EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 2, Article Number 6038 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Almost Contra- $(\tau_1, \tau_2)p$ -continuity for Functions

Prapart Pue-on¹, Areeyuth Sama-Ae², Chawalit Boonpok^{1,*}

¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

² Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand

Abstract. This paper introduces a new class of functions between bitopological spaces, namely almost contra- $(\tau_1, \tau_2)p$ -continuous functions. Moreover, some characterizations and several properties concerning almost contra- $(\tau_1, \tau_2)p$ -continuous functions are established.

2020 Mathematics Subject Classifications: 54C08, 54E55

Key Words and Phrases: $\tau_1\tau_2$ -open set, almost contra- $(\tau_1, \tau_2)p$ -continuous function

1. Introduction

In 1966, Dontchev [1] introduced the concepts of contra-continuity and strong Sclosedness in topological spaces. Moreover, Dontchev [1] obtained very interesting and important results concerning contra-continuity, compactness, S-closedness and strong Sclosedness. In 1999, Dontchev et al. [2] defined a new class of functions called regular set-connected functions. Furthermore, Dontchev and Noiri [3] introduced and studied the concept of RC-continuity between topological spaces which is weaker than contracontinuity. In [4], the present authors introduced and investigated a new class of functions called contra-super-continuous functions which lies between classes of RC-continuous functions and contra-continuous functions. In 2002, Jafari and Noiri [5] introduced a new class of function called contra-precontinuous functions which is weaker than contra-continuous functions and studied several basic properties of contra-precontinuous functions. In particular, Jafari and Noiri [5] defined contra-preclosed graphs and investigated relations between contra-precontinuity and contra-preclosed graphs. In 2004, Ekici [6] introduced and studied a new class of functions called almost contra-precontinuous functions which generalize classes of regular set-connected functions [2], contra-precontinuous functions [5], contra-continuous functions [1], almost s-continuous functions [7] and perfectly continuous functions [8]. Ekici [6] obtained basic properties and preservation theorems of almost

DOI: https://doi.org/10.29020/nybg.ejpam.v18i2.6038

Email addresses: prapart.p@msu.ac.th (P. Pue-on),

areeyuth.s@psu.ac.th (A. Sama-Ae), chawalit.b@msu.ac.th (C. Boonpok)

^{*}Corresponding author.

contra-precontinuous functions and relationships between almost contra-precontinuity and P-regular graphs. Noiri and Jafari [9] obtained the further characterizations and properties of almost contra-precontinuous functions and showed that (s,p)-continuity due to Jafari [10] is equivalent to almost contra-precontinuity. In 2007, Al-Omari and Noorani [11] introduced the concept of almost contra ω -continuous functions via the notion of ω -open sets and investigated several characterizations of contra ω -continuous functions and almost contra ω -continuous functions. On the other hand, the present authors introduced and studied the notions of of (τ_1, τ_2) -continuous functions [12], almost (τ_1, τ_2) -continuous functions [13], weakly (τ_1, τ_2) -continuous functions [14], quasi $\theta(\tau_1, \tau_2)$ -continuous functions [15], $\delta(\tau_1, \tau_2)$ -continuous functions [16], almost quasi (τ_1, τ_2) -continuous functions [17], weakly quasi (τ_1, τ_2) -continuous functions [18], faintly (τ_1, τ_2) -continuous functions [19], almost nearly (τ_1, τ_2) -continuous functions, almost weakly (τ_1, τ_2) -continuous functions [20] and almost contra- (Λ, sp) -continuous functions. We also investigate some characterizations of almost contra- $(\tau_1, \tau_2)p$ -continuous functions.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$ -closed [22] if $A = \tau_1$ -Cl(τ_2 -Cl(A). The complement of a $\tau_1\tau_2$ -closed set is called $\tau_1\tau_2$ -open. The intersection of all $\tau_1\tau_2$ -closed sets of X containing A is called the $\tau_1\tau_2$ -closure [22] of A and is denoted by $\tau_1\tau_2$ -Interior [22] of A and is denoted by $\tau_1\tau_2$ -Interior [22] of A and is denoted by $\tau_1\tau_2$ -Interior [22] of A and is denoted by $\tau_1\tau_2$ -Interior [22] of A and is denoted by $\tau_1\tau_2$ -Interior

Lemma 1. [22] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1\tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2 Cl(A) \subseteq \tau_1 \tau_2 Cl(B)$.
- (3) $\tau_1\tau_2$ -Cl(A) is $\tau_1\tau_2$ -closed.
- (4) A is $\tau_1\tau_2$ -closed if and only if $A = \tau_1\tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2 Cl(X A) = X \tau_1 \tau_2 Int(A)$.

A subset A of a bitopological space (X, τ_1, τ_2) is called $(\tau_1, \tau_2)r$ -open [23] (resp. $(\tau_1, \tau_2)s$ -open [24], $(\tau_1, \tau_2)p$ -open [24], $(\tau_1, \tau_2)\beta$ -open [24]) if $A = \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)) (resp. $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)), $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)), $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)))). The complement of a $(\tau_1, \tau_2)r$ -open (resp. $(\tau_1, \tau_2)s$ -open, $(\tau_1, \tau_2)p$ -open, $(\tau_1, \tau_2)\beta$ -open) set is said to be $(\tau_1, \tau_2)r$ -closed (resp. $(\tau_1, \tau_2)s$ -closed, $(\tau_1, \tau_2)p$ -closed, $(\tau_1, \tau_2)\beta$ -closed). A

subset A of a bitopological space (X, τ_1, τ_2) is said to be $\alpha(\tau_1, \tau_2)$ -open [25] if $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A))). The complement of an $\alpha(\tau_1, \tau_2)$ -open set is said to be $\alpha(\tau_1, \tau_2)$ -closed. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The intersection of all $(\tau_1, \tau_2)p$ -closed (resp. $(\tau_1, \tau_2)s$ -closed, $\alpha(\tau_1, \tau_2)$ -closed) sets of X containing A is called the $(\tau_1, \tau_2)p$ -closure [26] (resp. $(\tau_1, \tau_2)s$ -closure [24], $\alpha(\tau_1, \tau_2)$ -closure [27]) of A and is denoted by (τ_1, τ_2) -pCl(A) (resp. (τ_1, τ_2) -sCl(A), $\alpha(\tau_1, \tau_2)$ -Cl(A)). The union of all $(\tau_1, \tau_2)p$ -open (resp. $(\tau_1, \tau_2)s$ -open, $\alpha(\tau_1, \tau_2)$ -open) sets of X contained in A is called the $(\tau_1, \tau_2)p$ -interior [26] (resp. $(\tau_1, \tau_2)s$ -interior [24], $\alpha(\tau_1, \tau_2)$ -interior [27]) of A and is denoted by (τ_1, τ_2) -pInt(A) (resp. (τ_1, τ_2) -sInt(A), $\alpha(\tau_1, \tau_2)$ -Int(A)).

Lemma 2. For a subset A of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) (τ_1, τ_2) - $pCl(A) = \tau_1\tau_2$ - $Cl(\tau_1\tau_2$ - $Int(A)) \cup A$ [26];
- (2) (τ_1, τ_2) -pInt(A) = $\tau_1 \tau_2$ -Int($\tau_1 \tau_2$ -Cl(A)) \cap A [20];
- (3) (τ_1, τ_2) -sCl(A) = $\tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl(A)) \cup A [24];
- (4) (τ_1, τ_2) -sInt(A) = $\tau_1 \tau_2$ -Cl($\tau_1 \tau_2$ -Int(A)) \cap A [28].

Let A be a subset of a bitopological space (X, τ_1, τ_2) . A point $x \in X$ is called a $s(\tau_1, \tau_2)\theta$ -cluster point of A if $\tau_1\tau_2$ -Cl $(U) \cap A \neq \emptyset$ for every $(\tau_1, \tau_2)s$ -open set U containing x. The set of all $s(\tau_1, \tau_2)\theta$ -cluster points of A is called the $s(\tau_1, \tau_2)\theta$ -closure of A and is denoted by $s(\tau_1, \tau_2)\theta$ -Cl(A). A subset A of a bitopological space (X, τ_1, τ_2) is called $s(\tau_1, \tau_2)\theta$ -closed if $s(\tau_1, \tau_2)\theta$ -Cl(A) = A. The complement of a $s(\tau_1, \tau_2)\theta$ -closed set is said to be $s(\tau_1, \tau_2)\theta$ -open. The union of all $s(\tau_1, \tau_2)\theta$ -open sets of X contained in A is called the $s(\tau_1, \tau_2)\theta$ -interior of A and is denoted by $s(\tau_1, \tau_2)\theta$ -Int(A).

3. Almost contra- $(\tau_1, \tau_2)p$ -continuous functions

In this section, we introduce the concept of almost contra- $(\tau_1, \tau_2)p$ -continuous functions. Moreover, some characterizations of almost contra- $(\tau_1, \tau_2)p$ -continuous functions are discussed.

Definition 1. A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be almost contra- (τ_1, τ_2) p-continuous if for each $x \in X$ and for each (σ_1, σ_2) r-closed set F of Y containing f(x), there exists a (τ_1, τ_2) p-open set U of X containing x such that $f(U) \subseteq F$.

Theorem 1. For a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is almost contra- $(\tau_1, \tau_2)p$ -continuous;
- (2) $f^{-1}(F)$ is $(\tau_1, \tau_2)p$ -open in X for every $(\sigma_1, \sigma_2)r$ -closed set F of Y;
- (3) $f^{-1}(V)$ is $(\tau_1, \tau_2)p$ -closed in X for every $(\sigma_1, \sigma_2)r$ -open set V of Y;

- (4) $f^{-1}(\sigma_1\sigma_2\text{-Int}(\sigma_1\sigma_2\text{-Cl}(V)))$ is $(\tau_1,\tau_2)p\text{-closed}$ in X for every $\sigma_1\sigma_2\text{-open}$ set V of Y;
- (5) $f^{-1}(\sigma_1\sigma_2-Cl(\sigma_1\sigma_2-Int(F)))$ is $(\tau_1,\tau_2)p$ -open in X for every $\sigma_1\sigma_2$ -closed set F of Y.

Proof. (1) \Rightarrow (2): Let F be any $(\sigma_1, \sigma_2)r$ -closed set of Y and $x \in f^{-1}(F)$. Then, $f(x) \in F$. By (1), there exists a $(\tau_1, \tau_2)p$ -open set U of X containing x such that $f(U) \subseteq F$. Thus, $x \in U \subseteq f^{-1}(F)$ and hence $x \in (\tau_1, \tau_2)$ -pInt $(f^{-1}(F))$. This implies that

$$f^{-1}(F) \subseteq (\tau_1, \tau_2)\text{-pInt}(f^{-1}(F)).$$

Therefore, $f^{-1}(F)$ is $(\tau_1, \tau_2)p$ -open in X.

- $(2) \Rightarrow (3)$: The proof is obvious.
- (3) \Rightarrow (4): Let V be any $\sigma_1\sigma_2$ -open set of Y. Then, we have $\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)) is $(\sigma_1, \sigma_2)r$ -open in Y. Thus by (3), $f^{-1}(\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V))) is $(\tau_1, \tau_2)p$ -closed in X.
- (4) \Rightarrow (5): Let F be any $\sigma_1\sigma_2$ -closed set of Y. Then, Y F is $\sigma_1\sigma_2$ -open in Y. By (4), we have $f^{-1}(\sigma_1\sigma_2\text{-Cl}(\sigma_1\sigma_2\text{-Int}(Y F))) = Y f^{-1}(\sigma_1\sigma_2\text{-Int}(\sigma_1\sigma_2\text{-Cl}(F)))$ is $(\tau_1, \tau_2)p$ -closed in X. Thus, $f^{-1}(\sigma_1\sigma_2\text{-Cl}(\sigma_1\sigma_2\text{-Int}(F)))$ is $(\tau_1, \tau_2)p$ -open in X.
- $(5) \Rightarrow (1)$: Let F be any $(\sigma_1, \sigma_2)r$ -closed set of Y containing f(x). Since F is $\sigma_1\sigma_2$ -closed in Y and by (5), $f^{-1}(F)$ is $(\tau_1, \tau_2)p$ -open in X. Let $U = f^{-1}(F)$. Then, U is a $(\tau_1, \tau_2)p$ -open set U of X containing x such that $f(U) \subseteq F$. This shows that f is almost contra- $(\tau_1, \tau_2)p$ -continuous.

Definition 2. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be $(\tau_1,\tau_2)p$ -open if f(U) is $(\sigma_1,\sigma_2)p$ -open in Y for every $(\tau_1,\tau_2)p$ -open set U of X.

Theorem 2. If $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is a (τ_1,τ_2) p-open surjection and

$$g:(Y,\sigma_1,\sigma_2)\to(Z,\rho_1,\rho_2)$$

is a function such that $g \circ f : (X, \tau_1, \tau_2) \to (Z, \rho_1, \rho_2)$ is almost contra- (τ_1, τ_2) p-continuous, then g is almost contra- (σ_1, σ_2) p-continuous.

Proof. Let F be any $(\rho_1, \rho_2)r$ -closed set of Z. Since $g \circ f$ is almost contra- $(\tau_1, \tau_2)p$ -continuous, by Theorem 1 we have $(g \circ f)^{-1}(F) = f^{-1}(g^{-1}(F))$ is $(\tau_1, \tau_2)p$ -open in X. Since f is $(\tau_1, \tau_2)p$ -open surjective, $f(f^{-1}(g^{-1}(F))) = g^{-1}(F)$ is $(\sigma_1, \sigma_2)p$ -open in Y. Thus, g is almost contra- $(\sigma_1, \sigma_2)p$ -continuous.

Definition 3. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be $(\tau_1,\tau_2)p$ -closed if f(K) is $(\sigma_1,\sigma_2)p$ -closed in Y for every $(\tau_1,\tau_2)p$ -closed set K of X.

Theorem 3. If $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is a $(\tau_1,\tau_2)p$ -closed surjection and

$$g:(Y,\sigma_1,\sigma_2)\to(Z,\rho_1,\rho_2)$$

is a function such that $g \circ f : (X, \tau_1, \tau_2) \to (Z, \rho_1, \rho_2)$ is almost contra- (τ_1, τ_2) p-continuous, then g is almost contra- (σ_1, σ_2) p-continuous.

Proof. The proof is similar to that of Theorem 2.

Definition 4. A bitopological space (X, τ_1, τ_2) is said to be weakly $\tau_1\tau_2$ -Hausdorff if each element of X is an intersection of $(\tau_1, \tau_2)r$ -closed sets.

Definition 5. A bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)p$ - T_1 if for each pair of distinct points x and y of X, there exist $(\tau_1, \tau_2)p$ -open sets U and V containing x and y, respectively, such that $y \notin U$ and $x \notin V$.

Theorem 4. If $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is an almost contra- $(\tau_1, \tau_2)p$ -continuous injection and (Y, σ_1, σ_2) is weakly $\sigma_1\sigma_2$ -Hausdorff, then (X, τ_1, τ_2) is $(\tau_1, \tau_2)p$ - T_1 .

Proof. Suppose that (Y, σ_1, σ_2) is weakly $\sigma_1\sigma_2$ -Hausdorff. For any distinct points x and y in X, there exist $(\sigma_1, \sigma_2)r$ -closed sets H and K of Y such that $f(x) \in H$, $f(y) \notin H$, $f(y) \in K$ and $f(x) \notin K$. Since f is almost contra- $(\tau_1, \tau_2)p$ -continuous, $f^{-1}(H)$ and $f^{-1}(K)$ are $(\tau_1, \tau_2)p$ -open sets of X such that $x \in f^{-1}(H)$, $y \notin f^{-1}(H)$, $y \in f^{-1}(K)$ and $x \notin f^{-1}(K)$. This shows that (X, τ_1, τ_2) is $(\tau_1, \tau_2)p$ - T_1 .

Recall that a bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ -connected [22] if X cannot be written as the union of two nonempty disjoint $\tau_1\tau_2$ -open sets.

Definition 6. A bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)p$ -connected if X cannot be written as the union of two nonempty disjoint $(\tau_1, \tau_2)p$ -open sets.

Theorem 5. If $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is an almost contra- (τ_1,τ_2) p-continuous surjection and (X,τ_1,τ_2) is (τ_1,τ_2) p-connected, then (Y,σ_1,σ_2) is $\sigma_1\sigma_2$ -connected.

Proof. Suppose that (Y, σ_1, σ_2) is not $\sigma_1 \sigma_2$ -connected. Then, there exist nonempty $\sigma_1 \sigma_2$ -open sets V and W such that $Y = V \cup W$. Therefore, V and W are $\sigma_1 \sigma_2$ -clopen in Y. Since f is almost contra- $(\tau_1, \tau_2)p$ -continuous, $f^{-1}(V)$ and $f^{-1}(W)$ are $(\tau_1, \tau_2)p$ -open in X. Furthermore, $f^{-1}(V)$ and $f^{-1}(W)$ are nonempty disjoint and $X = f^{-1}(V) \cup f^{-1}(W)$. This shows that (X, τ_1, τ_2) is not $(\tau_1, \tau_2)p$ -connected. This is a contradiction. Thus, (Y, σ_1, σ_2) is $\sigma_1 \sigma_2$ -connected.

Definition 7. A bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)p$ -compact if every $(\tau_1, \tau_2)p$ -open cover of X has a finite subcover.

Definition 8. A bitopological space (X, τ_1, τ_2) is said to be S- $\tau_1\tau_2$ -closed if every $(\tau_1, \tau_2)r$ -closed cover of X has a finite subcover.

Theorem 6. If $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is an almost contra- (τ_1, τ_2) p-continuous surjection and (X, τ_1, τ_2) is (τ_1, τ_2) p-compact, then (Y, σ_1, σ_2) is $S-\sigma_1\sigma_2$ -closed.

Proof. Let $\{V_{\gamma} \mid \gamma \in \nabla\}$ be any $(\sigma_1, \sigma_2)r$ -closed cover of Y. Since f is almost contra- $(\tau_1, \tau_2)p$ -continuous, we have $\{f^{-1}(V_{\gamma}) \mid \gamma \in \nabla\}$ is a $(\tau_1, \tau_2)p$ -open cover of X and therefore there exists a finite subset ∇_0 of ∇ such that $X = \bigcup \{f^{-1}(V_{\gamma}) \mid \gamma \in \nabla_0\}$. Thus, we have $Y = \bigcup \{V_{\gamma} \mid \gamma \in \nabla_0\}$ and hence (Y, σ_1, σ_2) is S- $\sigma_1\sigma_2$ -closed.

Definition 9. A bitopological space (X, τ_1, τ_2) is said to be \mathcal{P} - $\tau_1\tau_2$ -closed if every (τ_1, τ_2) p-closed cover of X has a finite subcover.

Definition 10. A bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r$ -compact if every $(\tau_1, \tau_2)r$ -open cover of X has a finite subcover.

Theorem 7. If $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is an almost contra- (τ_1, τ_2) p-continuous surjection and (X, τ_1, τ_2) is \mathcal{P} - $\tau_1\tau_2$ -closed, then (Y, σ_1, σ_2) is $(\sigma_1, \sigma_2)r$ -compact.

Proof. Let $\{V_{\gamma} \mid \gamma \in \nabla\}$ be any $(\sigma_1, \sigma_2)r$ -open cover of Y. Since f is almost contra- $(\tau_1, \tau_2)p$ -continuous, we have $\{f^{-1}(V_{\gamma}) \mid \gamma \in \nabla\}$ is a $(\tau_1, \tau_2)p$ -closed cover of X. Since (X, τ_1, τ_2) is \mathcal{P} - $\tau_1\tau_2$ -closed, there exists a finite subset ∇_0 of ∇ such that

$$X = \bigcup \{ f^{-1}(V_{\gamma}) \mid \gamma \in \nabla_0 \}.$$

Thus, we have $Y = \bigcup \{V_{\gamma} \mid \gamma \in \nabla_0\}$ and hence (Y, σ_1, σ_2) is $(\sigma_1, \sigma_2)r$ -compact.

Let A be a subset of a bitopological space (X, τ_1, τ_2) . A point $x \in X$ is called a $s(\tau_1, \tau_2)\theta$ -cluster point of A if $\tau_1\tau_2$ -Cl $(U) \cap A \neq \emptyset$ for every $(\tau_1, \tau_2)s$ -open set U containing x. The set of all $s(\tau_1, \tau_2)\theta$ -cluster points of A is called the $s(\tau_1, \tau_2)\theta$ -closure of A and is denoted by $s(\tau_1, \tau_2)\theta$ -Cl(A). A subset A of a bitopological space (X, τ_1, τ_2) is called $s(\tau_1, \tau_2)\theta$ -closed if $s(\tau_1, \tau_2)\theta$ -Cl(A) = A. The complement of a $s(\tau_1, \tau_2)\theta$ -closed set is said to be $s(\tau_1, \tau_2)\theta$ -open. The union of all $s(\tau_1, \tau_2)\theta$ -open sets of X contained in A is called the $s(\tau_1, \tau_2)\theta$ -interior of A and is denoted by $s(\tau_1, \tau_2)\theta$ -Int(A).

Definition 11. A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be $p(\tau_1, \tau_2)s$ -continuous if for each $x \in X$ and for each $(\sigma_1, \sigma_2)s$ -open set V of Y containing f(x), there exists a $(\tau_1, \tau_2)p$ -open set U of X containing x such that $f(U) \subseteq \sigma_1\sigma_2$ -Cl(V).

Theorem 8. For a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is $p(\tau_1, \tau_2)s$ -continuous;
- (2) f is almost contra- $(\tau_1, \tau_2)p$ -continuous;
- (3) $f^{-1}(V)$ is $(\tau_1, \tau_2)p$ -open in X for each $s(\sigma_1, \sigma_2)\theta$ -open set V of Y;
- (4) $f^{-1}(F)$ is (τ_1, τ_2) p-closed in X for each $s(\sigma_1, \sigma_2)\theta$ -closed set F of Y.

Proof. (1) \Rightarrow (2): Let F be any $(\sigma_1, \sigma_2)r$ -closed set of Y and $x \in f^{-1}(F)$. Then, $f(x) \in F$ and F is $(\sigma_1, \sigma_2)s$ -open. Since f is $p(\tau_1, \tau_2)s$ -continuous, there exists a $(\tau_1, \tau_2)p$ -open set U of X containing x such that $f(U) \subseteq \sigma_1\sigma_2$ -Cl(F) = F. Therefore, we have $x \in U \subseteq f^{-1}(F)$ which implies that $x \in (\tau_1, \tau_2)$ -pInt $(f^{-1}(F))$. Thus,

$$f^{-1}(F) \subseteq (\tau_1, \tau_2)\operatorname{-pInt}(f^{-1}(F))$$

and hence $f^{-1}(F) = (\tau_1, \tau_2)$ -pInt $(f^{-1}(F))$. This shows that $f^{-1}(F)$ is $(\tau_1, \tau_2)p$ -open in X. It follows from Theorem 1 that f is almost contra- $(\tau_1, \tau_2)p$ -continuous.

- $(2) \Rightarrow (3)$: This follows from the fact that every $s(\sigma_1, \sigma_2)\theta$ -open set is the union of $(\sigma_1, \sigma_2)r$ -closed sets.
 - $(3) \Leftrightarrow (4)$: This is obvious.
- (4) \Rightarrow (1): Let $x \in X$ and V be any $(\sigma_1, \sigma_2)s$ -open set of Y containing f(x). Since $\sigma_1\sigma_2\text{-Cl}(V)$ is $(\sigma_1, \sigma_2)r$ -closed, we have $\sigma_1\sigma_2\text{-Cl}(V)$ is $s(\sigma_1, \sigma_2)\theta$ -open. Thus by (4), $f^{-1}(\sigma_1\sigma_2\text{-Cl}(V))$ is $(\tau_1, \tau_2)p$ -open in X. Now, put $U = f^{-1}(\sigma_1\sigma_2\text{-Cl}(V))$. Then, U is a $(\tau_1, \tau_2)p$ -open set of X containing x and $f(U) \subseteq \sigma_1\sigma_2\text{-Cl}(V)$. This shows that f is $p(\tau_1, \tau_2)s$ -continuous.

Theorem 9. For a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is almost contra- $(\tau_1, \tau_2)p$ -continuous;
- (2) $f((\tau_1, \tau_2)-pCl(A)) \subseteq s(\sigma_1, \sigma_2)\theta-Cl(f(A))$ for every subset A of X;
- (3) (τ_1, τ_2) - $pCl(f^{-1}(B)) \subseteq f^{-1}(s(\sigma_1, \sigma_2)\theta Cl(B))$ for every subset B of Y.

Proof. (1) \Rightarrow (2): Let A be any subset of X. Let $x \in (\tau_1, \tau_2)$ -pCl(A) and V be any $(\sigma_1, \sigma_2)s$ -open set of Y containing f(x). Since f is almost contra- $(\tau_1, \tau_2)p$ -continuous, by Theorem 8 there exists a $(\tau_1, \tau_2)p$ -open set U of X containing x such that

$$f(U) \subseteq \sigma_1 \sigma_2$$
-Cl (V) .

Since $x \in (\tau_1, \tau_2)$ -pCl(A), we have $U \cap A \neq \emptyset$ and hence

$$\emptyset \neq f(U) \cap f(A) \subseteq \sigma_1 \sigma_2\text{-Cl}(V) \cap f(A)$$
.

Therefore, $f(x) \in s(\sigma_1, \sigma_2)\theta$ -Cl(f(A)). Thus, $f((\tau_1, \tau_2)$ -pCl $(A)) \subseteq s(\sigma_1, \sigma_2)\theta$ -Cl(f(A)). (2) \Rightarrow (3): Let B be any subset of Y. By (2), we have

$$f((\tau_1, \tau_2)\operatorname{-pCl}(f^{-1}(B))) \subseteq s(\sigma_1, \sigma_2)\theta\operatorname{-Cl}(f(f^{-1}(B)))$$

$$\subseteq s(\sigma_1, \sigma_2)\theta\operatorname{-Cl}(B)$$

and hence (τ_1, τ_2) -pCl $(f^{-1}(B)) \subseteq f^{-1}(s(\sigma_1, \sigma_2)\theta$ -Cl(B)).

 $(3) \Rightarrow (1)$: Let V be any (σ_1, σ_2) s-open set of Y containing f(x). Since

$$\sigma_1 \sigma_2$$
-Cl(V) \cap (Y $-\sigma_1 \sigma_2$ -Cl(V)) $= \emptyset$,

we have $f(x) \notin s(\sigma_1, \sigma_2)\theta$ -Cl $(Y - \sigma_1\sigma_2$ -Cl(V)) and hence

$$x \notin f^{-1}(s(\sigma_1, \sigma_2)\theta\text{-Cl}(Y - \sigma_1\sigma_2\text{-Cl}(V))).$$

By (3), $x \notin (\tau_1, \tau_2)$ -pCl $(f^{-1}(Y - \sigma_1\sigma_2\text{-Cl}(V)))$. There exists a $(\tau_1, \tau_2)p$ -open set U of X containing x such that $U \cap f^{-1}(Y - \sigma_1\sigma_2\text{-Cl}(V)) = \emptyset$; hence $f(U) \cap (Y - \sigma_1\sigma_2\text{-Cl}(V)) = \emptyset$. This shows that $f(U) \subseteq \sigma_1\sigma_2\text{-Cl}(V)$. Thus by Theorem 8, f is almost contra- $(\tau_1, \tau_2)p$ -continuous.

Theorem 10. For a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is almost contra- $(\tau_1, \tau_2)p$ -continuous;
- (2) $f^{-1}(\sigma_1\sigma_2\text{-}Cl(V))$ is $(\tau_1,\tau_2)p\text{-}open$ in X for every $(\sigma_1,\sigma_2)\beta\text{-}open$ set V of Y;
- (3) $f^{-1}(\sigma_1\sigma_2-Cl(V))$ is $(\tau_1,\tau_2)p$ -open in X for every $(\sigma_1,\sigma_2)s$ -open set V of Y;
- (4) $f^{-1}(\sigma_1\sigma_2\text{-Int}(\sigma_1\sigma_2\text{-Cl}(V)))$ is $(\tau_1, \tau_2)p\text{-closed}$ in X for every $(\sigma_1, \sigma_2)p\text{-open}$ set V of Y.
- *Proof.* (1) \Rightarrow (2): Let V be any $(\sigma_1, \sigma_2)\beta$ -open set of Y. Then, $\sigma_1\sigma_2$ -Cl(V) is $(\sigma_1, \sigma_2)r$ -closed in Y, by Theorem 1 we have $f^{-1}(\sigma_1\sigma_2$ -Cl(V)) is $(\tau_1, \tau_2)p$ -open in X.
 - (2) \Rightarrow (3): This is obvious since every $(\sigma_1, \sigma_2)s$ -open set is $(\sigma_1, \sigma_2)\beta$ -open.
- (3) \Rightarrow (4): Let V be any $(\sigma_1, \sigma_2)p$ -open set of Y. Then, $Y \sigma_1\sigma_2$ -Cl(V) is $(\sigma_1, \sigma_2)r$ -closed and hence $Y \sigma_1\sigma_2$ -Cl(V) is $(\sigma_1, \sigma_2)s$ -open. Thus by (3),

$$f^{-1}(\sigma_1\sigma_2\text{-Cl}(Y-\sigma_1\sigma_2\text{-Int}(\sigma_1\sigma_2\text{-Cl}(V))))$$

is $(\tau_1, \tau_2)p$ -open in X. Since

$$X - f^{-1}(\sigma_1 \sigma_2 - \operatorname{Int}(\sigma_1 \sigma_2 - \operatorname{Cl}(V))) = f^{-1}(Y - \sigma_1 \sigma_2 - \operatorname{Int}(\sigma_1 \sigma_2 - \operatorname{Cl}(V)))$$
$$= f^{-1}(\sigma_1 \sigma_2 - \operatorname{Cl}(Y - \sigma_1 \sigma_2 - \operatorname{Int}(\sigma_1 \sigma_2 - \operatorname{Cl}(V)))),$$

we have $f^{-1}(\sigma_1\sigma_2\text{-Int}(\sigma_1\sigma_2\text{-Cl}(V)))$ is $(\tau_1, \tau_2)p$ -closed in X.

 $(4) \Rightarrow (1)$: Let V be any $(\sigma_1, \sigma_2)r$ -open set of Y. Then, V is $(\sigma_1, \sigma_2)p$ -open in Y. By (4), we have $f^{-1}(V) = f^{-1}(\sigma_1\sigma_2\text{-Int}(\sigma_1\sigma_2\text{-Cl}(V)))$ is $(\tau_1, \tau_2)p$ -closed in X. It follows from Theorem 1 that f is almost contra- $(\tau_1, \tau_2)p$ -continuous.

Lemma 3. For a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) $\alpha(\tau_1, \tau_2)$ -Cl(V) = $\tau_1\tau_2$ -Cl(V) for every $(\tau_1, \tau_2)\beta$ -open set V of X;
- (2) (τ_1, τ_2) -pCl(V) = $\tau_1 \tau_2$ -Cl(V) for every (τ_1, τ_2) s-open set V of X;
- (3) (τ_1, τ_2) -sCl(V) = $\tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl(V)) for every (τ_1, τ_2) p-open set V of X.

Corollary 1. For a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is almost contra- $(\tau_1, \tau_2)p$ -continuous;
- (2) $f^{-1}(\alpha(\sigma_1, \sigma_2) Cl(V))$ is $(\tau_1, \tau_2)p$ -open in X for every $(\sigma_1, \sigma_2)\beta$ -open set V of Y;
- (3) $f^{-1}((\sigma_1, \sigma_2) pCl(V))$ is $(\tau_1, \tau_2)p$ -open in X for every $(\sigma_1, \sigma_2)s$ -open set V of Y;
- (4) $f^{-1}((\sigma_1, \sigma_2) sCl(V))$ is $(\tau_1, \tau_2)p$ -closed in X for every $(\sigma_1, \sigma_2)p$ -open set V of Y.

Proof. This is an immediate consequence of Theorem 10 and Lemma 3.

Definition 12. [20] A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be almost weakly (τ_1, τ_2) -continuous if for each $x \in X$ and each $\sigma_1 \sigma_2$ -open set V of Y containing f(x),

$$x \in \tau_1 \tau_2$$
-Int $(\tau_1 \tau_2$ -Cl $(f^{-1}(\sigma_1 \sigma_2$ -Cl $(V)))$.

Lemma 4. [20] For a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is almost weakly (τ_1, τ_2) -continuous;
- (2) $f^{-1}(V) \subseteq \tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl $(f^{-1}(\sigma_1 \sigma_2$ -Cl(V)))) for every $\sigma_1 \sigma_2$ -open set V of Y;
- (3) $\tau_1\tau_2$ - $Cl(\tau_1\tau_2$ - $Int(f^{-1}(V))) \subseteq f^{-1}(\sigma_1\sigma_2$ -Cl(V)) for every $\sigma_1\sigma_2$ -open set V of Y;
- (4) (τ_1, τ_2) -pCl $(f^{-1}(V)) \subseteq f^{-1}(\sigma_1 \sigma_2$ -Cl(V)) for every $\sigma_1 \sigma_2$ -open set V of Y;
- (5) $f^{-1}(V) \subseteq (\tau_1, \tau_2)$ -pInt $(f^{-1}(\sigma_1\sigma_2 Cl(V)))$ for every $\sigma_1\sigma_2$ -open set V of Y;
- (6) for each $x \in X$ and each $\sigma_1 \sigma_2$ -open set V of Y containing f(x), there exists a $(\tau_1, \tau_2)p$ -open set U of X containing x such that $f(U) \subseteq \sigma_1 \sigma_2$ -Cl(V).

Theorem 11. If a function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is almost contra- (τ_1, τ_2) p-continuous, then f is almost weakly (τ_1, τ_2) -continuous.

Proof. Let $x \in X$ and V be any $\sigma_1\sigma_2$ -open set of Y containing f(x). Then, $\sigma_1\sigma_2$ -Cl(V) is a $(\sigma_1, \sigma_2)r$ -closed set of Y containing f(x). Since f is almost contra- $(\tau_1, \tau_2)p$ -continuous, there exists a $(\tau_1, \tau_2)p$ -open set U of X containing x such that $f(U) \subseteq \sigma_1\sigma_2$ -Cl(V). By Lemma 4, f is almost weakly (τ_1, τ_2) -continuous.

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- [1] J. Dontchev. Contra-continuous functions and strongly S-closed spaces. International Journal of Mathematics and Mathematical Sciences, 19:303–310, 1966.
- [2] J. Dontchev, M. Ganster, and I. Reilly. More on almost s-continuity. *Indian Journal of Mathematics*, 41:139–146, 1999.
- [3] J. Dontchev and T. Noiri. Contra-semicontinuous functions. *Mathematica Pannonica*, 10:159–168, 1999.
- [4] S. Jafari and T. Noiri. Contra-super-continuous functions. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös, Sectio Mathematica, 42:27–34, 1999.

- [5] S. Jafari and T. Noiri. On contra-precontinuous functions. *Bulletin of the Malaysian Mathematical Sciences Society*, 25:115–128, 2002.
- [6] E. Ekici. Almost contra-precontinuous functions. Bulletin of the Malaysian Mathematical Sciences Society, 27:53–65, 2004.
- [7] T. Noiri, B. Ahmad, and M. Khan. Almost s-continuous functions. Kyungpook Mathematical Journal, 35:311–322, 1995.
- [8] T. Noiri. Super-continuity and some strong forms of continuity. *Indian Journal of Pure and Applied Mathematics*, 15:241–250, 1984.
- [9] T. Noiri and S. Jafari. Some properties of almost contra-precontinuous functions. Bulletin of the Malaysian Mathematical Sciences Society, 28:107–116, 2005.
- [10] S. Jafari. On semi-pre-irresolute functions. Far East Journal of Mathematical Sciences, 6:1003–1010, 1998.
- [11] A. Al-Omari and M. S. M. Noorani. Contra ω -continuous and almost contra ω -continuous functions. International Journal of Mathematics and Mathematical Sciences, 2007:40469, 2007.
- [12] C. Boonpok and N. Srisarakham. (τ_1, τ_2) -continuity for functions. Asia Pacific Journal of Mathematics, 11:21, 2024.
- [13] C. Boonpok and P. Pue-on. Characterizations of almost (τ_1, τ_2) -continuous functions. International Journal of Analysis and Applications, 22:33, 2024.
- [14] C. Boonpok and C. Klanarong. On weakly (τ_1, τ_2) -continuous functions. European Journal of Pure and Applied Mathematics, 17(1):416–425, 2024.
- [15] N. Srisarakham, S. Sompong, and C. Boonpok. Quasi $\theta(\tau_1, \tau_2)$ -continuous functions. European Journal of Pure and Applied Mathematics, 18(1):5722, 2025.
- [16] C. Prachanpol, C. Boonpok, and C. Viriyapong. $\delta(\tau_1, \tau_2)$ -continuous functions. European Journal of Pure and Applied Mathematics, 17(4):3730–3742, 2024.
- [17] B. Kong-ied, S. Sompong, and C. Boonpok. Almost quasi (τ_1, τ_2) -continuous functions. Asia Pacific Journal of Mathematics, 11:64, 2024.
- [18] M. Chiangpradit, S. Sompong, and C. Boonpok. Weakly quasi (τ_1, τ_2) -continuous functions. *International Journal of Analysis and Applications*, 22:125, 2024.
- [19] N. Srisarakham, A. Sama-Ae, and C. Boonpok. Characterizations of faintly (τ_1, τ_2) -continuous functions. European Journal of Pure and Applied Mathematics, 17(4):2753-2762, 2024.
- [20] J. Khampakdee, S. Sompong, and C. Boonpok. Almost weakly (τ_1, τ_2) -continuous functions. European Journal of Pure and Applied Mathematics, 18(1):5721, 2025.
- [21] C. Boonpok and J. Khampakdee. Upper and lower almost contra- (Λ, sp) -continuity. European Journal of Pure and Applied Mathematics, 16(1):156–168, 2023.
- [22] C. Boonpok, C. Viriyapong, and M. Thongmoon. On upper and lower (τ_1, τ_2) precontinuous multifunctions. *Journal of Mathematics and Computer Science*,
 18:282–293, 2018.
- [23] C. Viriyapong and C. Boonpok. $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions. *Journal of Mathematics*, 2020:6285763, 2020.
- [24] C. Boonpok. $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions. Heliyon, 6:e05367, 2020.
- [25] N. Viriyapong, S. Sompong, and C. Boonpok. (τ_1, τ_2) -extremal disconnectedness in

- bitopological spaces. International Journal of Mathematics and Computer Science, $19(3):855-860,\ 2024.$
- [26] N. Viriyapong, S. Sompong, and C. Boonpok. Upper and lower s- $(\tau_1, \tau_2)p$ -continuous multifunctions. European Journal of Pure and Applied Mathematics, 17(3):2210–2220, 2024.
- [27] C. Viriyapong, S. Sompong, and C. Boonpok. Upper and lower slight $\alpha(\tau_1, \tau_2)$ -continuity. European Journal of Pure and Applied Mathematics, 17(3):2142–2154, 2024.
- [28] P. Pue-on, S. Sompong, and C. Boonpok. Almost quasi (τ_1, τ_2) -continuity for multifunctions. *International Journal of Analysis and Applications*, 22:97, 2024.