EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 2, Article Number 5932 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Optimization

Hasan Hazim Jameel¹, Alaa Luqman Ibrahim^{2,*}, Neven E. Zaya³

- ¹ Department of Mathematics, College of Basic Education, University of Duhok, Kurdistan Region-Iraq
- ² Department of Mathematics, College of Science, University of Zakho, Kurdistan Region-Iraq
- ³ Management Information System, Administrative Technical Institute, Duhok Polytechnic University, Kurdistan Region-Iraq

Abstract. To develop a conjugate gradient method that is both theoretically robust and practically effective for solving unconstrained optimization problems, this paper introduces a novel conjugate gradient method incorporating Perry's parameter along with the gradient-difference vector, as suggested by Powell, to enhance performance. The proposed method satisfies the descent condition, and its global convergence is established under standard assumptions. To assess its effectiveness, the method was tested on a diverse set of unconstrained optimization problems and compared against well-known conjugate gradient methods. Numerical experiments indicate that the proposed method outperforms classical approaches in terms of iteration count, function evaluations, and computational time. The results confirm the robustness and efficiency of the proposed method, making it a competitive choice for large-scale optimization problems.

2020 Mathematics Subject Classifications: 49-XX, 93-XX, 90Bxx, 90-XX.

Key Words and Phrases: Unconstrained Optimization, Conjugate Gradient Methods, Global Convergence, Numerical Performance.

1. Introduction

Optimization involves the minimization or maximization of an objective function. A key subset of optimization is unconstrained optimization, which focuses on minimizing a function of real variables without constraints. The general unconstrained optimization problem can be formulated as:

$$\min\{f(x), x \in \mathbb{R}^n\},\tag{1}$$

Copyright: © 2025 The Author(s). (CC BY-NC 4.0)

DOI: https://doi.org/10.29020/nybg.ejpam.v18i2.5932

Email addresses: hasan.jameel@uod.ac (H. H. Jameel),

alaa.ibrahim@uoz.edu.krd (A. L. Ibrahim), neven.zaya@dpu.edu.krd (N. E. Zaya)

^{*}Corresponding author.

where f is a smooth function with an available gradient [1]. Several numerical methods have been developed to solve such problems, including the Steepest Descent (SD) method, Newton's method, Conjugate Gradient (CG) methods, and Quasi-Newton (QN) methods. This paper focuses on CG methods due to their efficiency and scalability, particularly for large-scale optimization problems. CG algorithms are widely applied in various fields. In engineering, they are used for solving problems in structural design, fluid dynamics, and control systems [2]. In data science and machine learning, CG methods play a crucial role in optimizing loss functions for regression, classification, and neural network training [3–8]. Additionally, in signal and image processing, CG methods are used for tasks such as image reconstruction, denoising, and signal recovery [9]. Scientific computing also heavily relies on CG algorithms, particularly for solving large sparse linear systems in finite element analysis and computational physics.

A key advantage of CG methods is their low memory requirement [10], which makes them suitable for high-dimensional problems. Furthermore, they exhibit rapid convergence for specific classes of functions. The foundation of CG methods was laid in 1952 by Hestenes and Stiefel [11], who introduced the CG method for unconstrained linear optimization. Later, in 1964, Fletcher and Reeves extended the CG method to solve nonlinear unconstrained minimization problems [12].

In this paper, we propose a new conjugate gradient method that enhances computational efficiency while ensuring the satisfaction of the descent condition, and convergence properties. Our approach introduces a novel CG parameter that optimizes search directions and improves convergence rates, making it more effective in solving large-scale optimization problems.

CG methods generate a sequence $\{x_k\}$ defined as:

$$x_{k+1} = x_k + \alpha_k d_k, \tag{2}$$

where x_0 is a randomly chosen initial starting point. The step size α_k is determined using a one-dimensional search known as a line search [13]. Line searches can be exact or inexact, with the latter being preferred due to computational efficiency [14, 15]. In our research, we employ the strong Wolfe line search, which satisfies the following conditions [16, 17]:

$$f(x_k + \alpha_k d_k) \le f(x_k) + \delta \alpha_k g_k^T d_k, \tag{3}$$

$$g(x_k + \alpha_k d_k)^T d_k \ge \mu g_k^T d_k, \tag{4}$$

where $0 < \delta < \mu < 1$. The strong Wolfe-Powell (SWP) condition further includes:

$$|g(x_k + \alpha_k d_k)^T d_k| \le \mu |g_k^T d_k|. \tag{5}$$

The search direction d_k is determined as:

$$d_{k+1} = \begin{cases} -g_1, & k = 0, \\ -g_{k+1} + \beta_k d_k, & k \ge 1. \end{cases}$$
 (6)

where $g_k = \nabla f(x_k)$ and β_k is a CG parameter that varies depending on the CG method used. The search direction must satisfy the descent condition:

$$g_{k+1}^T d_{k+1} \le 0. (7)$$

Various CG methods arise from different choices of β_k , including Hestenes-Stiefel (HS) [11], Fletcher-Reeves (FR) [12], Polak-Ribière-Polyak (PRP) [18, 19], Liu-Storey (LS) [20], Dai-Yuan (DY) [21], and Conjugate-Descent (CD) [22]:

$$\beta_k^{HS} = \frac{g_{k+1}^T y_k}{y_k^T d_k},\tag{8}$$

$$\beta_k^{FR} = \frac{\|g_{k+1}\|^2}{\|g_k\|^2},\tag{9}$$

$$\beta_k^{PRP} = \frac{g_{k+1}^T y_k}{\|g_k\|^2},\tag{10}$$

$$\beta_k^{LS} = \frac{g_{k+1}^T y_k}{-g_k^T d_k},\tag{11}$$

$$\beta_k^{DY} = \frac{\|g_{k+1}\|^2}{y_L^T d_k},\tag{12}$$

$$\beta_k^{CD} = \frac{\|g_{k+1}\|^2}{-g_k^T d_k},\tag{13}$$

where $y_k = g_{k+1} - g_k$ and $\|\cdot\|$ denotes the Euclidean norm in \mathbb{R}^n . In general, the DY and FR methods with inexact line searches demonstrate good convergence performance, though their computational efficiency is inferior to the PRP method. In recent years, many scholars have proposed improved CG methods to balance numerical performance and convergence properties [23]. For more details on the various developments in CG methods, see [24–27].

This paper is structured as follows: Section 2 presents the new conjugate gradient algorithm along with its details. Section 3 establishes the descent condition. Section 4 analyzes the convergence properties of the proposed method. Section 5 demonstrates its efficiency through numerical comparisons with standard methods using test problems from the CUTE collection and unconstrained optimization problems. Finally, Section 6 concludes the paper.

2. Proposed Method and Algorithm

In this section, we introduce a newly proposed CG method for solving nonlinear optimization problems. This method is based on the Perry parameter [28]:

$$\beta_k^{Perry} = \frac{g_{k+1}^T (y_k - v_k)}{d_k^T y_k},\tag{14}$$

and employs a gradient-difference vector as suggested by Powell [29]:

$$\bar{y}_k = y_k + (1 - \theta)(G_k s_k - y_k),$$
 (15)

where $0 < \theta < 1$.

Additionally, to incorporate second-order information without computing the Hessian explicitly, Andrei [30] proposed a nonlinear CG algorithm where the Hessian-vector product is approximated using finite differences:

$$y_k^* = y_k + (1 - \theta) \left(\frac{y_k}{\sigma} - y_k \right), \tag{16}$$

where $\sigma = \frac{2\sqrt{\epsilon_m}(1+||x_{k+1}||)}{||v_k||}$, and ϵ_m is the machine precision. Now, let us define the updated vectors as follows:

$$y_k^* = \frac{y_k}{\sigma} - \frac{\theta y_k}{\sigma} + \theta y_k, \tag{17}$$

and for the y_k vector:

$$y_k^* = \left(\frac{1-\theta}{\sigma} + \theta\right) y_k. \tag{18}$$

By substituting y_k^* into the Perry formula, we obtain the new expression for the conjugate gradient parameter:

$$\beta_k^{new} = \frac{g_{k+1}^T (y_k^* - v_k)}{d_k^T y_k^*} = \frac{g_{k+1}^T y_k^* - g_{k+1}^T v_k}{d_k^T y_k^*}.$$
 (19)

After performing some algebraic manipulations, we derive the final form of β_k^{new} :

$$\beta_k^{new} = \frac{g_{k+1}^T y_k}{d_L^T y_k} - \frac{\sigma}{(1 - \theta + \sigma \theta)} \cdot \frac{g_{k+1}^T v_k}{d_L^T y_k},\tag{20}$$

where $\sigma = \frac{2\sqrt{\epsilon_m}(1+||x_{k+1}||)}{||v_k||}$, and $0 < \theta < 1$. The newly developed conjugate gradient methods aim to improve the efficiency and convergence characteristics of traditional CG approaches, particularly for high-dimensional optimization problems.

Note: When $\theta = 1$, the expression in equation (20) reduces to the traditional Perry formula, meaning we revert to the original conjugate gradient method that does not use finite differences or second-order approximations.

Algorithm 1 New Conjugate Gradient Method for Unconstrained Optimization

- 1: **Initialization** Choose an initial point $x_0 \in \mathbb{R}^n$, parameters $0 < \delta < \mu < 1$, and tolerance $\epsilon > 0$. Set k = 0 and $d_1 = -g_1$.
- 2: **Stopping Condition** If $||g_k|| \le \epsilon$, stop.
- 3: Compute Step Size Compute α_k using the weak Wolfe conditions (Equations (3) and (4)).
- 4: Update Update the point:

$$x_{k+1} = x_k + \alpha_k d_k. \tag{21}$$

5: Compute Direction Compute:

$$d_{k+1} = -g_{k+1} + \beta_k d_k. (22)$$

Choose β_k using Equation (20).

6: Repeat Set k = k + 1 and go to Step 2.

3. Descent Property and Sufficient Descent Condition

In this section, we establish the descent condition for the proposed algorithm.

Theorem 1. If the search direction d_{k+1} is generated by equation (6) with β_k^{New} from equation (20), then the descent condition holds:

$$g_{k+1}^T d_{k+1} \le 0. (23)$$

Proof. Multiplying both sides of equation (6) by g_{k+1}^T and substituting β_k^{New} from equation (20), we obtain:

$$g_{k+1}^T d_{k+1} = -g_{k+1}^T g_{k+1} + \frac{g_{k+1}^T y_k}{d_k^T y_k} g_{k+1}^T d_k - \left(\frac{\sigma}{(1-\theta) + \sigma\theta}\right) \frac{g_{k+1}^T v_k}{d_k^T y_k} g_{k+1}^T d_k. \tag{24}$$

If the search direction is exact, then it satisfies the descent condition:

$$g_{k+1}^T d_{k+1} = -\|g_{k+1}\|^2 \le 0. (25)$$

For an inexact search direction where $g_{k+1}^T d_k \neq 0$, we note that the first two terms of equation (24) satisfy:

$$-g_{k+1}^T g_{k+1} + \frac{g_{k+1}^T y_k}{d_k^T y_k} g_{k+1}^T d_k \le 0, \tag{26}$$

which follows from the HS method's descent property from the inequality:

$$g_{k+1}^T y_k \le ||g_{k+1}|| ||y_k||.$$

$$-\|g_{k+1}\|^2 + \frac{g_{k+1}^T y_k}{d_k^T y_k} d_k^T y_k \le -\|g_{k+1}\|^2 + \|g_{k+1}\| \|y_k\|.$$

$$g_{k+1}^T d_{k+1} \le -\left(1 - \frac{\|y_k\|}{\|g_{k+1}\|}\right) \|g_{k+1}\|.$$

Since $0 \le \frac{\|y_k\|}{\|g_{k+1}\|} \le 1$, we have:

$$-\|g_{k+1}\|^2 + \frac{g_{k+1}^T y_k}{d_k^T y_k} d_k^T y_k \le 0.$$

It remains to prove that the third term of (24) is less than or equal to zero.

Since $\sigma = \frac{2\sqrt{\epsilon_m}(1+||x_{k+1}||)}{||v_k||} \ge 0$ and $0 < \theta < 1$. Thus, we conclude that:

$$\frac{\sigma}{(1-\theta)+\sigma\theta} \ge 0. \tag{27}$$

Therefore, equation (24) can be rewritten as:

$$g_{k+1}^T d_{k+1} \le -\left(\frac{\sigma \alpha_k}{(1-\theta) + \sigma \theta}\right) \frac{(g_{k+1}^T d_k)^2}{d_k^T y_k}.$$
 (28)

Since α_k , $d_k^T y_k$, and $(g_{k+1}^T d_k)^2$ are non-negative, we obtain:

$$g_{k+1}^T d_{k+1} \le 0. (29)$$

This completes the proof.

4. Convergence Condition for the New Method

This section discusses the convergence properties of the proposed algorithm. We introduce the following mild assumptions in order to achieve global convergence.

Assumption 1:

- The level set $S = \{x \mid f(x) \le f(x_0)\}$ is bounded.
- In some neighborhood N of δ , f is continuously differentiable, and its gradient is Lipschitz continuous with a Lipschitz constant L > 0. That is,

$$||g(x) - g(y)|| \le L||x - y|| \quad \forall x, y \in S$$
 (30)

From these assumptions, it follows that there exists a positive constant b such that

$$||g(x)|| \le b \quad \forall x \in S. \tag{31}$$

Based on these assumptions, the global convergence of the new algorithm can be established as follows:

Lemma 1. [31] Let assumptions 1 hold. Consider methods (1) and (2), where d_{k+1} is a descent direction, and α_k satisfies the standard Wolfe line search. If

$$\sum_{k>1} \frac{1}{\|d_{k+1}\|^2} = \infty,\tag{32}$$

then

$$\lim_{k \to \infty} \inf \|g_{k+1}\| = 0. \tag{33}$$

Based on the previous discussion, we now establish the global convergence of the new algorithm:

Theorem 2. If assumptions 1 is satisfied, and the sequences $\{x_k\}, \{d_k\}, \{g_k\}, \{\alpha_k\}$ are generated by Algorithm 1, then it holds that

$$\lim_{k \to \infty} \inf \|g_{k+1}\| = 0. \tag{34}$$

Proof. From equations (2) and (20), we have

$$||d_{k+1}|| \le ||g_{k+1}|| + \left| \frac{g_{k+1}^T y_k}{d_k^T y_k} - \frac{\sigma}{(1-\theta) + \sigma\theta} \frac{g_{k+1}^T v_k}{d_k^T y_k} \right| ||d_k||.$$
 (35)

Simplifying this further, we obtain

$$||d_{k+1}|| \le ||g_{k+1}|| + \left(\left| \frac{g_{k+1}^T y_k}{d_k^T y_k} \right| + \frac{\sigma}{(1-\theta) + \sigma\theta} \left| \frac{g_{k+1}^T v_k}{d_k^T y_k} \right| \right) ||d_k||.$$
 (36)

Since $g_{k+1}^T v_k \leq \alpha_k d_k^T y_k$, and using equation (28) along with the Lipschitz condition $||y_k|| \leq L||v_k||$, we also have $g_{k+1}^T y_k \leq L g_{k+1}^T d_k$, where L > 0. Therefore,

$$||d_{k+1}|| \le M + \left(L + \frac{\sigma\alpha_k}{(1-\theta) + \sigma\theta}\right) ||d_k||. \tag{37}$$

Since $||v_k|| = ||x - x_k||$ and $D = \max\{||x - x_k|| \mid \forall x, x_k \in \mathbb{R}\}$, equation (37) becomes

$$||d_{k+1}|| \le M + \left(L + \frac{\sigma\alpha_k}{(1-\theta) + \sigma\theta}\right)D = \phi.$$
(38)

Thus, we have

$$\sum_{k\geq 1} \frac{1}{\|d_{k+1}\|^2} \geq \sum_{k\geq 1} \frac{1}{\phi^2} = \infty, \tag{39}$$

which implies

$$\sum_{k>1} \frac{1}{\|d_{k+1}\|^2} = \infty. \tag{40}$$

By Lemma 1, we conclude that

$$\lim_{k \to \infty} \inf \|g_k\| = 0,\tag{41}$$

which completes the proof.

5. Numerical Experiments

In this section, we present the computational performance of a Matlab implementation of the CG algorithm on a set of unconstrained optimization test problems from the CUTE library [32, 33] and other sources of unconstrained problem sets [34]. These problems represent a wide range of problem dimensions, from small-scale cases to large-scale cases.

This comparison is based on several performance metrics: the number of iterations (NI), the total frequency of objective function evaluations (NF), and the CPU time (CPUT) in seconds. The computational performance of the proposed methods is compared with the HS and Perry methods. Each algorithm applied the strong Wolfe line search conditions, with parameters set to $\delta = 0.01$ and $\mu = 0.3$. Iterations were terminated if any of the following conditions were satisfied:

- $||g_k|| < 10^{-6}$, where g_k denotes the Euclidean norm.
- The number of iterations exceeded 2000.
- The computation time surpassed 500 seconds.

However, it is important to note that in some cases, the method failed to converge to a solution. In such instances, the results were marked as NaN to indicate that the algorithm could not produce a valid solution within the given constraints. All codes are written in Matlab, and the computational experiments were performed on a personal laptop running Windows 10, with an Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz (2.81 GHz) and 8.00 GB of RAM.

Table 1 presents the results in terms of the NI, number of NF, and CPUT. Table 2 provides a detailed comparison of the proposed method with the classical HS and Perry algorithms, highlighting the percentage improvements achieved by the new method.

A comprehensive analysis of these results was conducted using the performance profile tool introduced by Dolan and Moré [35]. This tool provides a cumulative distribution function $p_s(\tau)$, enabling a unified and fair comparison of the algorithms across all metrics. The performance profiles for the NI, NF, and CPUT are displayed in Figures 1a, 1b, and 1c, respectively.

					•						·		
Test Function	N		Н	S		Per	ry		Ne	\mathbf{w}	Ne	$ew(\epsilon)$	m=1
lest Function	17	NI	NF	CPUT	NI	NF	CPUT	NI	NF	CPUT	NI	NF	CPUT
'cosine'	500	55	133	0.033755	31	85	0.009681	37	93	0.012033	31	83	0.016694
'cosine'	1000	51	117	0.023636	26	79	0.01372	27	78	0.014678	26	79	0.014862
'cosine'	5000	34	86	0.075612	31	97	0.08309	29	85	0.075538	31	98	0.080135
'cosine'	10000	193	248	0.401999	20	71	0.130764	20	70	0.119581	20	71	0.13456
'dixmaana'	1500	20	66	0.092721	14	58	0.084754	15	56	0.07047	14	58	0.078474
'dixmaana'	3000	24	73	0.22983	18	66	0.21372	14	61	0.17963	18	66	0.218552

Table 1: Numerical results of the proposed method compared with HS and Perry methods

'dixmaana'	15000	21	73	0.90865	19	71	0.827259	15	69	0.909347	19	71	0.938866
'dixmaana'	30000	16	70	1.910883	16	69	1.713247	18	72	2.13092	16	69	1.629957
'dixmaanb'	1500	10	53	0.090052	15	63	0.101415	$\frac{16}{16}$	64	0.07883	15	63	0.072512
'dixmaanb'	3000	13	58	0.030002	19	66	0.191419 0.192647	20	68	0.07603 0.216327	19	66	0.187179
'dixmaanb'	15000	14	65	0.844221	18	69	0.132047	$\frac{20}{19}$	69	0.903137	18	69	0.841963
'dixmaanb'	30000	21	74	1.728917	18	70	1.732772	19	73	1.791905	18	70	1.777622
'dixmaanc'	3000	23	72	0.215691	19	68	0.200968	13	61	0.183541	19	68	0.214485
'dixmaanc'	15000	19	72	0.901367	19	72	0.887783	18	69	0.859604	19	72	0.918407
'dixmaane'	1500	373	422	0.526614	186	298	0.327686	$\frac{15}{154}$	250	0.341556	158	266	0.314185
'dixmaane'	3000	456	506	1.58176	208	361	1.002094	209	360	1.099917	231	378	1.140235
'dixmaane'	15000	744	797	10.1206	343	554	6.977925	$\frac{205}{315}$	531	6.760724	430	682	8.448322
'dixmaane'	24000	999	1054		394	629	12.0246	$\frac{315}{445}$	760	14.85598	451	706	13.26736
'dixmaant'	15000	494	547	7.602266	277	469	5.851253	250	442	5.774908	428	568	7.05392
'dixmaanf'	24000		1418	28.5487	316	491	9.888144	$\frac{250}{254}$	429	8.428413	310	496	9.647825
'dixmaang'	1500	NaN		NaN	167	271	0.382597	$\frac{254}{152}$	268	0.315178	153	245	0.301801
'dixmaang'	3000		NaN	NaN	150	257	0.756952	203	327	0.945721	156	253	0.73545
'dixmaang'	15000	373	427	5.115567	223	358	4.527224	$\frac{265}{265}$	424	5.191343	246	406	4.989654
'dixmaang'	30000			62.24052	122	212	4.965631	168	296	7.095215	139	248	5.888025
'dixmaanh'	1500		NaN	NaN	114	194	0.229408	133	244	0.36558	114	214	0.287352
'dixmaanh'	3000	NaN	NaN	NaN	188	288	0.834066	159	279	0.814102	171	293	0.87006
'dixmaani'	300	935	980	0.385063	407	638	0.207102	352	602	0.219785	402	642	0.211295
'dixmaani'	3000		NaN	NaN	627	986	2.721861	620	1032	2.924245	637	1029	
'dixmaanj'	300		2054	0.65829	114	206	0.066094	109	211	0.065167	101	190	0.059669
'dixmaanj'	9000	433	486	3.704114	203	342	2.639958	198	332	2.611461	198	337	2.594001
'dixmaanj'	15000	500	553	6.82994	202	359	4.599998	183	336	4.205175	192	317	4.068118
'dixmaank'	30000	640	703	17.35754	202	351	8.516839	189	321	7.615254	192	351	8.315288
'dixmaank'	3000	NaN	NaN	NaN	135	231	0.633973	119	223	0.6079	166	275	0.731622
'dixmaank'	30000	640	703	16.85895	202	351	8.482023	189	321	7.709402	192	351	9.147786
'dixon3dq'	10	77	114	0.003808	60	117	0.002931	57	109	0.004382	52	106	0.003532
'dixon3dq'	50	386	423	0.015569	458	733	0.025348	279	468	0.017681	272	445	0.018375
'eg2'	4	32	67	0.007854	22	60	0.001858	26	67	0.002469	22	60	0.002194
'eg2'	10	66		0.004638			0.003596			0.002841			0.005193
'eg2'	50	71		0.007189			0.014942	120	319	0.01263	101		0.008975
'freuroth'	4	218		0.023291	80		0.006497	51		0.005727	68		0.008482
'freuroth'	10	301		0.019306	52		0.005128	71	201	0.009838	52	169	0.006593
'freuroth'	50	290		0.027218	68		0.007977	64	188	0.010353	68	189	0.010171
'freuroth'	100	275		0.026272	65	238	0.01309	63	181	0.010686	60	169	0.009422
'himmelbg'	500	2	9	0.006417	2	9	0.000912	2	9	0.000876	2	9	0.000863
'himmelbg'	1000	2	9	0.00218	2	9	0.001992	2	9	0.001696	2	9	0.001523
'himmelbg'	5000	3	21	0.013903	3	21	0.012772	3	21	0.01348	3	21	0.012958
'himmelbg'	10000	2	11	0.018961	2	11	0.017717	2	11	0.018844	2	11	0.017778

'liarwhd'	500	88	227	0.025006	70	232	0.020955	58	226	0.021396	73	226	0.023267
'liarwhd'	1000	164	389	0.044784	95		0.020365	71	254	0.021330 0.027863	68	254	0.029207 0.029333
'liarwhd'	5000	144	371	0.184553	89	342	0.158965	90	334	0.15707	74	271	0.12338
'liarwhd'	10000	145	472	0.409646	94	347	0.310964	67	257	0.224857	113	404	0.328639
'penalty1'	500	22	119	0.178701	19		0.139866	20	113	0.14773	25	120	0.157519
'penalty1'	1000	21	110	0.404508	21	111	0.400485	$\frac{20}{27}$	117	0.426632	22	106	0.385329
'penalty1'	4000	23	138	6.079985	26	140	6.132693	23	137	6.028452	25	137	6.049148
'penalty1'	10000	18	79	18.10737	18	79	18.12312	17	77	17.72842	17	79	18.25694
'tridia'	500			0.116049	723		0.080065	630	1018	0.07713	612	980	0.081127
'tridia'	1000		NaN	NaN	968		0.162034	995	1671	0.202518	923		0.174033
'tridia'	4000		NaN	NaN	NaN		NaN	1549	2545	1.03679	1992	3174	1.34513
'woods'	500		NaN	NaN	164	335	0.023281	165	389	0.028255	169	374	0.027434
'woods'	1000		NaN	NaN	207	433	0.046658	131	285	0.031851	170	352	0.039766
'woods'	5000		NaN	NaN	237	506	0.243439	124	286	0.151039		546	0.283006
'woods'	10000	515	653	0.626043	176		0.350396	139	345	0.317029		287	0.276205
'bdexp'	500	2	7	0.011732	2	7	0.002199	2	7	0.001729	2	7	0.001717
'bdexp'	1000	2	7	0.003878	2	7	0.004103	2	7	0.004569	2	7	0.003686
'bdexp'	5000	2	8	0.01844	3	19	0.032291	3	19	0.029448	3	19	0.028148
'bdexp'	10000	2	9	0.042049	2	9	0.042081	2	9	0.042312	2	9	0.044224
'exdenschnf'	500	46	103	0.019623	23	75	0.007377	22	78	0.011364	23	75	0.009551
'exdenschnf'	1000	56	113	0.020576	25	80	0.015406	29	84	0.016264	28	85	0.020477
'exdenschnf'	5000	43	102	0.088943	23	83	0.066448	29	90	0.078213	24	84	0.068349
'exdenschnf'	10000	35	98	0.153769	27	90	0.141202	23	96	0.15179	27	90	0.139626
'biggsb1'	4	17	47	0.006482	26	56	0.001628	17	49	0.001473	26	56	0.001858
'biggsb1'	10	36	73	0.003433	35	77	0.003496	46	93	0.005471	35	77	0.003913
'biggsb1'	100	364	396	0.017962	337	521	0.026132	231	369	0.016808	376	630	0.028446
'biggsb1'	500	1692	1726	0.107611	1495	2408	0.148393	1128	1800	0.117736	1437	2255	0.144348
'power1'	4	36	73	0.005881	33	80	0.002146	28	65	0.002168	33	80	0.002568
'power1'	10	95	141	0.005946	76	128	0.003989	81	155	0.006034	74	125	0.005361
'power1'	50	398	458	0.019117	473	778	0.028975	440	708	0.02847	460	698	0.02841
'power1'	100	933	1001	0.040213	999	1637	0.058882	817	1326	0.057257	1030	1649	0.072432
'diagonal1'	4	19	51	0.0055	16	46	0.001338	15	47	0.001364	16	46	0.001381
'diagonal1'	10	31	69	0.003252	22	62	0.003238	28	65	0.002222	22	62	0.002042
'diagonal1'	50	223	276	0.014341	50	105	0.005477	48	100	0.006636	49	104	0.004142
'diagonal1'	100	204	258	0.017461	70	140	0.008903	73	139	0.007528		137	0.006523
'singx'	100	170		0.029554	185	440	0.03583	150	380	0.037192		293	0.021211
'singx'	500	238	502	0.798809	205	474	0.753916	152	365	0.605223	94	240	0.386519
'lin'	10	8	40	0.150211	8	40	0.149828	8	40	0.165787	8	40	0.149329
'lin'	100	10	51	0.362836	10	51	0.348565	10	51	0.352339		51	0.356541
'lin'	500	14	55	0.604231	14	55	0.596905	14	55	0.609829		55	0.620677
'lin'	1000	12	61	37.77361	12	61	37.48226	12	61	37.69565	12	61	37.33486

'osb2'	11	NaN	NaN	NaN	465	797	0.072565	362	636	0.060535	460	772	0.076487
'rosex'	50	127	275	0.017377	64	213	0.011807	41	138	0.009282	54	179	0.011496
'rosex'	100	114	269	0.021787	58	166	0.010547	48	165	0.010602	56	151	0.0093
'trid'	500	154	201	0.271871	30	76	0.094568	31	76	0.097215	30	76	0.107171
'trid'	1000	206	256	0.964584	31	77	0.285915	31	81	0.297505	31	77	0.290174
'trid'	5000	404	457	38.05434	35	86	7.110678	34	84	6.892447	35	86	6.994909
'trid'	10000	579	635	196.8889	76	154	47.65638	76	169	32.48472	71	149	36.09446

Table 2: Comparison of the proposed method with HS and Perry algorithms, showing percentage improvements in NI, NF, and CPUT.

(Comparison with HS										
Metric	HS	New	New $(\epsilon_m = 1)$								
NI	100%	39.30%	43.95%								
\mathbf{NF}	100%	51.86%	55.36%								
CPUT	100%	37.72%	39.03%								
Comparison with Perry											
	ompari	ISOH WI	in Perry								
	Perry	New	New $(\epsilon_m = 1)$								
	Perry		$ \frac{\text{New } (\epsilon_m = 1)}{90.98\%} $								
Metric	Perry 100% 100%	New	New $(\epsilon_m = 1)$ 90.98% 90.00%								

The comparison shown in Table 2 highlights the performance of the proposed method compared to the classical HS and Perry algorithms, focusing on three key metrics (NI, NF and CPUT):

Comparison with HS

- NI: The new method achieves an improvement of 60.70%, and with the specific case $(\epsilon_m = 1)$, the improvement slightly decreases to 56.05%.
- NF: The new method shows a 48.14% improvement, which further increases to 44.64% in the specific case.
- **CPUT**: The time is reduced by 62.28%, and in the specific case, it is reduced by 60.97%.

Comparison with Perry

- NI: The proposed method shows a significant improvement of 18.65%, and in the specific case, it improves further to 9.02%.
- NF: An improvement of 15.70% is observed, which reaches 10.00% in the specific case.

• **CPUT**: The computational time decreases by 6.92%, and in the specific case, it improves even further to 3.68%.

From **Table 2**, it is evident that the proposed method outperforms the HS and Perry algorithms in terms of efficiency, requiring fewer iterations, fewer function evaluations, and less computation time. The specific case ($\epsilon_m = 1$) further enhances the performance, particularly in reducing the computation time. This demonstrates the robustness and efficiency of the new method compared to traditional approaches.

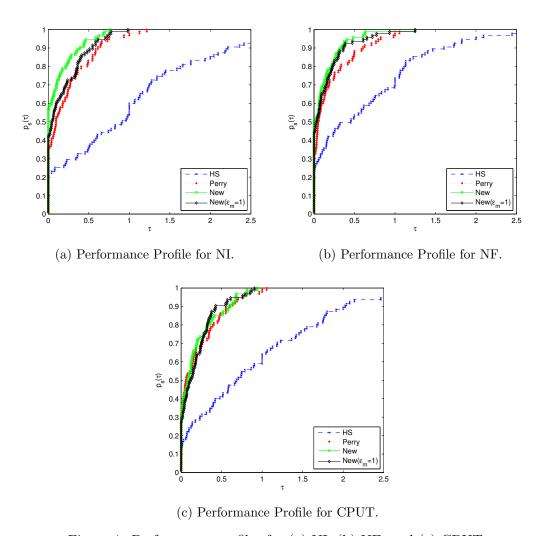


Figure 1: Performance profiles for (a) NI, (b) NF, and (c) CPUT.

6. Conclusion

In this paper, a new method for solving unconstrained optimization problems based on the CG algorithm was proposed. To evaluate its efficiency, the new method was compared with the classical HS and Perry methods using three performance metrics: the NI, NF, and CPUT. As shown in Table 2, the new method demonstrated significant improvements over the classical methods. Compared to the HS method, the proposed approach achieved a 60.70% reduction in NI, 48.14% in NF, and 62.28% in CPUT. Similarly, when compared to the Perry method, it showed improvements of 18.65% in NI, 15.7% in NF, and 6.92% in CPUT. Furthermore, the proposed method satisfied the descent condition while ensuring global convergence. These characteristics confirm that the method provides not only accurate solutions but also stability and strong performance across a wide range of smalland large-scale optimization problems. Additionally, the special case of the proposed method ($\epsilon_m = 1$) showed further performance enhancements, underscoring the flexibility and robustness of the proposed approach in addressing diverse optimization challenges. These results indicate that the new method is not only more efficient in terms of reducing iterations and processing time but also serves as a competitive and reliable option for solving unconstrained optimization problems, adding a valuable contribution to the family of CG methods.

References

- [1] J. K. Liu and S. J. Li. New hybrid conjugate gradient method for unconstrained optimization. *Applied Mathematics and Computation*, 245:36–43, 2014.
- [2] C. Luo, L. Wang, Y. Xie, and B. Chen. A new conjugate gradient method for moving force identification of vehicle-bridge system. *Journal of Vibration Engineering and Technologies*, 12(1):19–36, 2024.
- [3] Y. Yuan, D. H. Tsang, and V. K. Lau. Combining conjugate gradient and momentum for unconstrained stochastic optimization with applications to machine learning. *IEEE Internet of Things Journal*, 2024.
- [4] S. B. Hanachi, B. Sellami, and M. Belloufi. A new family of hybrid conjugate gradient method for unconstrained optimization and its application to regression analysis. *RAIRO Operations Research*, 58(1):613–627, 2024.
- [5] A. L. Ibrahim and M. G. Mohammed. A new conjugate gradient for unconstrained optimization problems and its applications in neural networks. *Indonesian Journal of Electrical Engineering and Computer Science*, 33:93–100, 2024.
- [6] B. A. Hassan, I. A. R. Moghrabi, A. L. Ibrahim, and H. N. Jabbar. Improved conjugate gradient methods for unconstrained minimization problems and training recurrent neural networks. *Engineering Reports*, 7:e70019, 2025.
- [7] A. Ibrahim and S. Shareef. Modified conjugate gradient method for training neural networks based on logistic mapping. *Journal of University of Duhok*, 22(1):45–51, 2019.
- [8] D. H. Omar, A. L. Ibrahim, M. M. Hassan, B. G. Fathi, and D. A. Sulaiman. En-

- hanced conjugate gradient method for unconstrained optimization and its application in neural networks. European Journal of Pure and Applied Mathematics, 17(4):2692–2705, 2024.
- [9] X. Jiang, L. Pan, M. Liu, and J. Jian. A family of spectral conjugate gradient method with strong convergence and its applications in image restoration and machine learning. *Journal of the Franklin Institute*, page 107033, 2024.
- [10] B. Balaram, M. D. Narayanan, and P. K. Rajendrakumar. Optimal design of multiparametric nonlinear systems using a parametric continuation-based genetic algorithm approach. *Nonlinear Dynamics*, 67(4):2759–2777, 2012.
- [11] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving. *Journal of Research of the National Bureau of Standards*, 49(1):409–436, 1952.
- [12] R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. *The Computer Journal*, 7(2):149–154, 1964.
- [13] Z. Salleh and A. Alhawarat. An efficient modification of the hestenes-stiefel non-linear conjugate gradient method with restart property. *Journal of Inequalities and Applications*, page 110, 2016.
- [14] Z. Wei, G. Li, and L. Qi. New nonlinear conjugate gradient formulas for large-scale unconstrained optimization problems. *Applied Mathematics and Computation*, 179(2):407–430, 2006.
- [15] G. Yuan, Z. Wei, and Q. Zhao. A modified polak–ribière–polyak conjugate gradient algorithm for large-scale optimization problems. *IIE Transactions*, 46(4):397–413, 2014.
- [16] P. Wolfe. Convergence conditions for ascent methods. SIAM Review, 11(2):226–235, 1969
- [17] P. Wolfe. Convergence conditions for ascent methods. II: Some corrections. SIAM Review, 13(2):185–188, 1971.
- [18] B. T. Polyak. The conjugate gradient method in extremal problems. Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 9(4):807–821, 1969.
- [19] E. Polak and G. Ribière. Note sur la convergence de méthodes de directions conjuguées. Revue Française d'Informatique et de Recherche Opérationnelle, 16:35–43, 1969.
- [20] Y. Liu and C. Storey. Efficient generalized conjugate gradient algorithms, Part 1: Theory. *Journal of Optimization Theory and Applications*, 69:129–137, 1991.
- [21] Y. H. Dai and Y. Yuan. A nonlinear conjugate gradient method with a strong global convergence property. SIAM Journal on Optimization, 10(1):177–182, 1999.
- [22] R. Fletcher. Practical Methods of Optimization, Unconstrained Optimization, volume 1. John Wiley and Sons, New York, 1987.
- [23] M. L. N. Goncalves, F. S. Lima, and L. F. Prudente. A study of liu-storey conjugate gradient methods for vector optimization. Applied Mathematics and Computation, 425:127099, 2022.
- [24] B. A. Hassan and A. A. Saad. Explaining new parameters conjugate analysis based on the quadratic model. *Journal of Interdisciplinary Mathematics*, 26(6):1219–1229, 2023.

- [25] B. A. Hassan, H. N. Jabbar, and Y. A. Laylani. Upscaling parameters for conjugate gradient method in unconstrained optimization. *Journal of Interdisciplinary Mathe*matics, 26(6):1171–1180, 2023.
- [26] B. Hassan and A. Saad. Elastic conjugate gradient methods to solve iteration problems. https://tarupublication.s3south-1.amazonaws.com/articles/jim-1619. Accessed: Dec. 10, 2024.
- [27] B. A. Hassan and H. A. Alashoor. On image restoration problems using new conjugate gradient methods. *Indonesian Journal of Electrical Engineering and Computer Science*, 29(3):1438–1445, 2023.
- [28] A. Perry. A modified conjugate gradient algorithm. Operations Research, 26:1073– 1078, 1978.
- [29] M. J. D. Powell. Algorithms for nonlinear constraints that use lagrangian functions. *Mathematical Programming*, 14:224–248, 1978.
- [30] N. Andrei. Accelerated conjugate gradient algorithm with finite difference hessian/vector product approximation for unconstrained optimization. *Journal of Computational and Applied Mathematics*, 230(2):570–582, 2009.
- [31] Y. Dai, J. Han, G. Liu, D. Sun, H. Yin, and Y.-X. Yuan. Convergence properties of nonlinear conjugate gradient methods. SIAM Journal on Optimization, 10:345–358, 1999.
- [32] N. I. M. Gould, D. Orban, and P. L. Toint. CUTEr and sifdec: A constrained and unconstrained testing environment, revisited. ACM Transactions on Mathematical Software, 29:373–394, 2003.
- [33] J. J. Moré, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained optimization software. *ACM Transactions on Mathematical Software*, 7:17–41, 1981.
- [34] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles. *Mathematical Programming*, 91:201–213, 2002.
- [35] N. Andrei. An unconstrained optimization test functions collection. Advanced Modeling and Optimization, 10:147–161, 2008.