) may be written as

$$\left[\frac{\chi\left(\xi\right)}{\xi^{p}}\right]^{\alpha-\beta} * \left[\frac{1-\sqrt{1+e^{i\theta}}-\left(1-\frac{\lambda}{p(\alpha+\beta)}-2\sqrt{1+e^{i\theta}}\right)\xi-\sqrt{1+e^{i\theta}}\xi^{2}}{\left(1-\xi\right)^{2}}\right] \neq 0,$$

which is equivalent to

$$\left[\frac{\chi\left(\xi\right)}{\xi^{p}}\right]^{\alpha-\beta}*\left[\frac{1-\left[\left(1+\frac{\lambda}{p(\alpha+\beta)}\right)e^{-i\theta}\left(1+\sqrt{1+e^{i\theta}}\right)+2\right]\xi+\left[e^{-i\theta}\left(1+\sqrt{1+e^{i\theta}}\right)+1\right]\xi^{2}}{(1-\xi)^{2}}\right]\neq0,$$

that is (18).

Reversely, let $\chi \in \mathcal{A}_p$ satisfy the condition (18). Like it was previously shown, the assumption (18) is equivalent to (20), that is,

$$\left(1 - \frac{\alpha - \beta}{\alpha + \beta}\lambda\right) \left[\frac{\chi(\xi)}{\xi^p}\right]^{\alpha - \beta} + \frac{\alpha - \beta}{\alpha + \beta}\lambda \frac{\xi\chi'(\xi)}{p\chi(\xi)} \left[\frac{\chi(\xi)}{\xi^p}\right]^{\alpha - \beta} \neq \sqrt{1 + e^{i\theta}} \quad (\xi \in \mathbb{U}).$$
(22)

Denoting

$$\varphi(\xi) = \left(1 - \frac{\alpha - \beta}{\alpha + \beta}\lambda\right) \left[\frac{\chi\left(\xi\right)}{\xi^{p}}\right]^{\alpha - \beta} + \frac{\alpha - \beta}{\alpha + \beta}\lambda \frac{\xi\chi'\left(\xi\right)}{p\chi\left(\xi\right)} \left[\frac{\chi\left(\xi\right)}{\xi^{p}}\right]^{\alpha - \beta} \quad \text{and} \quad \psi(\xi) = \sqrt{1 + \xi},$$

the relation (22) could be written as $\varphi(\mathbb{U}) \cap \psi(\partial \mathbb{U}) = \emptyset$. Therefore, the simply connected domain $\varphi(\mathbb{U})$ is included in a connected component of $\mathbb{C} \setminus \psi(\partial \mathbb{U})$. From this fact, using that $\varphi(0) = \psi(0) = 1$ together with the univalence of the function ψ , it follows that $\varphi(\xi) \prec \psi(\xi)$, that is $\chi \in \mathcal{BN}_p(\lambda, \alpha, \beta)$.

Taking $\beta = 0$ in Theorem 1, we get

Corollary 3. $\chi \in \mathcal{B}_p(\lambda, \alpha)$ if and only if

$$\left(\frac{\chi\left(\xi\right)}{\xi^{p}}\right)^{\alpha} * \left(\frac{1 - \left[\left(1 + \frac{\lambda}{p\alpha}\right)e^{-i\theta}\left(1 + \sqrt{1 + e^{i\theta}}\right) + 2\right]\xi + \left[e^{-i\theta}\left(1 + \sqrt{1 + e^{i\theta}}\right) + 1\right]\xi^{2}}{\left(1 - \xi\right)^{2}}\right) \neq 0.$$

Taking $\alpha = 0$ in Theorem 1, we get

Corollary 4. $\chi \in \mathcal{N}_p(\lambda, \beta)$ if and only if

$$\left(\frac{\xi^p}{\chi\left(\xi\right)}\right)^{\beta} * \left(\frac{1 - \left[\left(1 + \frac{\lambda}{p\beta}\right)e^{-i\theta}\left(1 + \sqrt{1 + e^{i\theta}}\right) + 2\right]\xi + \left[e^{-i\theta}\left(1 + \sqrt{1 + e^{i\theta}}\right) + 1\right]\xi^2}{\left(1 - \xi\right)^2}\right) \neq 0.$$

Theorem 4. If $\chi(\xi)$ given by (1) belongs to $\mathcal{BN}_p(\lambda, \alpha, \beta)$, then

$$|\varrho_{p+1}| \le \frac{|\alpha + \beta| p}{2 |\alpha - \beta| |p(\alpha + \beta) + \lambda|}.$$
 (23)

Proof. Combining (1) and (3), we obtain

$$\left(1 - \frac{\alpha - \beta}{\alpha + \beta}\lambda\right) \left[\frac{\chi(\xi)}{\xi^p}\right]^{\alpha - \beta} + \frac{\alpha - \beta}{\alpha + \beta}\lambda \frac{\xi \chi'(\xi)}{p\chi(\xi)} \left[\frac{\chi(\xi)}{\xi^p}\right]^{\alpha - \beta}$$

$$= 1 + \frac{(\alpha - \beta)\left[p(\alpha + \beta) + \lambda\right]}{p(\alpha + \beta)}\varrho_{p+1}\xi + \dots \prec \sqrt{1 + \xi} = 1 + \frac{1}{2}\xi - \frac{1}{8}\xi^2 + \dots \tag{24}$$

An application of Lemma 3 to (24) yields

$$\left| \frac{(\alpha - \beta) \left[p \left(\alpha + \beta \right) + \lambda \right]}{p \left(\alpha + \beta \right)} \varrho_{p+1} \right| < \frac{1}{2}. \tag{25}$$

Thus, from (25), we easily obtain (23) asserted by Theorem 4.

Taking $\beta = 0$ in Theorem 1, we get

Corollary 5. If $\chi(\xi)$ given by (1) belongs to $\mathcal{B}_p(\lambda, \alpha)$, then

$$|\varrho_{p+1}| \le \frac{p}{2|p\alpha + \lambda|}.$$

Taking $\alpha = 0$ in Theorem 1, we get

Corollary 6. If $\chi(\xi)$ given by (1) belongs to $\mathcal{N}_p(\lambda,\beta)$, then

$$|\varrho_{p+1}| \le \frac{p}{2|p\beta + \lambda|}.$$

3. Fekete-Szegő Problem for $\mathcal{BN}_p(\lambda,\alpha,\beta)$

In this section we study the Fekete–Szegö inequalities for the class $\mathcal{BN}_p(\lambda, \alpha, \beta)$. It is worth noting that many authors have been investigated the Fekete-Szegö problem for several subclasses of analytic functions (see, for instance [27–32]).

Theorem 5. If χ given by (1) belongs to the class $\mathcal{BN}_p(\lambda, \alpha, \beta)$, then

$$\left| \varrho_{p+2} - \mu a_{p+1}^2 \right| \le \frac{p|\alpha+\beta|}{2|\alpha-\beta||p(\alpha+\beta)+2\lambda|} \max \left\{ 1; \frac{1}{4} \left| 1 + \frac{p(\alpha+\beta)[p(\alpha+\beta)+2\lambda](\alpha-\beta+2\mu-1)}{(\alpha-\beta)[p(\alpha+\beta)+\lambda]^2} \right| \right\}. \quad (26)$$

Proof. If $\chi \in \mathcal{BN}_p(\lambda, \alpha, \beta)$, then there is a Schwarz function ω in \mathbb{U} such that

$$\left(1 - \frac{\alpha - \beta}{\alpha + \beta}\lambda\right) \left[\frac{\chi(\xi)}{\xi^p}\right]^{\alpha - \beta} + \frac{\alpha - \beta}{\alpha + \beta}\lambda \frac{\xi\chi'(\xi)}{p\chi(\xi)} \left[\frac{\chi(\xi)}{\xi^p}\right]^{\alpha - \beta} = \sqrt{1 + \omega(\xi)},$$
(27)

Define the function $g(\xi)$ by

$$g(\xi) = \frac{1 + \omega(\xi)}{1 - \omega(\xi)} = 1 + c_1 \xi + c_2 \xi^2 + \dots$$
 (28)

Since $\omega(\xi)$ is a Schwarz function, we see that $g \in \mathcal{P}$ with g(0) = 1. Therefore,

$$\sqrt{1+\omega(\xi)} = \sqrt{\frac{2g(\xi)}{g(\xi)+1}} = 1 + \frac{1}{4}c_1\xi + \left(\frac{1}{4}c_2 - \frac{5}{32}c_1^2\right)\xi^2 + \dots$$
 (29)

Now by substituting (29) in (27), we have

$$\left(1 - \frac{\alpha - \beta}{\alpha + \beta}\lambda\right) \left[\frac{\chi\left(\xi\right)}{\xi^{p}}\right]^{\alpha - \beta} + \frac{\alpha - \beta}{\alpha + \beta}\lambda \frac{\xi\chi'\left(\xi\right)}{p\chi\left(\xi\right)} \left[\frac{\chi\left(\xi\right)}{\xi^{p}}\right]^{\alpha - \beta} = 1 + \frac{c_{1}}{4}\xi + \left(\frac{c_{2}}{4} - \frac{5c_{1}^{2}}{32}\right)\xi^{2} + \dots$$

Equating the coefficients of ξ and ξ^2 we obtain

$$\varrho_{p+1} = \frac{p(\alpha+\beta)}{4(\alpha-\beta)\left[p(\alpha+\beta)+\lambda\right]}c_1.$$

$$\varrho_{p+2} = \frac{p(\alpha+\beta)}{4(\alpha-\beta)\left[p(\alpha+\beta)+2\lambda\right]}\left[c_2 - \frac{1}{8}\left(5 + \frac{p(\alpha+\beta)(\alpha-\beta-1)\left[p(\alpha+\beta)+2\lambda\right]}{(\alpha-\beta)\left[p(\alpha+\beta)+\lambda\right]^2}\right)c_1^2\right].$$

Therefore,

$$\varrho_{p+2} - \mu \varrho_{p+1}^2 = \frac{p(\alpha + \beta)}{4(\alpha - \beta)\left[p(\alpha + \beta) + 2\lambda\right]} \left\{c_2 - vc_1^2\right\},\tag{30}$$

where

$$\nu = \frac{1}{8} \left[5 + \frac{p(\alpha + \beta) \left[p(\alpha + \beta) + 2\lambda \right] (\alpha - \beta + 2\mu - 1)}{(\alpha - \beta) \left[p(\alpha + \beta) + \lambda \right]^2} \right]. \tag{31}$$

Our result now follows by an application of Lemma 4. This completes the proof of Theorem 5.

Putting $\beta = 0$ in Theorem 5, we obtain the following.

Corollary 7. If χ given by (1) belongs to the class $\mathcal{B}_p(\lambda, \alpha)$, then

$$\left| \varrho_{p+2} - \mu \varrho_{p+1}^2 \right| \le \frac{p}{2 \left| p\alpha + 2\lambda \right|} \max \left\{ 1; \frac{1}{4} \left| 1 + \frac{p \left[p\alpha + 2\lambda \right] (\alpha + 2\mu - 1)}{\left(p\alpha + \lambda \right)^2} \right| \right\}.$$

Putting $\alpha = 0$ in Theorem 5, we obtain the following.

Corollary 8. If χ given by (1) belongs to the class $\mathcal{N}_p(\lambda,\beta)$, then

$$\left| \varrho_{p+2} - \mu \varrho_{p+1}^2 \right| \le \frac{p}{2 \left| p\beta + 2\lambda \right|} \max \left\{ 1; \frac{1}{4} \left| 1 + \frac{p \left(p\beta + 2\lambda \right) \left(\beta - 2\mu + 1 \right)}{\left(p\beta + \lambda \right)^2} \right| \right\}.$$

Theorem 6. Let

$$\sigma_{1} = \frac{1}{2} \left(1 - \alpha + \beta - \frac{5(\alpha - \beta) [p(\alpha + \beta) + \lambda]^{2}}{p(\alpha + \beta) [p(\alpha + \beta) + 2\lambda]} \right),$$

$$\sigma_{2} = \frac{1}{2} \left(1 - \alpha + \beta + \frac{3(\alpha - \beta) [p(\alpha + \beta) + \lambda]^{2}}{p(\alpha + \beta) [p(\alpha + \beta) + 2\lambda]} \right),$$

$$\sigma_{3} = \frac{1}{2} \left(1 - \alpha + \beta - \frac{(\alpha - \beta) [p(\alpha + \beta) + \lambda]^{2}}{p(\alpha + \beta) [p(\alpha + \beta) + 2\lambda]} \right).$$

If χ given by (1) belongs to the class $\mathcal{BN}_p(\lambda, \alpha, \beta)$, then

$$\left|\varrho_{p+2} - \mu\varrho_{p+1}^{2}\right| \leq \begin{cases} \frac{p(\alpha+\beta)}{8(\alpha-\beta)} \left[-\frac{1}{[p(\alpha+\beta)+2\lambda]} - \frac{p(\alpha+\beta)(\alpha-\beta+2\mu-1)}{(\alpha-\beta)[p(\alpha+\beta)+\lambda]^{2}} \right] & (\mu \leq \sigma_{1}) \\ \frac{p(\alpha+\beta)}{2(\alpha-\beta)[p(\alpha+\beta)+2\lambda]} & (\sigma_{1} \leq \mu \leq \sigma_{2}) \\ \frac{p(\alpha+\beta)}{8(\alpha-\beta)} \left[\frac{1}{[p(\alpha+\beta)+2\lambda]} + \frac{p(\alpha+\beta)(\alpha-\beta+2\mu-1)}{(\alpha-\beta)[p(\alpha+\beta)+\lambda]^{2}} \right] & (\mu \geq \sigma_{2}) \end{cases}$$

Further, if $\sigma_1 \leq \mu \leq \sigma_3$, then

$$\left|\varrho_{p+2} - \mu\varrho_{p+1}^2\right| + \frac{1}{2} \left[\frac{5(\alpha-\beta)[p(\alpha+\beta)+\lambda]^2}{p(\alpha+\beta)[p(\alpha+\beta)+2\lambda]} + \alpha - \beta + 2\mu - 1 \right] \left|\varrho_{p+1}\right|^2 \le \frac{p(\alpha+\beta)}{2(\alpha-\beta)[p(\alpha+\beta)+2\lambda]}.$$

If $\sigma_3 < \mu < \sigma_2$, then

$$\left|\varrho_{p+2}-\mu\varrho_{p+1}^2\right|+\frac{1}{2}\left[\frac{3(\alpha-\beta)[p(\alpha+\beta)+\lambda]^2}{p(\alpha+\beta)[p(\alpha+\beta)+2\lambda]}-\alpha+\beta-2\mu+1\right]\left|\varrho_{p+1}\right|^2\leq \frac{p(\alpha+\beta)}{2(\alpha-\beta)[p(\alpha+\beta)+2\lambda]}.$$

Proof. Applying Lemma 5 to (30) and (31), we can get our results of Theorem 6. Putting $\beta = 0$ in Theorem 6, we obtain the following.

Corollary 9. Let

$$\sigma_{4} = \frac{1}{2} \left(1 - \alpha - \frac{5(p\alpha + \lambda)^{2}}{p(p\alpha + 2\lambda)} \right), \sigma_{5} = \frac{1}{2} \left(1 - \alpha + \frac{3(p\alpha + \lambda)^{2}}{p(p\alpha + 2\lambda)} \right),$$

$$\sigma_{6} = \frac{1}{2} \left(1 - \alpha - \frac{(p\alpha + \lambda)^{2}}{p(p\alpha + 2\lambda)} \right).$$

If χ given by (1) belongs to the class $\mathcal{B}_p(\lambda, \alpha)$, then

$$\left|\varrho_{p+2} - \mu\varrho_{p+1}^{2}\right| \leq \begin{cases} -\frac{p}{8} \left[\frac{1}{p\alpha+2\lambda} + \frac{p(\alpha+2\mu-1)}{(p\alpha+\lambda)^{2}}\right] & (\mu \leq \sigma_{4}) \\ \frac{p}{2(p\alpha+2\lambda)} & (\sigma_{4} \leq \mu \leq \sigma_{5}) \\ \frac{p}{8} \left[\frac{1}{p\alpha+2\lambda} + \frac{p(\alpha+2\mu-1)}{(p\alpha+\lambda)^{2}}\right] & (\mu \geq \sigma_{5}) \end{cases}$$

Further, if $\sigma_4 \leq \mu \leq \sigma_6$, then

$$\left|\varrho_{p+2} - \mu\varrho_{p+1}^2\right| + \frac{1}{2} \left[\frac{5(p\alpha + \lambda)^2}{p(p\alpha + 2\lambda)} + \alpha + 2\mu - 1 \right] \left|\varrho_{p+1}\right|^2 \le \frac{p}{2(p\alpha + 2\lambda)}.$$

If $\sigma_6 \le \mu \le \sigma_5$, then

$$\left|\varrho_{p+2} - \mu\varrho_{p+1}^{2}\right| + \frac{1}{2} \left[\frac{3(p\alpha + \lambda)^{2}}{p(p\alpha + 2\lambda)} - \alpha - 2\mu + 1 \right] \left|\varrho_{p+1}\right|^{2} \le \frac{p}{2(p\alpha + 2\lambda)}.$$

Putting $\alpha = 0$ in Theorem 6, we obtain the following result.

Corollary 10. Let

$$\sigma_{7} = \frac{1}{2} \left(1 + \beta + \frac{5(p\beta + \lambda)^{2}}{p(p\beta + 2\lambda)} \right), \sigma_{8} = \frac{1}{2} \left(1 + \beta - \frac{3(p\beta + \lambda)^{2}}{p(p\beta + 2\lambda)} \right),$$

$$\sigma_{9} = \frac{1}{2} \left(1 + \beta + \frac{(p\beta + \lambda)^{2}}{p(p\beta + 2\lambda)} \right).$$

If χ given by (1) belongs to the class $\mathcal{B}_p(\lambda,\beta)$, then

$$\left| \varrho_{p+2} - \mu \varrho_{p+1}^{2} \right| \leq \begin{cases} \frac{p}{8} \left[\frac{1}{p\beta + 2\lambda} + \frac{p(\beta - 2\mu + 1)}{(p\beta + \lambda)^{2}} \right] & (\mu \leq \sigma_{7}) \\ -\frac{p}{2(p\beta + 2\lambda)} & (\sigma_{7} \leq \mu \leq \sigma_{8}) \\ -\frac{p}{8} \left[\frac{1}{p\beta + 2\lambda} + \frac{p(\beta - 2\mu + 1)}{(p\beta + \lambda)^{2}} \right] & (\mu \geq \sigma_{8}) \end{cases}$$

Further, if $\sigma_7 \le \mu \le \sigma_9$, then

$$\left| \varrho_{p+2} - \mu \varrho_{p+1}^2 \right| + \frac{1}{2} \left[-\frac{5(p\beta + \lambda)^2}{p(p\beta + 2\lambda)} - \beta + 2\mu - 1 \right] \left| \varrho_{p+1} \right|^2 \le -\frac{p}{2(p\beta + 2\lambda)}.$$

If $\sigma_9 < \mu < \sigma_8$, then

$$\left| \varrho_{p+2} - \mu \varrho_{p+1}^2 \right| + \frac{1}{2} \left[-\frac{3(p\beta + \lambda)^2}{p(p\beta + 2\lambda)} + \beta - 2\mu + 1 \right] \left| \varrho_{p+1} \right|^2 \le -\frac{p}{2(p\beta + 2\lambda)}.$$

4. Conclusion

In this presentation, we have defined the subclass of multivalently Bazilevič and Non-Bazilevič functions that are subordinate to the function of the Bernoulli domain lemniscate $\mathcal{BN}_p(\lambda,\alpha,\beta)$. We have investigated some interesting properties such as subordination results, convolution properties, coefficients estimate and Fekete-Szegö inequalities for functions belonging to this subclass. This paper provides significant contributions to the study of some geometric properties of the Bazilevič and Non-Bazilevič functions. It also highlights the potential for future research to explore important geometric properties for similar subclasses of analytic functions involving linear operators.

Funding

This research work was funded by Umm Al-Qura University, Saudi Arabia under grant number: 25UQU4350561GSSR02.

Acknowledgements

The authors extend their appreciation to Umm Al-Qura University, Saudi Arabia for funding this research work through grant number: 25UQU4350561GSSR02.

References

- [1] T. Bulboaca. Differential Subordinations and Superordinations, Recent Results. House of Scientific Book Publ., Cluj-Napoca, 2005.
- [2] S.S. Miller and P.T. Mocanu. Differential Subordination: Theory and Applications, in: Series in Pure and Applied Mathematics. Marcel Dekker, New York, 2000.
- [3] J. Sokól and J. Stankiewicz. Radius of convexity of some subclasses of strongly starlike functions. Folia Scient. Univ. Tech. Resoviensis, Mat., 19:101–105, 1996.
- [4] R.M. Ali, N.E. Chu, V. Ravichandran, and S.S. Kumar. First order differential subordination for functions associated with the lemniscate of bernoulli. *Taiwan. J. Math.*, 16:1017–1026, 2012.
- [5] S.A. Halim and R. Omar. Applications of certain functions associated with lemniscate bernoulli. *J. Indones. Math. Soc.*, 18:93–99, 2012.
- [6] J. Sokól. Coefficient estimates in a class of strongly starlike functions. *Kyungpook Math. J.*, 49:349–353, 2009.
- [7] J. Sokól. Radius problem in the class sl^* . Appl. Math. Comput., 214:569–573, 2009.
- [8] T.M. Seoudy and A.E. Shammaky. On certain class of bazilevič functions associated with the lemniscate of bernoulli. *J. Funct. SpacesTrans. Amer. Math. Soc.*, Art. ID 6622230:1–8, 2020.
- [9] D.J. Hallenbeck and S. Ruschewyh. Subordination by convex functions. *Proc. Amer. Math. Soc.*, 52:191–195, 1975.

- [10] E.T. Whittaker and G.N. Watson. A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions. Cambridge University Press, Cambridge, 1927.
- [11] W. Rogosinski. On the coefficients of subordinate functions. *Proc. London Math. Soc. (Ser. 2)*, 48:48–82, 1943.
- [12] W. Ma and D.A. Minda. Unified treatment of some special classes of univalent functions. In Z. Li, F. Ren, L. Yang, and S. Zhang, editors, *In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992.*, pages 157–169, Cambridge, MA, USA, 1994. Int. Press.
- [13] M.K. Aouf, T. Bulboaca, and T.M. Seoudy. Subclasses of multivalent non-bazilevic functions defined with higher order derivatives. *Bull. Transilvania University of Brasov, Series III*, 13:411–422, 2020.
- [14] M.K. Aouf and T.M. Seoudy. Some properties of a certain subclass of multivalent analytic functions involving the liu-owa operator. Comput. Math. Appl., 60:1525– 1535, 2010.
- [15] M.K. Aouf and T.M. Seoudy. On certain class of multivalent analytic functions defined by differential subordination. *Rend. Circ. Mat. Palermo*, 60:191–201, 2011.
- [16] M.K. Aouf and T.M. Seoudy. On certain subclass of multivalent functions defined by the liu—owa operator. *Bull. Belg. Math. Soc. Simon Stevin*, 18:941–955, 2011.
- [17] M.K. Aouf and T.M. Seoudy. Some properties of certain subclasses of p-valent bazile-vic functions associated with the generalized operator. *Appl. Math. Lett.*, 24:1953–1958, 2011.
- [18] M.K. Aouf and T.M. Seoudy. Certain class of bi–bazilevic functions with bounded boundary rotation involving salagean operator. *Constructive Math. Anal.*, 3:139–149, 2020.
- [19] N.L. Sharma and T. Bulboacă. Logarithmic coefficient bounds for the class of bazilevič functions. *Anal.Math.Phys.*, 14:52, 2024.
- [20] P. Sharma, S. Sivasubramanian, and N.E. Cho. Initial coefficient bounds for certain new subclasses of bi-bazilevič functions and exponentially bi-convex functions with bounded boundary rotation. *Axioms*, 13:25, 2024.
- [21] H.M. Srivastava, S. Khan, S.N. Malik, F. Tchier, A. Saliu, and Q. Xin. Faber polynomial coefficient inequalities for bi-bazilevič functions associated with the fibonaccinumber series and the square-root functions. J. Inequal. Appl., 2024:16, 2024.
- [22] A.K. Wanas, S.A. Sehen, and A.O. Pall-Szabo. Toeplitz matrices for a class of bazile-vic functions and the λ -pseudo-starlike functions. *Axioms*, 13:521, 2024.
- [23] S.D. Bernardi. Convex and starlike univalent functions. *Trans. Amer. Math. Soc.*, 135:429–446, 1969.
- [24] J.H. Choi, M. Saigo, and H.M. Srivastava. Some inclusion properties of a certain family of integral operators. *J. Math. Anal. Appl.*, 276:432–445, 2002.
- [25] R.J. Libera. Some radius of convexity problems. Duke Math. J., 31:143–158, 1964.
- [26] H. Saitoh. On certain class of mulivalent functions. Math. Japon, 37:871–875, 1992.
- [27] V. Ravichandran, A. Gangadharan, and M. Darus. Fekete-szegő inequality for certain

- class of bazilevic functions. Far East J. Math. Sci., 15:171-180, 2004.
- [28] M. Raza and S.N. Malik. Upper bound of third hankel determinant for a class of analytic functions related with lemniscate of bernoulli. *J. Inequal. Appl.*, 412:1–8, 2013.
- [29] T.M. Seoudy. Convolution results and fekete-szegö inequalities for certain classes of symmetric q-starlike and symmetric q- convex functions. J. Math., Art. ID 8203921:1-11, 2022.
- [30] T.M. Seoudy. Some properties for certain subclasses of spiral-like and robertson analytic functions. Eur. J. Pure Appl. Math., 17:3336–3355, 2024.
- [31] T.M. Seoudy and M.K. Aouf. Coefficient estimates of new classes of q-starlike and q-convex functions of complex order. J. Math. Inequal., 10:135–145, 2016.
- [32] T.N. Shanmugam, S. Sivassubramanian, and M. Darus. Fekete–szegő inequality for certain class of bazilevic functions. *Int. Math.*, 34:283–290, 2006.