EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 2, Article Number 6039 ISSN 1307-5543 – ejpam.com Published by New York Business Global

On Contra- $(\tau_1, \tau_2)p$ -continuous Functions

Monchaya Chiangpradit¹, Supunnee Sompong², Chawalit Boonpok^{1,*}

¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

Abstract. This paper presents a new class of functions called contra- $(\tau_1, \tau_2)p$ -continuous functions. Furthermore, several characterizations and some properties concerning contra- $(\tau_1, \tau_2)p$ -continuous functions are considered.

2020 Mathematics Subject Classifications: 54C08, 54E55

Key Words and Phrases: $\tau_1\tau_2$ -open set, contra- $(\tau_1, \tau_2)p$ -continuous function

1. Introduction

The notions of contra-continuity and strong S-closedness in topological spaces were introduced by Dontchev [1]. Furthermore, Dontchev [1] obtained very interesting and important results concerning contra-continuity, compactness, S-closedness and strong Sclosedness. Dontchev and Noiri [2] introduced and studied the concept of RC-continuity between topological spaces which is weaker than contra-continuity. Jafari and Noiri [3] introduced and investigated a new class of functions called contra-super-continuous functions which lies between classes of RC-continuous functions and contra-continuous functions. In 2002, Jafari and Noiri [4] introduced a new class of function called contraprecontinuous functions which is weaker than contra-continuous functions and studied several basic properties of contra-precontinuous functions. Moreover, the present authors [4] defined contra-preclosed graphs and investigated relations between contra-precontinuity and contra-preclosed graphs. In 2004, Ekici [5] introduced and studied a new class of functions called almost contra-precontinuous functions which generalize classes of regular setconnected functions [6], contra-precontinuous functions [4], contra-continuous functions [1], almost s-continuous functions [7] and perfectly continuous functions [8]. In 2007, Al-Omari and Noorani [9] introduced the concept of almost contra ω -continuous functions via the notion of ω -open sets and investigated several characterizations of contra ω -continuous

DOI: https://doi.org/10.29020/nybg.ejpam.v18i2.6039

Email addresses: monchaya.c@msu.ac.th (M. Chiangpradit), s_sompong@snru.ac.th (S. Sompong), chawalit.b@msu.ac.th (C. Boonpok)

1

² Department of Mathematics and Statistics, Faculty of Science and Technology, Sakon Nakhon Rajbhat University, Sakon Nakhon, 47000, Thailand

^{*}Corresponding author.

functions and almost contra ω -continuous functions. Noiri and Popa [10] introduced the notion of contra m-continuous functions as functions from a set satisfying some minimal conditions into a topological space and investigated some characterizations and the relationships between contra m-continuity and other related generalized forms of continuity. It turns out that the contra m-continuity is a unified form of several modifications of weak contra-continuity due to Baker [11]. On the other hand, the present authors introduced and studied the notions of (τ_1, τ_2) -continuous functions [12], almost (τ_1, τ_2) -continuous functions [13], weakly (τ_1, τ_2) -continuous functions [14], quasi $\theta(\tau_1, \tau_2)$ -continuous functions [15], $\delta(\tau_1, \tau_2)$ -continuous functions [16], almost quasi (τ_1, τ_2) -continuous functions [17], weakly quasi (τ_1, τ_2) -continuous functions [18], faintly (τ_1, τ_2) -continuous functions [19] and almost nearly (τ_1, τ_2) -continuous functions [20]. In this paper, we introduce the concept of contra- (τ_1, τ_2) -continuous functions. We also investigate some characterizations of contra- (τ_1, τ_2) -continuous functions.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$ -closed [21] if $A = \tau_1$ -Cl(τ_2 -Cl(A). The complement of a $\tau_1\tau_2$ -closed set is called $\tau_1\tau_2$ -open. The intersection of all $\tau_1\tau_2$ -closed sets of X containing A is called the $\tau_1\tau_2$ -closure [21] of A and is denoted by $\tau_1\tau_2$ -Interior [21] of A and is denoted by $\tau_1\tau_2$ -Interior [21] of A and is denoted by $\tau_1\tau_2$ -Interior [21] of A and is denoted by $\tau_1\tau_2$ -Interior

Lemma 1. [21] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1\tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2 Cl(A) \subseteq \tau_1 \tau_2 Cl(B)$.
- (3) $\tau_1\tau_2$ -Cl(A) is $\tau_1\tau_2$ -closed.
- (4) A is $\tau_1\tau_2$ -closed if and only if $A = \tau_1\tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2 Cl(X A) = X \tau_1 \tau_2 Int(A)$.

A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r$ -open [22] (resp. $(\tau_1, \tau_2)s$ -open [23], $(\tau_1, \tau_2)p$ -open [23], $(\tau_1, \tau_2)\beta$ -open [23]) if $A = \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)) (resp. $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)), $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)), $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A))). The complement of a $(\tau_1, \tau_2)r$ -open (resp. $(\tau_1, \tau_2)s$ -open, $(\tau_1, \tau_2)p$ -open, $(\tau_1, \tau_2)\beta$ -open) set is said to be $(\tau_1, \tau_2)r$ -closed (resp. $(\tau_1, \tau_2)s$ -closed, $(\tau_1, \tau_2)p$ -closed, $(\tau_1, \tau_2)\beta$ -closed). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\alpha(\tau_1, \tau_2)$ -open [24] if $A \subseteq$

 $\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A))). The complement of an $\alpha(\tau_1,\tau_2)$ -open set is said to be $\alpha(\tau_1,\tau_2)$ -closed. Let A be a subset of a bitopological space (X,τ_1,τ_2) . The set

$$\cap \{G \mid A \subseteq G \text{ and } G \text{ is } \tau_1 \tau_2 \text{-open} \}$$

is called the $\tau_1\tau_2$ -kernel [21] of A and is denoted by $\tau_1\tau_2$ -ker(A).

Lemma 2. [21] For subsets A, B of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2$ -ker(A).
- (2) If $A \subseteq B$, then $\tau_1\tau_2$ -ker $(A) \subseteq \tau_1\tau_2$ -ker(B).
- (3) If A is $\tau_1\tau_2$ -open, then $\tau_1\tau_2$ -ker(A) = A.
- (4) $x \in \tau_1\tau_2$ -ker(A) if and only if $A \cap H \neq \emptyset$ for every $\tau_1\tau_2$ -closed set H containing x.

Let A be a subset of a bitopological space (X, τ_1, τ_2) . The intersection of all $(\tau_1, \tau_2)p$ -closed sets of X containing A is called the $(\tau_1, \tau_2)p$ -closure [25] of A and is denoted by (τ_1, τ_2) -pCl(A). The union of all $(\tau_1, \tau_2)p$ -open sets of X contained in A is called the $(\tau_1, \tau_2)p$ -interior [25] of A and is denoted by (τ_1, τ_2) -pInt(A).

Lemma 3. For a subset A of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) (τ_1, τ_2) - $pCl(A) = \tau_1\tau_2$ - $Cl(\tau_1\tau_2$ - $Int(A)) \cup A$ [25];
- (2) (τ_1, τ_2) -pInt(A) = $\tau_1 \tau_2$ -Int($\tau_1 \tau_2$ -Cl(A)) \cap A [26].

3. Contra- $(\tau_1, \tau_2)p$ -continuous functions

In this section, we introduce the concept of contra- $(\tau_1, \tau_2)p$ -continuous functions. Moreover, some characterizations of contra- $(\tau_1, \tau_2)p$ -continuous functions are discussed.

Definition 1. A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be contra- (τ_1, τ_2) p-continuous if for each $x \in X$ and for each $\sigma_1\sigma_2$ -closed set F of Y containing f(x), there exists a (τ_1, τ_2) p-open set U of X containing x such that $f(U) \subseteq F$.

Theorem 1. For a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is $contra-(\tau_1, \tau_2)p$ -continuous;
- (2) $f^{-1}(F)$ is $(\tau_1, \tau_2)p$ -open in X for every $\sigma_1\sigma_2$ -closed set F of Y;
- (3) $f^{-1}(V)$ is (τ_1, τ_2) p-closed in X for every $\sigma_1 \sigma_2$ -open set V of Y;
- (4) $f((\tau_1, \tau_2) pCl(A)) \subseteq \sigma_1 \sigma_2 ker(f(A))$ for every subset A of X;

(5) (τ_1, τ_2) - $pCl(f^{-1}(B)) \subseteq f^{-1}(\sigma_1\sigma_2\text{-ker}(B))$ for every subset B of Y.

Proof. (1) \Rightarrow (2): Let F be any $\sigma_1\sigma_2$ -closed set of Y and $x \in f^{-1}(F)$. Then, $f(x) \in F$. Since f is contra- $(\tau_1, \tau_2)p$ -continuous, there exists a $(\tau_1, \tau_2)p$ -open set U of X containing x such that $f(U) \subseteq F$. Thus, $U \subseteq f^{-1}(F)$ and hence $x \in U \subseteq f^{-1}(F)$. Therefore,

$$x \in (\tau_1, \tau_2)\text{-pInt}(f^{-1}(F)).$$

This implies that $f^{-1}(F) \subseteq (\tau_1, \tau_2)$ -pInt $(f^{-1}(F))$. Thus, $f^{-1}(F)$ is $(\tau_1, \tau_2)p$ -open in X.

- (2) \Leftrightarrow (3): Let V be any $\sigma_1\sigma_2$ -open set of Y. Then, Y V is $\sigma_1\sigma_2$ -closed in Y. By (2), we have $f^{-1}(Y V) = X f^{-1}(V)$ is $(\tau_1, \tau_2)p$ -open in X and hence $f^{-1}(V)$ is $(\tau_1, \tau_2)p$ -closed in X. The converse can be shown easily.
- $(2) \Rightarrow (4)$: Let A be any subset of X. Suppose that $y \notin \sigma_1\sigma_2\text{-}ker(f(A))$. Then by Lemma 2, there exists a $\sigma_1\sigma_2\text{-}closed$ set K of Y containing y such that $f(A) \cap K = \emptyset$. Thus, $A \cap f^{-1}(K) = \emptyset$ and hence $(\tau_1, \tau_2)\text{-pCl}(A) \cap f^{-1}(K) = \emptyset$. Therefore,

$$f((\tau_1, \tau_2)\operatorname{-pCl}(A)) \cap K = \emptyset$$

and $y \notin f((\tau_1, \tau_2)\operatorname{-pCl}(A))$. This shows that $f((\tau_1, \tau_2)\operatorname{-pCl}(A)) \subseteq \sigma_1\sigma_2\operatorname{-ker}(f(A))$.

 $(4) \Rightarrow (5)$: Let B be any subset of Y. By (4) and Lemma 2, we have

$$f((\tau_1, \tau_2)\operatorname{-pCl}(f^{-1}(B))) \subseteq \sigma_1\sigma_2\operatorname{-ker}(f(f^{-1}(B)))$$

 $\subseteq \sigma_1\sigma_2\operatorname{-ker}(B)$

and hence (τ_1, τ_2) -pCl $(f^{-1}(B)) \subseteq f^{-1}(\sigma_1 \sigma_2 - ker(B))$.

- (5) \Rightarrow (3): Let V be any $\sigma_1\sigma_2$ -open set of Y. Then by (5) and Lemma 2, we have (τ_1, τ_2) -pCl $(f^{-1}(V)) \subseteq f^{-1}(\sigma_1\sigma_2$ -ker $(V)) = f^{-1}(V)$ and hence $f^{-1}(V)$ is $(\tau_1, \tau_2)p$ -closed in X.
- $(2) \Rightarrow (1)$: Let F be any $\sigma_1\sigma_2$ -closed set of Y containing f(x). By (2), $f^{-1}(F)$ is $(\tau_1, \tau_2)p$ -open in X. Then we have, $x \in (\tau_1, \tau_2)$ -pInt $(f^{-1}(F))$ and therefore there exists a $(\tau_1, \tau_2)p$ -open set U of X such that $x \in U \subseteq f^{-1}(F)$; hence $f(U) \subseteq F$. This shows that f is contra- $(\tau_1, \tau_2)p$ -continuous.

Recall that a bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) -regular [27] if for each $\tau_1\tau_2$ -closed set F and each point $x \in X - F$, there exist disjoint $\tau_1\tau_2$ -open sets U and V such that $x \in U$ and $F \subseteq V$.

Definition 2. A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be $(\tau_1, \tau_2)p$ -continuous if for each $x \in X$ and for each $\sigma_1\sigma_2$ -open set V of Y containing f(x), there exists a $(\tau_1, \tau_2)p$ -open set U of X containing x such that $f(U) \subseteq V$.

Theorem 2. If a function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is contra- (τ_1, τ_2) p-continuous and (Y, σ_1, σ_2) is (σ_1, σ_2) -regular, then f is (τ_1, τ_2) p-continuous.

Proof. Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y containing f(x). Since (Y, σ_1, σ_2) is (σ_1, σ_2) -regular, there exists a $\sigma_1 \sigma_2$ -open set W of Y containing f(x) such that

$$\sigma_1 \sigma_2$$
-Cl(W) $\subseteq V$.

Since f is contra- $(\tau_1, \tau_2)p$ -continuous, there exists a $(\tau_1, \tau_2)p$ -open set U of X containing x such that $f(U) \subseteq \sigma_1\sigma_2$ -Cl(W). Thus, $f(U) \subseteq \sigma_1\sigma_2$ -Cl $(W) \subseteq V$ and hence f is $(\tau_1, \tau_2)p$ -continuous.

Definition 3. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be almost $(\tau_1,\tau_2)p$ -continuous if for each $x\in X$ and for each $\sigma_1\sigma_2$ -open set V of Y containing f(x), there exists a $(\tau_1,\tau_2)p$ -open set U of X containing x such that $f(U)\subseteq \sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)).

Definition 4. A functions $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be $(\tau_1,\tau_2)p$ -open if f(U) is $(\sigma_1,\sigma_2)p$ -open in Y for every $(\tau_1,\tau_2)p$ -open set U of X.

Theorem 3. If $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is a $(\tau_1,\tau_2)p$ -open contra- $(\tau_1,\tau_2)p$ -continuous function, then f is almost $(\tau_1,\tau_2)p$ -continuous.

Proof. Let $x \in X$ and V be any $\sigma_1\sigma_2$ -open set of Y containing f(x). Since f is contra- $(\tau_1, \tau_2)p$ -continuous, there exists a $(\tau_1, \tau_2)p$ -open set U of X containing x such that $f(U) \subseteq \sigma_1\sigma_2$ -Cl(V). Since f is $(\tau_1, \tau_2)p$ -open, f(U) is $\sigma_1\sigma_2$ -open in Y. Therefore, $f(U) \subseteq \sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(f(U))) $\subseteq \sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(f(U)). This shows that f is almost $(\tau_1, \tau_2)p$ -continuous.

Definition 5. [26] A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be almost weakly (τ_1, τ_2) -continuous if for each $x \in X$ and each $\sigma_1 \sigma_2$ -open set V of Y containing f(x),

$$x \in \tau_1 \tau_2 - Int(\tau_1 \tau_2 - Cl(f^{-1}(\sigma_1 \sigma_2 - Cl(V)))).$$

Lemma 4. [26] For a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is almost weakly (τ_1, τ_2) -continuous;
- (2) $f^{-1}(V) \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(f^{-1}(\sigma_1\sigma_2$ -Cl(V)))) for every $\sigma_1\sigma_2$ -open set V of Y;
- (3) $\tau_1\tau_2$ - $Cl(\tau_1\tau_2$ - $Int(f^{-1}(V))) \subseteq f^{-1}(\sigma_1\sigma_2$ -Cl(V)) for every $\sigma_1\sigma_2$ -open set V of Y:
- (4) (τ_1, τ_2) - $pCl(f^{-1}(V)) \subseteq f^{-1}(\sigma_1\sigma_2 Cl(V))$ for every $\sigma_1\sigma_2$ -open set V of Y;
- (5) $f^{-1}(V) \subseteq (\tau_1, \tau_2)$ -pInt $(f^{-1}(\sigma_1\sigma_2 Cl(V)))$ for every $\sigma_1\sigma_2$ -open set V of Y;
- (6) for each $x \in X$ and each $\sigma_1\sigma_2$ -open set V of Y containing f(x), there exists a $(\tau_1, \tau_2)p$ -open set U of X containing x such that $f(U) \subseteq \sigma_1\sigma_2$ -Cl(V).

Theorem 4. If a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is contra- (τ_1,τ_2) p-continuous, then f is almost weakly (τ_1,τ_2) -continuous.

Proof. Let V be any $\sigma_1\sigma_2$ -open set of Y. Since f is contra- $(\tau_1, \tau_2)p$ -continuous and $\sigma_1\sigma_2$ -Cl(V) is $\sigma_1\sigma_2$ -closed in Y, by Theorem 1 we have $f^{-1}(\sigma_1\sigma_2$ -Cl(V)) is $(\tau_1, \tau_2)p$ -open in X. Thus, $f^{-1}(V) \subseteq f^{-1}(\sigma_1\sigma_2$ -Cl(V)) $\subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl($f^{-1}(\sigma_1\sigma_2$ -Cl(V))). By Lemma 4(2), f is almost weakly (τ_1, τ_2) -continuous.

The $(\tau_1, \tau_2)p$ -frontier [25] of a subset A of a bitopological space (X, τ_1, τ_2) , denoted by (τ_1, τ_2) -pfr(A), is defined by

$$(\tau_1, \tau_2)\text{-pfr}(A) = (\tau_1, \tau_2)\text{-pCl}(A) \cap (\tau_1, \tau_2)\text{-pCl}(X - A)$$
$$= (\tau_1, \tau_2)\text{-pCl}(A) - (\tau_1, \tau_2)\text{-pInt}(A).$$

Theorem 5. The set of all points x of X at which a function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is not contra- (τ_1, τ_2) p-continuous is identical with the union of the (τ_1, τ_2) p-frontier of the inverse images of $\sigma_1\sigma_2$ -closed sets of Y containing f(x).

Proof. Suppose that f is not contra- $(\tau_1, \tau_2)p$ -continuous at $x \in X$. Then, there exists a $\sigma_1\sigma_2$ -closed set F of Y containing f(x) such that $f(U) \cap (Y - F) \neq \emptyset$ for every $(\tau_1, \tau_2)p$ -open set U of X containing x. This implies that $U \cap f^{-1}(Y - F) \neq \emptyset$. Therefore, $x \in (\tau_1, \tau_2)$ -pCl $(f^{-1}(Y - F)) = (\tau_1, \tau_2)$ -pCl $(X - f^{-1}(F))$. On the other hand, we have $x \in f^{-1}(F) \subseteq (\tau_1, \tau_2)$ -pCl $(f^{-1}(F))$ and hence $x \in (\tau_1, \tau_2)$ -pfr $(f^{-1}(F))$.

Conversely, suppose that $x \in (\tau_1, \tau_2)$ -pfr $(f^{-1}(F))$ for some $\sigma_1\sigma_2$ -closed set F of Y containing f(x). Now, we assume that f is contra- $(\tau_1, \tau_2)p$ -continuous at x. Then, there exists a $(\tau_1, \tau_2)p$ -open set U of X containing x such that $f(U) \subseteq F$. Thus, $U \subseteq f^{-1}(F)$ and hence $x \in (\tau_1, \tau_2)$ -pInt $(f^{-1}(F)) \subseteq X - (\tau_1, \tau_2)$ -pfr $(f^{-1}(F))$. This is a contradiction. This means that f is not contra- $(\tau_1, \tau_2)p$ -continuous.

Definition 6. A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called contra- $\alpha(\tau_1, \tau_2)$ -continuous if $f^{-1}(V)$ is $\alpha(\tau_1, \tau_2)$ -closed in X for each $\sigma_1\sigma_2$ -open set V of Y.

Definition 7. A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called contra- $(\tau_1, \tau_2)s$ -continuous if $f^{-1}(V)$ is $(\tau_1, \tau_2)s$ -closed in X for each $\sigma_1\sigma_2$ -open set V of Y.

Lemma 5. For a subset A of a bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) A is $\alpha(\tau_1, \tau_2)$ -open;
- (2) A is $(\tau_1, \tau_2)p$ -open and $(\tau_1, \tau_2)s$ -open.

Proof. (1) \Rightarrow (2): Let A be $\alpha(\tau_1, \tau_2)$ -open. Then, $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A))). Therefore, $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)) and $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)). This shows that A is $(\tau_1, \tau_2)p$ -open and $(\tau_1, \tau_2)s$ -open.

 $(2) \Rightarrow (1)$: Let A be $(\tau_1, \tau_2)p$ -open and $(\tau_1, \tau_2)s$ -open. Then, $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)) and $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)). Thus,

$$A \subseteq \tau_1 \tau_2$$
-Int $(\tau_1 \tau_2$ -Cl $(A)) \subseteq \tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl $(\tau_1 \tau_2$ -Int $(A))$

and hence A is $\alpha(\tau_1, \tau_2)$ -open.

Theorem 6. For a $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

(1) f is $contra-\alpha(\tau_1, \tau_2)$ -continuous;

(2) f is contra- (τ_1, τ_2) p-continuous and contra- (τ_1, τ_2) s-continuous.

Proof. This is an immediate consequence of Lemma 5.

Definition 8. A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be RC- (τ_1, τ_2) -continuous if $f^{-1}(V)$ is $(\tau_1, \tau_2)r$ -closed in X for each $\sigma_1\sigma_2$ -open set V of Y.

Definition 9. A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be $(\tau_1, \tau_2)s$ -continuous if for $x \in X$ and each $\sigma_1\sigma_2$ -open set V of Y containing f(x), there exists a $(\tau_1, \tau_2)s$ -open set U of X containing x such that $f(U) \subseteq V$.

Definition 10. A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be $(\tau_1, \tau_2)\beta$ -continuous if for $x \in X$ and each $\sigma_1\sigma_2$ -open set V of Y containing f(x), there exists a $(\tau_1, \tau_2)\beta$ -open set U of X containing x such that $f(U) \subseteq V$.

Lemma 6. For a subset A of a bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) A is $(\tau_1, \tau_2)r$ -closed;
- (2) A is (τ_1, τ_2) p-closed and (τ_1, τ_2) s-open;
- (3) A is $\alpha(\tau_1, \tau_2)$ -closed and $(\tau_1, \tau_2)\beta$ -open.

Proof. (1) \Rightarrow (2): Let A be $(\tau_1, \tau_2)r$ -closed. Then, we have $A = \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)). Thus, A is $(\tau_1, \tau_2)p$ -closed and $(\tau_1, \tau_2)s$ -open.

 $(2) \Rightarrow (3)$: Let A be $(\tau_1, \tau_2)p$ -closed and $(\tau_1, \tau_2)s$ -open. Then, $\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(A)) \subseteq A$ and $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)). Thus, $\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(A)) = \tau_1\tau_2$ -Cl(A) and hence

$$\tau_1\tau_2\text{-}\operatorname{Cl}(\tau_1\tau_2\text{-}\operatorname{Int}(\tau_1\tau_2\text{-}\operatorname{Cl}(A))) = \tau_1\tau_2\text{-}\operatorname{Cl}(\tau_1\tau_2\text{-}\operatorname{Int}(\tau_1\tau_2\text{-}\operatorname{Int}(A))))$$
$$= \tau_1\tau_2\text{-}\operatorname{Cl}(\tau_1\tau_2\text{-}\operatorname{Int}(A)) \subseteq A.$$

This shows that A is $\alpha(\tau_1, \tau_2)$ -closed. It is obvious that A is $(\tau_1, \tau_2)\beta$ -open.

 $(3) \Rightarrow (1)$: Let A be $\alpha(\tau_1, \tau_2)$ -closed and $(\tau_1, \tau_2)\beta$ -open. Then, we have

$$\tau_1 \tau_2$$
-Cl $(\tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl $(A))) \subseteq A$

and $A \subseteq \tau_1\tau_2\text{-Cl}(\tau_1\tau_2\text{-Int}(\tau_1\tau_2\text{-Cl}(A)))$. Thus, $A = \tau_1\tau_2\text{-Cl}(\tau_1\tau_2\text{-Int}(\tau_1\tau_2\text{-Cl}(A)))$ and hence

$$\tau_1\tau_2\text{-}\operatorname{Cl}(\tau_1\tau_2\text{-}\operatorname{Int}(A)) = \tau_1\tau_2\text{-}\operatorname{Cl}(\tau_1\tau_2\text{-}\operatorname{Int}(\tau_1\tau_2\text{-}\operatorname{Cl}(\tau_1\tau_2\text{-}\operatorname{Int}(\tau_1\tau_2\text{-}\operatorname{Cl}(A)))))$$
$$= \tau_1\tau_2\text{-}\operatorname{Cl}(\tau_1\tau_2\text{-}\operatorname{Int}(\tau_1\tau_2\text{-}\operatorname{Cl}(A))) = A.$$

Therefore, A is $(\tau_1, \tau_2)r$ -closed.

As a consequence of Lemma 6, we have the following result:

Theorem 7. For a $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is RC- (τ_1, τ_2) -continuous;
- (2) f is contra- $(\tau_1, \tau_2)p$ -continuous and $(\tau_1, \tau_2)s$ -continuous;
- (3) f is contra- $\alpha(\tau_1, \tau_2)$ -continuous and $(\tau_1, \tau_2)\beta$ -continuous.

Definition 11. [28] A bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ -Urysohn if for each pair of distinct points x and y in X, there exist $\tau_1\tau_2$ -open sets U and V such that $x \in U$, $y \in V$ and $\tau_1\tau_2$ - $Cl(U) \cap \tau_1\tau_2$ - $Cl(V) = \emptyset$.

Definition 12. A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to have a contra- (τ_1, τ_2) p-closed graph if for each $(x, y) \in (X \times Y) - G(f)$, there exists a (τ_1, τ_2) p-open set U of X containing x and a $\sigma_1\sigma_2$ -closed set K of Y containing y such that $(U \times K) \cap G(f) = \emptyset$.

Lemma 7. A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ has a contra- (τ_1, τ_2) p-closed graph if and only if for each $(x, y) \in (X \times Y) - G(f)$, there exists a (τ_1, τ_2) p-open set U of X containing x and a $\sigma_1\sigma_2$ -closed set K of Y containing y such that $f(U) \cap K = \emptyset$.

Theorem 8. If a function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is contra- (τ_1, τ_2) p-continuous and (Y, σ_1, σ_2) is $\sigma_1\sigma_2$ -Urysohn, then G(f) is contra- (τ_1, τ_2) p-closed.

Proof. Let $(x,y) \in (X \times Y) - G(f)$. Then, $y \neq f(x)$. Since (Y,σ_1,σ_2) is $\sigma_1\sigma_2$ -Urysohn, there exist $\sigma_1\sigma_2$ -open sets V and W of Y containing y and f(x), respectively, such that $\sigma_1\sigma_2$ -Cl $(V) \cap \sigma_1\sigma_2$ -Cl $(W) = \emptyset$. Since f is contra- $(\tau_1,\tau_2)p$ -continuous, there exists a $(\tau_1,\tau_2)p$ -open set U of X containing x such that $f(U) \subseteq \sigma_1\sigma_2$ -Cl(W). Thus, $f(U) \cap \sigma_1\sigma_2$ -Cl $(V) = \emptyset$ and hence by Lemma 7, G(f) is contra- $(\tau_1,\tau_2)p$ -closed.

Recall that a bitopological space (X, τ_1, τ_2) is said to be $\tau_1 \tau_2$ -connected [21] if X cannot be written as the union of two nonempty disjoint $\tau_1 \tau_2$ -open sets.

Definition 13. A bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)p$ -connected if X cannot be written as the union of two nonempty disjoint $(\tau_1, \tau_2)p$ -open sets.

Theorem 9. If $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a contra- (τ_1, τ_2) p-continuous surjection and (X, τ_1, τ_2) is (τ_1, τ_2) p-connected, then (Y, σ_1, σ_2) is $\sigma_1 \sigma_2$ -connected.

Proof. Suppose that (Y, σ_1, σ_2) is not $\sigma_1\sigma_2$ -connected. Then, there exist nonempty $\sigma_1\sigma_2$ -open sets V and W such that $Y = V \cup W$. Therefore, V and W are $\sigma_1\sigma_2$ -clopen in Y. Since f is contra- $(\tau_1, \tau_2)p$ -continuous, $f^{-1}(V)$ and $f^{-1}(W)$ are $(\tau_1, \tau_2)p$ -open in X. Moreover, $f^{-1}(V)$ and $f^{-1}(W)$ are nonempty disjoint and $X = f^{-1}(V) \cup f^{-1}(W)$. This shows that (X, τ_1, τ_2) is not $(\tau_1, \tau_2)p$ -connected. This is a contradiction. This means that (Y, σ_1, σ_2) is $\sigma_1\sigma_2$ -connected.

Definition 14. A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called perfectly (τ_1, τ_2) -continuous if $f^{-1}(V)$ is $\tau_1\tau_2$ -clopen in X for each $\sigma_1\sigma_2$ -open set V of Y.

Definition 15. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is called $\alpha(\tau_1,\tau_2)$ -continuous if $f^{-1}(V)$ is $\alpha(\tau_1,\tau_2)$ -open in X for each $\sigma_1\sigma_2$ -open set V of Y.

Theorem 10. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is perfectly (τ_1,τ_2) -continuous if and only if f is contra- (τ_1,τ_2) p-continuous and $\alpha(\tau_1,\tau_2)$ -continuous.

Proof. This is obvious.

Conversely, let V be any $\sigma_1\sigma_2$ -open set of Y. Since f is contra- $(\tau_1, \tau_2)p$ -continuous and $\alpha(\tau_1, \tau_2)$ -continuous, $f^{-1}(V)$ is $(\tau_1, \tau_2)p$ -closed and $\alpha(\tau_1, \tau_2)$ -open in X. Therefore, we have $\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(f^{-1}(V)))$ $\subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(f^{-1}(V))$ $\subseteq f^{-1}(V) \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(f^{-1}(V)))$. This implies that $f^{-1}(V)$ is $\tau_1\tau_2$ -clopen in X. Thus, f is perfectly (τ_1, τ_2) -continuous.

Recall that a bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ -compact [21] if every cover of X by $\tau_1\tau_2$ -open sets has a finite subcover.

Definition 16. A bitopological space (X, τ_1, τ_2) is said to be mildly $\tau_1\tau_2$ -compact if every $\tau_1\tau_2$ -clopen cover of X has a finite subcover.

Theorem 11. If $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a perfectly (τ_1, τ_2) -continuous surjection and (X, τ_1, τ_2) is mildly $\tau_1\tau_2$ -compact, then (Y, σ_1, σ_2) is $\sigma_1\sigma_2$ -compact.

Proof. Let $\{V_{\gamma} \mid \gamma \in \nabla\}$ be any $\sigma_1 \sigma_2$ -open cover of Y. Since f is perfectly (τ_1, τ_2) -continuous, we have $\{f^{-1}(V_{\gamma}) \mid \gamma \in \nabla\}$ is a $\tau_1 \tau_2$ -clopen cover of X. Since (X, τ_1, τ_2) is mildly $\tau_1 \tau_2$ -compact, there exists a finite subset ∇_0 of ∇ such that

$$X = \bigcup \{ f^{-1}(V_{\gamma}) \mid \gamma \in \nabla_0 \}.$$

Since f is surjective, $Y = \bigcup \{V_{\gamma} \mid \gamma \in \nabla_0\}$ and (Y, σ_1, σ_2) is $\sigma_1 \sigma_2$ -compact.

Definition 17. A bitopological space (X, τ_1, τ_2) is said to be:

- (1) (τ_1, τ_2) p-irreducible if every pair of nonempty (τ_1, τ_2) p-closed sets of X has a nonempty intersection;
- (2) $\tau_1\tau_2$ -hyperconnected if $\tau_1\tau_2$ -Cl(V) = X for every nonempty $\tau_1\tau_2$ -open set V of X.

Theorem 12. If $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is a contra- $(\tau_1,\tau_2)p$ -continuous surjection and (X,τ_1,τ_2) is $(\tau_1,\tau_2)p$ -irreducible, then (Y,σ_1,σ_2) is $\sigma_1\sigma_2$ -hyperconnected.

Proof. Suppose that (Y, σ_1, σ_2) is not $\sigma_1\sigma_2$ -hyperconnected. Then, $\sigma_1\sigma_2$ -Cl $(V) \neq Y$ for some nonempty $\sigma_1\sigma_2$ -open set V of Y. Therefore, there exists a point $y \notin \sigma_1\sigma_2$ -Cl(V) and $V \cap W = \emptyset$ for some $\sigma_1\sigma_2$ -open set W of Y containing y. Since f is contra- $(\tau_1, \tau_2)p$ -continuous, $f^{-1}(V)$ and $f^{-1}(W)$ are disjoint nonempty $(\tau_1, \tau_2)p$ -closed sets of X. Thus, (X, τ_1, τ_2) is not $(\tau_1, \tau_2)p$ -irreducible.

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- [1] J. Dontchev. Contra-continuous functions and strongly S-closed spaces. International Journal of Mathematics and Mathematical Sciences, 19:303–310, 1966.
- [2] J. Dontchev and T. Noiri. Contra-semicontinuous functions. *Mathematica Pannonica*, 10:159–168, 1999.
- [3] S. Jafari and T. Noiri. Contra-super-continuous functions. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös, Sectio Mathematica, 42:27–34, 1999.
- [4] S. Jafari and T. Noiri. On contra-precontinuous functions. *Bulletin of the Malaysian Mathematical Sciences Society*, 25:115–128, 2002.
- [5] E. Ekici. Almost contra-precontinuous functions. Bulletin of the Malaysian Mathematical Sciences Society, 27:53–65, 2004.
- [6] J. Dontchev, M. Ganster, and I. Reilly. More on almost s-continuity. *Indian Journal of Mathematics*, 41:139–146, 1999.
- [7] T. Noiri, B. Ahmad, and M. Khan. Almost s-continuous functions. Kyungpook Mathematical Journal, 35:311–322, 1995.
- [8] T. Noiri. Super-continuity and some strong forms of continuity. *Indian Journal of Pure and Applied Mathematics*, 15:241–250, 1984.
- [9] A. Al-Omari and M. S. M. Noorani. Contra ω-continuous and almost contra ω-continuous functions. International Journal of Mathematics and Mathematical Sciences, 2007:40469, 2007.
- [10] T. Noiri and V. Popa. A unified theory of contra-continuity for functions. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös, Sectio Mathematica, 44:115–137, 2002.
- [11] C. W. Baker. Weakly contra-continuous functions. *International Journal of Pure and Applied Mathematics*, 40:265–271, 2007.
- [12] C. Boonpok and N. Srisarakham. (τ_1, τ_2) -continuity for functions. Asia Pacific Journal of Mathematics, 11:21, 2024.
- [13] C. Boonpok and P. Pue-on. Characterizations of almost (τ_1, τ_2) -continuous functions. International Journal of Analysis and Applications, 22:33, 2024.
- [14] C. Boonpok and C. Klanarong. On weakly (τ_1, τ_2) -continuous functions. European Journal of Pure and Applied Mathematics, 17(1):416–425, 2024.
- [15] N. Srisarakham, S. Sompong, and C. Boonpok. Quasi $\theta(\tau_1, \tau_2)$ -continuous functions. European Journal of Pure and Applied Mathematics, 18(1):5722, 2025.
- [16] C. Prachanpol, C. Boonpok, and C. Viriyapong. $\delta(\tau_1, \tau_2)$ -continuous functions. European Journal of Pure and Applied Mathematics, 17(4):3730–3742, 2024.
- [17] B. Kong-ied, S. Sompong, and C. Boonpok. Almost quasi (τ_1, τ_2) -continuous functions. Asia Pacific Journal of Mathematics, 11:64, 2024.
- [18] M. Chiangpradit, S. Sompong, and C. Boonpok. Weakly quasi (τ_1, τ_2) -continuous functions. *International Journal of Analysis and Applications*, 22:125, 2024.
- [19] N. Srisarakham, A. Sama-Ae, and C. Boonpok. Characterizations of faintly (τ_1, τ_2) -continuous functions. European Journal of Pure and Applied Mathematics, 17(4):2753-2762, 2024.

- [20] B. Kong-ied, A. Sama-Ae, and C. Boonpok. Almost nearly (τ_1, τ_2) -continuous functions. *International Journal of Analysis and Applications*, 23:14, 2025.
- [21] C. Boonpok, C. Viriyapong, and M. Thongmoon. On upper and lower (τ_1, τ_2) -precontinuous multifunctions. *Journal of Mathematics and Computer Science*, 18:282–293, 2018.
- [22] C. Viriyapong and C. Boonpok. $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions. *Journal of Mathematics*, 2020:6285763, 2020.
- [23] C. Boonpok. $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions. Heliyon, 6:e05367, 2020.
- [24] N. Viriyapong, S. Sompong, and C. Boonpok. (τ_1, τ_2) -extremal disconnectedness in bitopological spaces. *International Journal of Mathematics and Computer Science*, 19(3):855–860, 2024.
- [25] N. Viriyapong, S. Sompong, and C. Boonpok. Upper and lower s- $(\tau_1, \tau_2)p$ -continuous multifunctions. European Journal of Pure and Applied Mathematics, 17(3):2210–2220, 2024.
- [26] J. Khampakdee, S. Sompong, and C. Boonpok. Almost weakly (τ_1, τ_2) -continuous functions. European Journal of Pure and Applied Mathematics, 18(1):5721, 2025.
- [27] M. Chiangpradit, S. Sompong, and C. Boonpok. On characterizations of (τ_1, τ_2) regular spaces. International Journal of Mathematics and Computer Science,
 19(4):1329–1334, 2024.
- [28] P. Pue-on, A. Sama-Ae, and C. Boonpok. Characterizations of quasi $\theta(\tau_1, \tau_2)$ continuous multifunctions. *International Journal of Analysis and Applications*, 23:59, 2025.