EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 2, Article Number 6037 ISSN 1307-5543 - ejpam.com

Published by New York Business Global Characterizations of Contra- (τ_1, τ_2) -continuous Functions

Nipaporn Chutiman¹, Areeyuth Sama-Ae², Chawalit Boonpok^{1,*}

¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

Abstract. This paper introduces a new class of functions between bitopological spaces, namely contra- (τ_1, τ_2) -continuous functions. Furthermore, several characterizations and some properties concerning contra- (τ_1, τ_2) -continuous functions are investigated.

2020 Mathematics Subject Classifications: 54C08, 54E55

Key Words and Phrases: $\tau_1\tau_2$ -open set, contra- (τ_1, τ_2) -continuous function

1. Introduction

The field of the mathematical science which goes under the name of topology is concerned with all questions directly or indirectly related to continuity. Viriyapong and Boonpok [1] investigated some characterizations of (Λ, sp) -continuous functions by utilizing the notions of (Λ, sp) -open sets and (Λ, sp) -closed sets due to Boonpok and Khampakdee [2]. Dungthaisong et al. [3] introduced and studied the concept of $g_{(m,n)}$ -continuous functions. Duangphui et al. [4] introduced and investigated the notion of $(\mu, \mu')^{(m,n)}$ continuous functions. Moreover, several characterizations of almost (Λ, p) -continuous functions, strongly $\theta(\Lambda, p)$ -continuous functions, almost strongly $\theta(\Lambda, p)$ -continuous functions, $\theta(\Lambda, p)$ -continuous functions, weakly (Λ, b) -continuous functions, $\theta(\star)$ -precontinuous functions, $(\Lambda, p(\star))$ -continuous functions, \star -continuous functions, θ - \mathscr{I} -continuous functions, almost (g, m)-continuous functions, pairwise almost M-continuous functions, faintly (τ_1, τ_2) continuous functions, $\delta(\tau_1, \tau_2)$ -continuous functions and almost nearly (τ_1, τ_2) -continuous functions were presented in [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17] and [18], respectively. The notions of contra-continuity and strong S-closedness in topological spaces were introduced by Dontchev [19]. Dontchev [19] obtained very interesting and important results concerning contra-continuity, compactness, S-closedness and strong Sclosedness. Dontchev and Noiri [20] introduced and studied the concept of RC-continuity

DOI: https://doi.org/10.29020/nybg.ejpam.v18i2.6037

Email addresses: nipaporn.c@msu.ac.th (N. Chutiman),

areeyuth.s@psu.ac.th (A. Sama-Ae), chawalit.b@msu.ac.th (C. Boonpok)

² Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand

^{*}Corresponding author.

between topological spaces which is weaker than contra-continuity. Jafari and Noiri [21] introduced and investigated a new class of functions called contra-super-continuous functions which lies between classes of RC-continuous functions and contra-continuous functions. Jafari and Noiri [22] introduced a new class of function called contra-precontinuous functions which is weaker than contra-continuous functions and studied several basic properties of contra-precontinuous functions. Furthermore, the present authors [22] defined contra-preclosed graphs and investigated relations between contra-precontinuity and contra-preclosed graphs. Ekici [23] introduced and studied a new class of functions called almost contra-precontinuous functions which generalize classes of regular set-connected functions [24], contra-precontinuous functions [22], contra-continuous functions [19], almost s-continuous functions [25] and perfectly continuous functions [26]. Al-Omari and Noorani [27] introduced the concept of almost contra ω -continuous functions via the notion of ω -open sets and investigated several characterizations of contra ω -continuous functions and almost contra ω -continuous functions. Noiri and Popa [28] introduced the of contra m-continuous functions as functions from a set satisfying some minimal conditions into a topological space and investigated some characterizations and the relationships between contra m-continuity and other related generalized forms of continuity. It turns out that the contra m-continuity is a unified form of several modifications of weak contra-continuity due to Baker [29]. On the other hand, the present authors introduced and studied the notions of (τ_1, τ_2) -continuous functions [30], almost (τ_1, τ_2) -continuous functions [31], weakly (τ_1, τ_2) -continuous functions [32], quasi $\theta(\tau_1, \tau_2)$ -continuous functions [33], almost quasi (τ_1, τ_2) -continuous functions [34], weakly quasi (τ_1, τ_2) -continuous functions [35], almost weakly (τ_1, τ_2) -continuous functions [36] and almost contra- (Λ, sp) -continuous functions [37]. In this paper, we introduce the concept of contra- (τ_1, τ_2) -continuous functions. We also investigate some characterizations of contra- (τ_1, τ_2) -continuous functions.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$ -closed [38] if $A = \tau_1$ -Cl(τ_2 -Cl(A). The complement of a $\tau_1\tau_2$ -closed set is called $\tau_1\tau_2$ -open. The intersection of all $\tau_1\tau_2$ -closed sets of X containing A is called the $\tau_1\tau_2$ -closure [38] of A and is denoted by $\tau_1\tau_2$ -Cl(A). The union of all $\tau_1\tau_2$ -open sets of X contained in A is called the $\tau_1\tau_2$ -interior [38] of A and is denoted by $\tau_1\tau_2$ -Int(A).

Lemma 1. [38] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1\tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2 Cl(A) \subseteq \tau_1 \tau_2 Cl(B)$.

- (3) $\tau_1\tau_2$ -Cl(A) is $\tau_1\tau_2$ -closed.
- (4) A is $\tau_1\tau_2$ -closed if and only if $A = \tau_1\tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2 Cl(X A) = X \tau_1 \tau_2 Int(A)$.

A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r$ -open [39] (resp. $(\tau_1, \tau_2)s$ -open [40], $(\tau_1, \tau_2)p$ -open [40], $(\tau_1, \tau_2)\beta$ -open [40]) if $A = \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)) (resp. $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)), $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)), $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A))). The complement of a $(\tau_1, \tau_2)r$ -open (resp. $(\tau_1, \tau_2)s$ -open, $(\tau_1, \tau_2)p$ -open, $(\tau_1, \tau_2)\beta$ -open) set is said to be $(\tau_1, \tau_2)r$ -closed (resp. $(\tau_1, \tau_2)s$ -closed, $(\tau_1, \tau_2)p$ -closed, $(\tau_1, \tau_2)\beta$ -closed). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\alpha(\tau_1, \tau_2)$ -open [41] if $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A))). The complement of an $\alpha(\tau_1, \tau_2)$ -open set is said to be $\alpha(\tau_1, \tau_2)$ -closed. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The set

$$\cap \{G \mid A \subseteq G \text{ and } G \text{ is } \tau_1 \tau_2 \text{-open} \}$$

is called the $\tau_1\tau_2$ -kernel [38] of A and is denoted by $\tau_1\tau_2$ -ker(A).

Lemma 2. [38] For subsets A, B of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 \text{-}ker(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2$ -ker $(A) \subseteq \tau_1 \tau_2$ -ker(B).
- (3) If A is $\tau_1\tau_2$ -open, then $\tau_1\tau_2$ -ker(A) = A.
- (4) $x \in \tau_1 \tau_2$ -ker(A) if and only if $A \cap H \neq \emptyset$ for every $\tau_1 \tau_2$ -closed set H containing x.

Let A be a subset of a bitopological space (X, τ_1, τ_2) . The intersection of all $(\tau_1, \tau_2)p$ -closed sets of X containing A is called the $(\tau_1, \tau_2)p$ -closure [42] of A and is denoted by (τ_1, τ_2) -pCl(A). The union of all $(\tau_1, \tau_2)p$ -open sets of X contained in A is called the $(\tau_1, \tau_2)p$ -interior [42] of A and is denoted by (τ_1, τ_2) -pInt(A).

Lemma 3. For a subset A of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) (τ_1, τ_2) - $pCl(A) = \tau_1 \tau_2$ - $Cl(\tau_1 \tau_2$ - $Int(A)) \cup A$ [42];
- (2) (τ_1, τ_2) -pInt(A) = $\tau_1 \tau_2$ -Int($\tau_1 \tau_2$ -Cl(A)) \cap A [36].

3. Characterizations of contra- (τ_1, τ_2) -continuous functions

In this section, we introduce the concept of contra- (τ_1, τ_2) -continuous functions. Furthermore, some characterizations of contra- (τ_1, τ_2) -continuous functions are discussed.

Definition 1. A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be contra- (τ_1, τ_2) -continuous if $f^{-1}(V)$ is $\tau_1\tau_2$ -closed in X for every $\sigma_1\sigma_2$ -open set V of Y.

Theorem 1. For a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is $contra-(\tau_1, \tau_2)$ -continuous;
- (2) $f^{-1}(K)$ is $\tau_1\tau_2$ -open in X for every $\sigma_1\sigma_2$ -closed set K of Y;
- (3) for each $x \in X$ and each $\sigma_1\sigma_2$ -closed set K of Y containing f(x), there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U) \subseteq K$;
- (4) $f(\tau_1\tau_2-Cl(A)) \subseteq \sigma_1\sigma_2-ker(f(A))$ for every subset A of X;
- (5) $\tau_1\tau_2$ - $Cl(f^{-1}(B)) \subseteq f^{-1}(\sigma_1\sigma_2\text{-}ker(B))$ for every subset B of Y.

Proof. $(1) \Rightarrow (2)$: The proof is obvious.

- $(2) \Rightarrow (3)$: Let $x \in X$ and K be any $\sigma_1 \sigma_2$ -closed set of Y containing f(x). By (2), $f^{-1}(K)$ is $\tau_1 \tau_2$ -open in X. Then, we have $x \in \tau_1 \tau_2$ -Int $(f^{-1}(K))$ and therefore there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $U \subseteq f^{-1}(K)$. Thus, $f(U) \subseteq K$.
- $(3) \Rightarrow (4)$: Let A be any subset of X. Let $x \in \tau_1\tau_2\text{-Cl}(A)$ and K be any $\sigma_1\sigma_2\text{-closed}$ set of Y containing f(x). Then by (3), there exists a $\tau_1\tau_2\text{-open}$ set U of X containing x such that $f(U) \subseteq K$; hence $U \subseteq f^{-1}(K)$. Since $x \in \tau_1\tau_2\text{-Cl}(A)$, $U \cap A \neq \emptyset$ and so $\emptyset \neq f(U \cap A) \subseteq f(U) \cap f(A) \subseteq K \cap f(A)$. By Lemma 2, we have $f(x) \in \sigma_1\sigma_2\text{-ker}(f(A))$ and hence $f(\tau_1\tau_2\text{-Cl}(A)) \subseteq \sigma_1\sigma_2\text{-ker}(f(A))$.
 - $(4) \Rightarrow (5)$: Let B be any subset of Y. By (4) and Lemma 2, we have

$$f(\tau_1\tau_2\text{-Cl}(f^{-1}(B))) \subseteq \sigma_1\sigma_2\text{-}ker(f(f^{-1}(B))) \subseteq \sigma_1\sigma_2\text{-}ker(B)$$

and hence $\tau_1\tau_2\text{-Cl}(f^{-1}(B)) \subseteq f^{-1}(\sigma_1\sigma_2\text{-}ker(B)).$

 $(5) \Rightarrow (1)$: Let V be any $\sigma_1\sigma_2$ -open set of Y. Then by (5) and Lemma 2, we have $\tau_1\tau_2$ -Cl $(f^{-1}(V)) \subseteq f^{-1}(\sigma_1\sigma_2$ -ker $(V)) = f^{-1}(V)$ and so $f^{-1}(V)$ is $\tau_1\tau_2$ -closed in X. This shows that f is contra- (τ_1, τ_2) -continuous.

Definition 2. [32] A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be weakly (τ_1,τ_2) -continuous at a point $x\in X$ if for each $\sigma_1\sigma_2$ -open set V of Y containing f(x), there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U)\subseteq \sigma_1\sigma_2$ -Cl(V). A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be weakly (τ_1,τ_2) -continuous if f has this property at each point of X.

Theorem 2. If $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is contra- (τ_1, τ_2) -continuous, then f is weakly (τ_1, τ_2) -continuous.

Proof. Let $x \in X$ and V be any $\sigma_1\sigma_2$ -open set of Y containing f(x). Then, $\sigma_1\sigma_2$ -Cl(V) is a $\sigma_1\sigma_2$ -closed set of Y containing f(x). Since f is contra- (τ_1, τ_2) -continuous, by Theorem 1 there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U) \subseteq \sigma_1\sigma_2$ -Cl(V). This shows that f is weakly (τ_1, τ_2) -continuous.

Definition 3. [31] A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be almost (τ_1,τ_2) -continuous at a point $x\in X$ if for each $\sigma_1\sigma_2$ -open set V of Y containing f(x), there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U)\subseteq \sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)). A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be almost (τ_1,τ_2) -continuous if f has this property at each point of X.

Definition 4. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is called almost (τ_1,τ_2) -open if $f(U)\subseteq \sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(f(U))) for every $\tau_1\tau_2$ -open set U of X.

Theorem 3. If $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is contra- (τ_1,τ_2) -continuous and almost (τ_1,τ_2) -open, then f is almost (τ_1,τ_2) -continuous.

Proof. Let $x \in X$ and V be any $\sigma_1\sigma_2$ -open set of Y containing f(x). Then, $\sigma_1\sigma_2$ -Cl(V) is a $\sigma_1\sigma_2$ -closed set of Y containing f(x). Since f is contra- (τ_1, τ_2) -continuous, by Theorem 1 there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U) \subseteq \sigma_1\sigma_2$ -Cl(V). Since f is almost (τ_1, τ_2) -open, we have $f(U) \subseteq \sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(f(U))) $\subseteq \sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(f(U)) and hence f is almost (τ_1, τ_2) -continuous.

Recall that a bitopological space (X, τ_1, τ_2) is said to be $almost\ (\tau_1, \tau_2)$ -regular [43] if for each $(\tau_1, \tau_2)r$ -closed set F and each $x \notin F$, there exist disjoint $\tau_1\tau_2$ -open sets U and V such that $x \in U$ and $F \subseteq V$.

Lemma 4. [43] A bitopological space (X, τ_1, τ_2) is almost (τ_1, τ_2) -regular if and only if for each $x \in X$ and each (τ_1, τ_2) r-open set U with $x \in U$, there exists a $\tau_1\tau_2$ -open set V such that $x \in V \subseteq \tau_1\tau_2$ - $Cl(V) \subseteq U$.

Theorem 4. If $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is contra- (τ_1, τ_2) -continuous and (Y, σ_1, σ_2) is almost (σ_1, σ_2) -regular, then f is almost (τ_1, τ_2) -continuous.

Proof. Let $x \in X$ and V be any $\sigma_1\sigma_2$ -open set of Y containing f(x). Then, we have $\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)) is $(\sigma_1,\sigma_2)r$ -open in Y. Since (Y,σ_1,σ_2) is almost (σ_1,σ_2) -regular, by Lemma 4 there exists a $\sigma_1\sigma_2$ -open set W of Y such that

$$f(x) \in W \subset \sigma_1 \sigma_2$$
-Cl(W) $\subset \sigma_1 \sigma_2$ -Int($\sigma_1 \sigma_2$ -Cl(V)).

Since f is contra- (τ_1, τ_2) -continuous and $\sigma_1 \sigma_2$ -Cl(W) is $\sigma_1 \sigma_2$ -closed in Y, by Theorem 1 there exists a $\tau_1 \tau_2$ -open set U of X containing x such that

$$f(U) \subseteq \sigma_1 \sigma_2\text{-Cl}(W) \subseteq \sigma_1 \sigma_2\text{-Int}(\sigma_1 \sigma_2\text{-Cl}(V)).$$

Thus, f is almost (τ_1, τ_2) -continuous.

Lemma 5. [31] For a function $(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

(1) f is almost (τ_1, τ_2) -continuous at $x \in X$;

- (2) $x \in \tau_1\tau_2$ -Int $(f^{-1}(\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)))) for every $\sigma_1\sigma_2$ -open set V of Y containing f(x):
- (3) $x \in \tau_1 \tau_2$ -Int $(f^{-1}(V))$ for every $(\sigma_1, \sigma_2)r$ -open set V of Y containing f(x);
- (4) for each $(\sigma_1, \sigma_2)r$ -open set V of Y containing f(x), there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U) \subseteq V$.

Recall that a bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) -extremally disconnected [41] if the $\tau_1\tau_2$ -closure of every $\tau_1\tau_2$ -open set U of X is $\tau_1\tau_2$ -open.

Lemma 6. [41] For a bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) (X, τ_1, τ_2) is (τ_1, τ_2) -extremally disconnected;
- (2) every $(\tau_1, \tau_2)r$ -open set of X is $\tau_1\tau_2$ -closed;
- (3) every $(\tau_1, \tau_2)r$ -closed set of X is $\tau_1\tau_2$ -open.

Theorem 5. If $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is contra- (τ_1,τ_2) -continuous and (Y,σ_1,σ_2) is (σ_1,σ_2) -extremally disconnected, then f is almost (τ_1,τ_2) -continuous.

Proof. Let $x \in X$ and V be any $(\sigma_1, \sigma_2)r$ -open set of Y containing f(x). Since (Y, σ_1, σ_2) is (σ_1, σ_2) -extremally disconnected, by Lemma 6 we have V is $\sigma_1\sigma_2$ -clopen. Since f is contra- (τ_1, τ_2) -continuous, by Theorem 1 there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U) \subseteq V$. Thus by Lemma 5, f is almost (τ_1, τ_2) -continuous.

Definition 5. [30] A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is called (τ_1,τ_2) -continuous at a point $x\in X$ if for each $\sigma_1\sigma_2$ -open set V of Y containing f(x), there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U)\subseteq V$. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is called (τ_1,τ_2) -continuous if f has this property at each point of X.

Lemma 7. [30] For a function $(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) f is (τ_1, τ_2) -continuous;
- (2) $f^{-1}(V)$ is $\tau_1\tau_2$ -open in X for every $\sigma_1\sigma_2$ -open set V of Y;
- (3) $f(\tau_1\tau_2\text{-}Cl(A)) \subseteq \sigma_1\sigma_2\text{-}Cl(f(A))$ for every subset A of X;
- (4) $\tau_1\tau_2$ - $Cl(f^{-1}(B)) \subseteq f^{-1}(\sigma_1\sigma_2$ -Cl(B)) for every subset B of Y;
- (5) $f^{-1}(\sigma_1\sigma_2\text{-Int}(B)) \subseteq \tau_1\tau_2\text{-Int}(f^{-1}(B))$ for every subset B of Y;
- (6) $f^{-1}(K)$ is $\tau_1\tau_2$ -closed in X for every $\sigma_1\sigma_2$ -closed set K of Y.

Definition 6. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to satisfy the (τ_1,τ_2) -interiority condition if $\tau_1\tau_2$ -Int $(f^{-1}(\sigma_1\sigma_2-Cl(V)))\subseteq f^{-1}(V)$ for each $\sigma_1\sigma_2$ -open set V of Y.

Theorem 6. If $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is contra- (τ_1,τ_2) -continuous and satisfy the (τ_1,τ_2) -interiority condition, then f is (τ_1,τ_2) -continuous.

Proof. Let V be any $\sigma_1\sigma_2$ -open set of Y. Since f is contra- (τ_1, τ_2) -continuous, by Theorem 1 we have

$$f^{-1}(V) \subseteq f^{-1}(\sigma_1 \sigma_2 \text{-Cl}(V)) = \tau_1 \tau_2 \text{-Int}(f^{-1}(\sigma_1 \sigma_2 \text{-Cl}(V)))$$
$$= \tau_1 \tau_2 \text{-Int}(\tau_1 \tau_2 \text{-Int}(f^{-1}(\sigma_1 \sigma_2 \text{-Cl}(V))))$$
$$\subseteq \tau_1 \tau_2 \text{-Int}(f^{-1}(V)) \subseteq f^{-1}(V)$$

and hence $f^{-1}(V)$ is $\tau_1\tau_2$ -open in X. By Lemma 7, f is (τ_1, τ_2) -continuous.

Definition 7. A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to have a contra (τ_1, τ_2) -closed graph if for each $(x, y) \in (X \times Y) - G(f)$, there exist a $\tau_1\tau_2$ -open set U of X containing x and a $\sigma_1\sigma_2$ -closed set F of Y containing y such that $(U \times F) \cap G(f) = \emptyset$.

Lemma 8. A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ has a contra (τ_1, τ_2) -closed graph if and only if for each $(x, y) \in (X \times Y) - G(f)$, there exist a $\tau_1 \tau_2$ -open set U of X containing x and a $\sigma_1 \sigma_2$ -closed set F of Y containing y such that $f(U) \cap F = \emptyset$.

Definition 8. [44] A bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ -Urysohn if for each pair of distinct points x and y in X, there exist $\tau_1\tau_2$ -open sets U and V such that $x \in U$, $y \in V$ and $\tau_1\tau_2$ - $Cl(U) \cap \tau_1\tau_2$ - $Cl(V) = \emptyset$.

Theorem 7. If $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is contra- (τ_1,τ_2) -continuous and (Y,σ_1,σ_2) is $\sigma_1\sigma_2$ -Urysohn, then G(f) is contra (τ_1,τ_2) -closed.

Proof. Let $(x,y) \in (X \times Y) - G(f)$. Then, $y \neq f(x)$. Since (Y, σ_1, σ_2) is $\sigma_1 \sigma_2$ -Urysohn, there exist $\sigma_1 \sigma_2$ -open sets V and W of Y containing y and f(x), respectively, such that $\sigma_1 \sigma_2$ -Cl $(V) \cap \sigma_1 \sigma_2$ -Cl $(W) = \emptyset$. Since f is contra- (τ_1, τ_2) -continuous, by Theorem 1 there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $f(U) \subseteq \sigma_1 \sigma_2$ -Cl(W). This implies that $f(U) \cap \sigma_1 \sigma_2$ -Cl $(V) = \emptyset$ and by Lemma 8, G(f) is contra (τ_1, τ_2) -closed.

Recall that a bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) - T_1 [45] if for any pair of distinct points x, y in X, there exist $\tau_1\tau_2$ -open sets U and V such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$.

Theorem 8. If $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is contra- (τ_1, τ_2) -continuous and (Y, σ_1, σ_2) is (σ_1, σ_2) - T_1 , then G(f) is contra (τ_1, τ_2) -closed.

Proof. Let $(x,y) \in (X \times Y) - G(f)$. Then, $y \neq f(x)$. Since (Y,σ_1,σ_2) is (σ_1,σ_2) - T_1 , there exists a $\sigma_1\sigma_2$ -open set V of Y such that $f(x) \in V$ and $y \notin V$. Since f is (τ_1,τ_2) -continuous, there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U) \subseteq V$. Thus, $f(U) \cap (Y - V) = \emptyset$ and Y - V is a $\sigma_1\sigma_2$ -closed set of Y containing y. This shows that G(f) is contra (τ_1, τ_2) -closed.

Definition 9. [46] A bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) - T_2 if for any pair of distinct points x, y in X, there exist disjoint $\tau_1\tau_2$ -open sets U and V of X containing x and y, respectively.

Theorem 9. If $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a contra- (τ_1, τ_2) -continuous injection with a contra (τ_1, τ_2) -closed graph, then (X, τ_1, τ_2) is (τ_1, τ_2) - T_2 .

Proof. Let x and y be any distinct points of X. Since f is injective, $f(x) \neq f(y)$. Then, we have $(x, f(y)) \in (X \times Y) - G(f)$. Since G(f) is contra (τ_1, τ_2) -closed, by Lemma 8 there exist a $\tau_1\tau_2$ -open set U of X containing x and a $\sigma_1\sigma_2$ -closed set K of Y containing f(y) such that $f(U) \cap K = \emptyset$. Since f is contra- (τ_1, τ_2) -continuous, by Theorem 1 there exists a $\tau_1\tau_2$ -open set U_0 of X containing y such that $f(U_0) \subseteq K$. Thus, $f(U) \cap f(U_0) = \emptyset$ and hence $U \cap U_0 = \emptyset$. This shows that (X, τ_1, τ_2) is (τ_1, τ_2) - T_2 .

Theorem 10. Let (X, τ_1, τ_2) be a bitopological space. If for each pair of distinct points x and x' in X, there exists a function f of (X, τ_1, τ_2) into a $\sigma_1\sigma_2$ -Urysohn space (Y, σ_1, σ_2) such that $f(x) \neq f(x')$ and f is contra- (τ_1, τ_2) -continuous at x and x', then (X, τ_1, τ_2) is (τ_1, τ_2) - T_2 .

Proof. Let x and x' be any distinct points of X. Then by the hypothesis, there exists a $\sigma_1\sigma_2$ -Urysohn space (Y, σ_1, σ_2) and a function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ which satisfies the conditions of this theorem. Let y = f(x) and y' = f(x'). Then, $y \neq y'$. Since (Y, σ_1, σ_2) is $\sigma_1\sigma_2$ -Urysohn, there exist $\sigma_1\sigma_2$ -open sets V and W of Y containing y and y', respectively, such that $\sigma_1\sigma_2$ -Cl $(V) \cap \sigma_1\sigma_2$ -Cl $(W) = \emptyset$. Since f is contra- (τ_1, τ_2) -continuous at x and x', by Theorem 1 there exist $\tau_1\tau_2$ -open sets U and U' of X containing x and x', respectively, such that $f(U) \subseteq \sigma_1\sigma_2$ -Cl(V) and $f(U') \subseteq \sigma_1\sigma_2$ -Cl(W). This implies that $U \cap U' = \emptyset$. Thus, (X, τ_1, τ_2) is (τ_1, τ_2) - T_2 .

Corollary 1. If $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a contra- (τ_1, τ_2) -continuous injection and (Y, σ_1, σ_2) is $\sigma_1 \sigma_2$ -Urysohn, then (X, τ_1, τ_2) is (τ_1, τ_2) - T_2 .

Proof. For each pair of distinct points x and x' in X, f is a contra- (τ_1, τ_2) -continuous function of (X, τ_1, τ_2) into a $\sigma_1 \sigma_2$ -Urysohn space (Y, σ_1, σ_2) such that $f(x) \neq f(x')$ because f is injective. Thus by Theorem 10, (X, τ_1, τ_2) is (τ_1, τ_2) - T_2 .

Definition 10. A bitopological space (X, τ_1, τ_2) is said to be ultra- $\tau_1\tau_2$ -Huasdorff if for each pair of distinct points x and y in X, there exist $\tau_1\tau_2$ -clopen sets U and V of X containing x and y, respectively, such that $U \cap V = \emptyset$.

Theorem 11. If $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is a contra- (τ_1,τ_2) -continuous injection and (Y,σ_1,σ_2) is ultra- $\sigma_1\sigma_2$ -Hausdorff, then (X,τ_1,τ_2) is (τ_1,τ_2) - T_2 .

Proof. Let x and y be any distinct points in X. Then, since f is injective, $f(x) \neq f(y)$. Moreover, since (Y, σ_1, σ_2) is ultra- $\sigma_1\sigma_2$ -Hausdorff, there exist $\sigma_1\sigma_2$ -clopen sets V and W of Y containing x and y, respectively, such that $V \cap W = \emptyset$. Since f is contra- (τ_1, τ_2) -continuous, by Theorem 1 there exist $\tau_1\tau_2$ -open sets U and G of X containing x and y,

respectively, such that $f(U) \subseteq V$ and $f(G) \subseteq W$. Thus, $U \cap G = \emptyset$ and hence (X, τ_1, τ_2) is (τ_1, τ_2) - T_2 .

Recall that a bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ -compact [38] if every cover of X by $\tau_1\tau_2$ -open sets of X has a finite subcover. A bitopological space (X, τ_1, τ_2) is said to be quasi (τ_1, τ_2) - \mathscr{H} -closed [47] if every $\tau_1\tau_2$ -open cover $\{U_\gamma \mid \gamma \in \nabla\}$, there exists a finite subset ∇_0 of ∇ such that $X = \bigcup \{\tau_1\tau_2\text{-Cl}(U_\gamma) \mid \gamma \in \nabla_0\}$.

Definition 11. A bitopological space (X, τ_1, τ_2) is said to be strongly S- $\tau_1\tau_2$ -closed if every cover of X by $\tau_1\tau_2$ -closed sets of X has a finite subcover.

Definition 12. A bitopological space (X, τ_1, τ_2) is said to be S- $\tau_1\tau_2$ -closed if every $(\tau_1, \tau_2)s$ open cover $\{U_\gamma \mid \gamma \in \nabla\}$, there exists a finite subset ∇_0 of ∇ such that

$$X = \bigcup \{ \tau_1 \tau_2 - Cl(U_\gamma) \mid \gamma \in \nabla_0 \}.$$

Theorem 12. If $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a contra- (τ_1, τ_2) -continuous surjection and (X, τ_1, τ_2) is $\tau_1\tau_2$ -compact, then (Y, σ_1, σ_2) is strongly S- $\sigma_1\sigma_2$ -closed.

Proof. Suppose that (X, τ_1, τ_2) is $\tau_1\tau_2$ -compact. Let $\{V_\gamma \mid \gamma \in \nabla\}$ be any cover of Y by $\sigma_1\sigma_2$ -closed sets of Y. For each $x \in X$, there exists $\gamma(x) \in \nabla$ such that $f(x) \in V_{\gamma(x)}$. Since f is contra- (τ_1, τ_2) -continuous, by Theorem 1 there exists a $\tau_1\tau_2$ -open set U(x) containing x such that $f(U(x)) \subseteq V_{\gamma(x)}$. The family $\{U(x) \mid x \in X\}$ is a cover of X by $\tau_1\tau_2$ -open sets. Since (X, τ_1, τ_2) is $\tau_1\tau_2$ -compact, there exists a finite number of pints, say, $x_1, x_2, x_3, ..., x_n$ in X such that $X = \bigcup \{U(x_k) \mid x_k \in X; 1 \leq k \leq n\}$. Thus, $Y = f(X) = \bigcup \{f(U(x_k)) \mid x_k \in X; 1 \leq k \leq n\} \subseteq \bigcup \{V_{\gamma(x_k)} \mid x_k \in X; 1 \leq k \leq n\}$. This shows that (Y, σ_1, σ_2) is strongly S- $\sigma_1\sigma_2$ -closed.

Corollary 2. If $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a contra- (τ_1, τ_2) -continuous surjection and (X, τ_1, τ_2) is $\tau_1\tau_2$ -compact, then (Y, σ_1, σ_2) is S- $\sigma_1\sigma_2$ -closed and hence quasi (σ_1, σ_2) - \mathscr{H} -closed.

Recall that a bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ -connected [38] if X cannot be written as the union of two nonempty disjoint $\tau_1\tau_2$ -open sets.

Theorem 13. If $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a contra- (τ_1, τ_2) -continuous surjection and (X, τ_1, τ_2) is $\tau_1\tau_2$ -connected, then (Y, σ_1, σ_2) is $\sigma_1\sigma_2$ -connected.

Proof. Assume that (Y, σ_1, σ_2) is not $\sigma_1\sigma_2$ -connected. Then, there exist $\sigma_1\sigma_2$ -open sets V and W of Y such that $V \cap W = \emptyset$ and $V \cup W = Y$. Thus, we have $f^{-1}(V) \cap f^{-1}(W) = \emptyset$ and $f^{-1}(V) \cup f^{-1}(W) = X$. Since f is surjective, $f^{-1}(V) \neq \emptyset$ and $f^{-1}(W) \neq \emptyset$. Since f is contra- (τ_1, τ_2) -continuous and V, W are $\sigma_1\sigma_2$ -clopen sets, by Theorem 1 we have $f^{-1}(V)$ and $f^{-1}(W)$ are $\tau_1\tau_2$ -open in X. Therefore, (X, τ_1, τ_2) is not $\tau_1\tau_2$ -connected.

The $\tau_1\tau_2$ -frontier [31] of a subset A of a bitopological space (X, τ_1, τ_2) , denoted by $\tau_1\tau_2$ -fr(A), is defined by

$$\tau_1 \tau_2$$
-fr(A) = $\tau_1 \tau_2$ -Cl(A) $\cap \tau_1 \tau_2$ -Cl(X - A) = $\tau_1 \tau_2$ -Cl(A) $- \tau_1 \tau_2$ -Int(A).

Theorem 14. The set of all points $x \in X$ at which a function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is not contra- (τ_1, τ_2) -continuous is identical with the union of the $\tau_1\tau_2$ -frontier of the inverse images of $\sigma_1\sigma_2$ -closed sets of Y containing f(x).

Proof. Suppose that f is not contra- (τ_1, τ_2) -continuous at $x \in X$. Then, there exists a $\sigma_1\sigma_2$ -closed set K of Y containing f(x) such that $f(U) \cap (Y - K) \neq \emptyset$ for every $\tau_1\tau_2$ -open set U of X containing x. Thus, $x \in \tau_1\tau_2$ -Cl $(f^{-1}(Y - K)) = \tau_1\tau_2$ -Cl $(X - f^{-1}(K))$. On the other hand, we have $x \in f^{-1}(K) \subseteq \tau_1\tau_2$ -Cl $(f^{-1}(K))$ and hence $x \in \tau_1\tau_2$ -fr $(f^{-1}(K))$.

Conversely, suppose that f is contra- (τ_1, τ_2) -continuous at $x \in X$. Let K be any $\sigma_1\sigma_2$ -closed set of Y containing f(x). By Theorem 1, $x \in f^{-1}(K) = \tau_1\tau_2$ -Int $(f^{-1}(K))$. Thus, $x \notin \tau_1\tau_2$ -fr $(f^{-1}(K))$ for every $\sigma_1\sigma_2$ -closed set K of Y containing f(x). This completes the proof.

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- [1] C. Viriyapong and C. Boonpok. (Λ, sp) -continuous functions. WSEAS Transactions on Mathematics, 21:380–385, 2022.
- [2] C. Boonpok and J. Khampakdee. (Λ, sp) -open sets in topological spaces. European Journal of Pure and Applied Mathematics, 15(2):572–588, 2022.
- [3] T. Dungthaisong, C. Boonpok, and C. Viriyapong. Generalized closed sets in bigeneralized topological spaces. *International Journal of Mathematical Analysis*, 5(24):1175–1184, 2011.
- [4] T. Duangphui, C. Boonpok, and C. Viriyapong. Continuous functions on bigeneralized topological spaces. *International Journal of Mathematical Analysis*, 5(24):1165–1174, 2011.
- [5] N. Srisarakham and C. Boonpok. Almost (Λ, p) -continuous functions. International Journal of Mathematics and Computer Science, 18(2):255–259, 2023.
- [6] M. Thongmoon and C. Boonpok. Strongly $\theta(\Lambda, p)$ -continuous functions. International Journal of Mathematics and Computer Science, 19(2):475–479, 2024.
- [7] C. Boonpok and J. Khampakdee. Almost strong $\theta(\Lambda, p)$ -continuity for functions. European Journal of Pure and Applied Mathematics, 17(1):300–309, 2024.
- [8] P. Pue-on and C. Boonpok. $\theta(\Lambda, p)$ -continuity for functions. International Journal of Mathematics and Computer Science, 19(2):491–495, 2024.
- [9] C. Boonpok and N. Srisarakham. Weak forms of (Λ, b) -open sets and weak (Λ, b) -continuity. European Journal of Pure and Applied Mathematics, 16(1):29-43, 2023.
- [10] C. Boonpok. $\theta(\star)$ -precontinuity. Mathematica, 65(1):31–42, 2023.
- [11] C. Boonpok. On some closed sets and low separation axioms via topological ideals. European Journal of Pure and Applied Mathematics, 15(3):1023–1046, 2022.

- [12] C. Boonpok. On some spaces via topological ideals. *Open Mathematics*, 21:20230118, 2023.
- [13] C. Boonpok. On characterizations of ★-hyperconnected ideal topological spaces. *Journal of Mathematics*, 2020:9387601, 2020.
- [14] C. Boonpok. Almost (g, m)-continuous functions. International Journal of Mathematical Analysis, 4(40):1957–1964, 2010.
- [15] C. Boonpok. M-continuous functions in biminimal structure spaces. Far East Journal of Mathematical Sciences, 43(1):41–58, 2010.
- [16] N. Srisarakham, A. Sama-Ae, and C. Boonpok. Characterizations of faintly (τ_1, τ_2) -continuous functions. European Journal of Pure and Applied Mathematics, 17(4):2753-2762, 2024.
- [17] C. Prachanpol, C. Boonpok, and C. Viriyapong. $\delta(\tau_1, \tau_2)$ -continuous functions. European Journal of Pure and Applied Mathematics, 17(4):3730–3742, 2024.
- [18] B. Kong-ied, A. Sama-Ae, and C. Boonpok. Almost nearly (τ_1, τ_2) -continuous functions. *International Journal of Analysis and Applications*, 23:14, 2025.
- [19] J. Dontchev. Contra-continuous functions and strongly S-closed spaces. International Journal of Mathematics and Mathematical Sciences, 19:303–310, 1966.
- [20] J. Dontchev and T. Noiri. Contra-semicontinuous functions. *Mathematica Pannonica*, 10:159–168, 1999.
- [21] S. Jafari and T. Noiri. Contra-super-continuous functions. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös, Sectio Mathematica, 42:27–34, 1999.
- [22] S. Jafari and T. Noiri. On contra-precontinuous functions. Bulletin of the Malaysian Mathematical Sciences Society, 25:115–128, 2002.
- [23] E. Ekici. Almost contra-precontinuous functions. Bulletin of the Malaysian Mathematical Sciences Society, 27:53–65, 2004.
- [24] J. Dontchev, M. Ganster, and I. Reilly. More on almost s-continuity. *Indian Journal of Mathematics*, 41:139–146, 1999.
- [25] T. Noiri, B. Ahmad, and M. Khan. Almost s-continuous functions. Kyungpook Mathematical Journal, 35:311–322, 1995.
- [26] T. Noiri. Super-continuity and some strong forms of continuity. *Indian Journal of Pure and Applied Mathematics*, 15:241–250, 1984.
- [27] A. Al-Omari and M. S. M. Noorani. Contra ω -continuous and almost contra ω -continuous functions. *International Journal of Mathematics and Mathematical Sciences*, 2007:40469, 2007.
- [28] T. Noiri and S. Jafari. Some properties of almost contra-precontinuous functions. Bulletin of the Malaysian Mathematical Sciences Society, 28:107–116, 2005.
- [29] C. W. Baker. Weakly contra-continuous functions. *International Journal of Pure and Applied Mathematics*, 40:265–271, 2007.
- [30] C. Boonpok and N. Srisarakham. (τ_1, τ_2) -continuity for functions. Asia Pacific Journal of Mathematics, 11:21, 2024.
- [31] C. Boonpok and P. Pue-on. Characterizations of almost (τ_1, τ_2) -continuous functions. International Journal of Analysis and Applications, 22:33, 2024.
- [32] C. Boonpok and C. Klanarong. On weakly (τ_1, τ_2) -continuous functions. European

- Journal of Pure and Applied Mathematics, 17(1):416–425, 2024.
- [33] N. Srisarakham, S. Sompong, and C. Boonpok. Quasi $\theta(\tau_1, \tau_2)$ -continuous functions. European Journal of Pure and Applied Mathematics, 18(1):5722, 2025.
- [34] B. Kong-ied, S. Sompong, and C. Boonpok. Almost quasi (τ_1, τ_2) -continuous functions. Asia Pacific Journal of Mathematics, 11:64, 2024.
- [35] M. Chiangpradit, S. Sompong, and C. Boonpok. Weakly quasi (τ_1, τ_2) -continuous functions. *International Journal of Analysis and Applications*, 22:125, 2024.
- [36] J. Khampakdee, S. Sompong, and C. Boonpok. Almost weakly (τ_1, τ_2) -continuous functions. European Journal of Pure and Applied Mathematics, 18(1):5721, 2025.
- [37] C. Boonpok and J. Khampakdee. Upper and lower almost contra- (Λ, sp) -continuity. European Journal of Pure and Applied Mathematics, 16(1):156–168, 2023.
- [38] C. Boonpok, C. Viriyapong, and M. Thongmoon. On upper and lower (τ_1, τ_2) -precontinuous multifunctions. *Journal of Mathematics and Computer Science*, 18:282–293, 2018.
- [39] C. Viriyapong and C. Boonpok. $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions. *Journal of Mathematics*, 2020:6285763, 2020.
- [40] C. Boonpok. $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions. *Heliyon*, 6:e05367, 2020.
- [41] N. Viriyapong, S. Sompong, and C. Boonpok. (τ_1, τ_2) -extremal disconnectedness in bitopological spaces. *International Journal of Mathematics and Computer Science*, 19(3):855–860, 2024.
- [42] N. Viriyapong, S. Sompong, and C. Boonpok. Upper and lower s- $(\tau_1, \tau_2)p$ -continuous multifunctions. European Journal of Pure and Applied Mathematics, 17(3):2210–2220, 2024.
- [43] N. Chutiman, S. Sompong, and C. Boonpok. On almost (τ_1, τ_2) -regular spaces. *International Journal of Mathematics and Computer Science*, 19(4):1363–1368, 2024.
- [44] P. Pue-on, A. Sama-Ae, and C. Boonpok. Characterizations of quasi $\theta(\tau_1, \tau_2)$ continuous multifunctions. *International Journal of Analysis and Applications*, 23:59, 2025.
- [45] M. Chiangpradit, S. Sompong, and C. Boonpok. $\Lambda_{(\tau_1,\tau_2)}$ -sets and related topological spaces. Asia Pacific Journal of Mathematics, 11:49, 2024.
- [46] N. Chutiman, S. Sompong, and C. Boonpok. On some separation axioms in bitopological spaces. *Asia Pacific Journal of Mathematics*, 11:41, 2024.
- [47] M. Thongmoon, S. Sompong, and C. Boonpok. Upper and lower weak (τ_1, τ_2) continuity. European Journal of Pure and Applied Mathematics, 17(3):1705–1716,
 2024.