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Abstract. This paper explores the class G (@, §) of analytic functions, which is associated with
generalized bounded turning and the generating functions of Gregory coefficients. By using bounds
on certain coefficient functionals for functions with a positive real part, we obtain initial Taylor
coeflicient bounds and logarithmic coefficient bounds of functions and inverse functions within
this class. Consequently, we establish upper bounds of the second-order for the Vandermonde
determinant, where the entries are Taylor coefficients and logarithmic coefficients of functions
and inverse functions. Additionally, we highlight several interesting implications of these results,
contributing new insights to this generalized class.
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1. Introduction

Let A denote the class of analytic functions f (z) that can be expressed as a Taylor
series expansion in the open unit disk £ = {z € C : |z| < 1}, given by

f(z):z—i-Zanz",zEE. (1)
n=2

We denote by S the subclass of A consisting of univalent functions in F.
The inverse of a function f (z) € S of the form (1) has a series expansion given by

) = w+ Y A ful <70 ()70 () 2 &)

n=2
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where, in particular, the coefficients A,, for n = 2, 3,4 are expressed in terms of the Taylor
coefficients of f (z) € S as follows:

A2 = —az, (3)
Az = —asz + 2(122, (4)

and
Ay = —aq + Sasas — 5a23. (5)

Let P denote the class of functions with a positive real part in the open unit disk FE.
A function p(z) in P has the series expansion

[e.9]
p(z)zl—i—anz", z€E, (6)
n=1

that is analytic in E and satisfying the condition Re (p (z)) > 0. Functions in P have often
been used to describe geometric properties of functions in A, and to define subclasses in
S. Let H denote the class of Schwarz functions v (z) which are analytic in F, given by

v(z) = Zbkzk, zeE
k=1

and satisfying v (0) = 0 and |v(2)| < 1. If p(z) € P, then a Schwarz function v(z) € H

exists such that ) ()
+v(z
p(z) = 1_71)(2),

Let g1 (2) and g2 (2) be two analytic functions in F, with the symbol < representing a sub-
ordination. The function g (z) is subordinate to function g5 (z), denoted g1 (2) < g2 (2),
if there exists a Schwarz function v (z) € H such that g; (2) = g2 (v (2)). Furthermore, if
g1 (z) is univalent in E, then we have the following equivalence

z € L. (7)

91 (2) < g2(2) & g1 (0) = g2 (0)

and
g1 (E) =g2(E).

Milin [1-3] highlighted the importance of logarithmic coefficients in estimating Taylor
coefficients of univalent functions. The inequalities conjectured by Milin attracted much
attention, which led to de Branges [4] establishing the Bieberbach conjecture. Logarithmic
coefficients also play a significant role in conformal mapping, which helped Kayumov [5]
solve Brennan’s conjecture. Since then, numerous studies on logarithmic coefficients, which
play a central role in the theory of univalent functions, have continued, with examples
found in [6-9]. Here, the logarithmic coefficients v,,, n > 1 of f (z) € S are defined by

log fiz) =2 Z 2" (8)
n=1
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Differentiating (8) and equating coefficients of 2" yield expressions for the logarithmic
coefficients in terms of the Taylor coefficients for f (z) € S, specifically for n = 1,2,3:

1
N = a2, (9)
1 1
"2 =g <a3 - 2a22> ) (10)
and
! +1ag® (11)
Y3 = 9 a4 — a2a3 3a2 .

The logarithmic coefficients of the inverse functions, denoted T',, for f (z) € S were intro-
duced by Ponnusamy et al. [10]. They are expressed in the series form as

w

Fhw) & 1
log =———> =2) Tu" <=
Og — nw I ‘w’ 47

where, in particular, for n = 1,2, 3:

1
Fl - —5(12, (12)
1 3
Iy = —5 (CLS - 2G22> ) (13)
and ) 10
I's = —5 <a4 —4dagas + 3&23) . (14)

A typical subject in geometric function theory is the study of coefficient functionals, which
are equations derived from various combinations of Taylor coefficients for subclasses in S.
This comprises the Taylor coefficients of inverse functions, the logarithmic coefficients of
functions and inverse functions, as well as the Vandermonde determinant.

The Vandermonde determinant, also known as a discriminant, has many applications
in a range of domains. It is used in digital signal processing to compute the discrete
Fourier transform (DFT) and the inverse discrete Fourier transform (IDFT), as well as in
approximation problems [11]. It is also an important tool in linear algebra, for example,
in determining the number of roots of polynomials (see [12]). Vijayalakshmi et al. [11]
studied the Vandermonde determinant Vi, (f), where n,q > 1 and a,,n > 2 are the
Taylor series coefficients in (1):

1 an “ e anq_l
1 a?’b+1 . an_"_IQ*l
Vain () =1|. . : : Lap = 1. (15)

-1
I aptqg-1 ++ apyqg—1?
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It is noted that with one as the first element, this determinant displays a geometric se-
quence in each row or column. Abdul Wahid et al. [13] introduced the Vandermonde
determinant Vg, (v¢), where n,q > 1 by looking at the logarithmic series coefficients
Yn,n > 1 1in (8), because they were inspired by previous studies on Hankel and Toeplitz
determinants, which involved both Taylor coefficients and logarithmic coefficients. This
determinant is given by [13]

I
I Yor1 - n®!

Van (7)) = : : . (16)
I Ygg—1 - 'Yn-i—q—lq_l

Given the importance of the Vandermonde determinant and inspired by the works of Abdul
Wahid et al. [14], Shi et al. [15], Obradovi and Tuneski [16], and Hadi et al. [17], which
deal with solving determinant and coefficient functional problems for the inverse of analytic
functions, it is natural to explore the Vandermonde determinant with A,, and I',, replacing
an, and 7, respectively. Using this idea, we define the Vandermonde determinant of Taylor
coefficients and logarithmic coefficients of inverse functions for f (z) € S, respectively, as
follows:

R
Van () = 1 Ariﬂ An+;1q_ (17)
1 Aprgor o Apggr?!
and
1 T, - an_ll
Van (Ly2) = 1 Fn:H Fn+;1q_ : (18)
I Torget - Topgot®™!

Recently, Kazimoglu et al. [18], Srivastava et al. [19], Tang et al. [20], Murugusun-
daramoorthy et al. [21], and Al-Hawarya et al. [22] introduced new classes of univalent
functions associated with the generating function of Gregory coefficients. The Gregory
coefficients, also known as reciprocal logarithmic numbers, second-kind Bernoulli num-
bers, or Cauchy numbers, are decreasing rational numbers that serve a function similar
to Bernoulli numbers and can be found in a wide range of problems, particularly those
involving numerical analysis and number theory. The generating function of the Gregory
coefficients A,,, for n > 0, is given by

e}

P 11 1 19 3
S N N M. B 6
In(1+2) nz:% n =t T T T T T ie” (19)

In connection with this function, we define the following class:
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Definition 1. An analytic function f (z) of the form (1) is said to be in the class Gg (o, 9)
if the following condition is satisfied:
e f! (2) —isina — &
Tad

where ¥ (z) = T(irz), Tas = COSQ—0, la| <7, and 0 <6 < 1.

<V (z), z € E,

Remark 1. Selecting specific values for the parameters o and ¢ in the class Gg (o, 9)
yields the following classes, which are new and have not yet been studied by others:

(i) Gg(a,O)EGg(a):{feS:m<\D(z),zeE}

(ii) Gg (0,8) = Gg (5) == {fesz%«p(z),zefz}

(iii) G (0,0)=Ga={feS: f(2) <V (2),z € E}

The class Gg («,9) is inspired by the generalized class of bounded turning functions
G (o, 9) introduced by Mohamad [23], which satisfies

{feS:Re(ef (2)) >0, z€ E}.
Then there exists a function p (z) € P such that [23]
e f! (2) —isina — &
Tas

where 7,5 = cosa — 6, |a| < m, 0 < < 1, and cosa > 4.

=p(2) € P,

Remark 2. Selecting specific values for the parameters o and § in the class G («, d) results
in the following classes:

(i) G(a,0)=R(a) ={f €S:Re(e“f'(2)) >0, z€ E}

(it) G(0,0) = R(0) = {f€S:Re(f (2)) >0, z€ E}. The class R(6) is called the
class of bounded turning functions of order 6.

(i1i)) G(0,0) = R={feS:Re(f'(2)) >0, z€ E}. The class R is called the class of
bounded turning functions.

Pioneering researchers like Goel and Mehrok [24], Macgregor [25], Noshiro [26], Silver-
man and Silvia [27], and Warschawski [28] explored the classes R, R (9), and R («), and
nonetheless, it is intriguing to examine these classes in light of the generating functions of
Gregory coeflicients, leading to the geometric properties of this class and contributing to
ongoing developments in geometry function theory.

Therefore, this paper aims to estimate the upper bounds of the Taylor coefficients and
logarithmic coefficients of functions and inverse functions belonging to the class Gg («, d) of
analytic functions, which is associated with generalized bounded turning and the generat-
ing functions of Gregory coefficients. For example, |a,| (n = 2,3,4,5), |A,| (n =2,3,4,5),
7] (n=1,2,3), and |T'y| (n = 1,2,3). As a result, we focus on estimating the upper
bounds of the second-order Vandermonde determinant, whose entries are Taylor coeffi-
cients and logarithmic coefficients of functions and inverse functions in Gg (a, 9).
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2. Preliminary results

This section gives a few sharp bounds on coefficient functionals for functions with a positive
real part, in the form of the following lemmas, to verify our main findings:

Lemma 1. ([29]) For a function p (z) € P of the form (6), the sharp inequality |py| < 2
holds for each n > 1. The equality holds for the function p(z) = 22,

1—2z

Lemma 2. ([30]) Let p(z) € P be a function of the form (6) and p* € C. Then

[P — W PkPn—k| < 2maz{l, 2" — 1|}, 1<k <n—1.

If 2p* — 1| > 1, then the inequality is sharp for the function p(z) = % or its rotations.
If |2p* — 1| < 1, then the inequality is sharp for the function p (z) = ifj: or its rotations.

Lemma 3. ([31]) Let p(z) € P be a function of the form (6) and o, 8*,v* € R. Then
|0 p1® = Bpip2 +77ps| < 2]a*| +2|B" — 27| + 2|a* — B* + 7.

Lemma 4. ([32]) Let p(z) € P be a function of the form (6) and 0 < < 1,0 < p <1,
and

86(1—8) [(un — 200 + (u (8 + ) = 0)°] + (1 = ) (n = 26)> < 481 — ) (1 - B).
Then

3
apr* + Bpa® + 2upips — 577]912102 —pa| < 2.

3. Main results

This section presents the proof of our main findings, focusing primarily on the upper
bounds of Taylor coefficients, logarithmic coefficients, and Vandermonde determinant of
second-order of functions and inverse functions belonging to the class Gg (o, 9).

3.1. Taylor coefficients

We now estimate the upper bounds of the Taylor coefficients of functions and inverse
functions in Gg («, 9).

Theorem 1. Let f (z) € Gg (,0). Then
an] < 52, n=2,3,4,5,
2n

where Tos = COS — 0.

Proof. Let a function f(z) € Gg («,d) given by (1). Then there exists a Schwarz
function v (z) with v (0) = 0 and |v ()| < 1 in E such that

ef (z) —isina — 6

Tas

=V (v(z)), z€ E, (20)
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where 7,5 = cosa — 0.
Define the function p (z) by

14+wv(2)
= E
p(2) o) S P
or equivalently
—1+
v(z) = 1+p?§§)
= spiz+ 5 (p2— 3m?) 22 + 5 (ip1° — pip2 + p3) 23 (21)

+3 (—sp* + 3p1%p2 — pips — 3p2® +pa) 2+

v(z)

Using (21) along with the expression ¥ (v (z)) = TEE=E))

, we obtain

U (v(2) =1+ ip1z+ 45 (12p2 — Tp1?) 22 + 145 (171 — 56p1p2 + 48ps) 23
+ 1555 (—649p1* + 3060p12p2 — 3360p1p3 — 1680p2? + 2880py) 2% + - - -

(22)
Thus, by applying (22) to (20), we have
eie [(1 + 2a9z + 3ag2? + das2® + Hasz* + - - ) — 1]
= Tas [5D12 + 15 (12p2 — Tp1?) 22 + 155 (17p1® — 56p1ps + 48p3) 23
+ 1555 (—649p11 + 3060p12p2 — 3360p1p3 — 1680p2* + 2880py) 2% + -] .
(23)
Comparing the coefficients of 2" for n = 1,2,3,4 on both sides of (23) gives
a = Taég_mpb
—_— TD( e 2
az = - 20— (12p2 — Tp1?) (24)
o ag = T85— (17p1® — 56p1p2 + 48p3)
a5 = Tel (—649p1 1 + 3060p12p2 — 3360p1p3 — 1680p27 + 2880p4) -
Based on Lemmas 1-4, the equations in (24) can be expressed as follows:
Toas€ ™
Jaz| = | = —p1] (25)
Tos€ i 7T,
= 12 - — 26
ol = | 25 12 (- ) || (26)
Tageiia 3
|laq| = [17p1”® — 56p1p2 + 48ps] |, (27)
768
Tas€ ' [ 649 , 1680 1680 3 (2040 9
= — 2 — — = == — . (28
|as| 20 [2880p1 + 283072 + o830 | P13 — 5 | 9ggp ) PL P2 — P4 (28)
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It is observed that

Ip1| <2,
Pz—l%plzl§2max{17\2(%)—1\}=2,
17p3 —56p1p2+48p3\<2|17|+2y56 2(17)] +2[17 = 56 + 4] = 96,

2684890p + %gggp +2 (%ggg) pips — 5 (2880) pi°p2 — p4} <2

The upper bounds for |as|, |as|, |as|, and |as| result from applying Lemmas 1-4, respec-

tively:
oa] < 8 (2) = T,
las| < T (2) = 3,
29
ad < 5 (96) = %, 2
os] < % (2) = 5.

Thus, we get the desired bound. This completes the proof of Theorem 1.

Theorem 2. Let f (2) € Gg («,6). Then

Tas
|Ag| < %,

Tas
‘A?)’ S %7

|Ay| < T00 [}5rage o7+ 3],
where Tos = cosa — 0.

Proof. By substituting (24) into (3)-(5), we get

_ A2 e_m b1,
B Ay = —Tasto [24p2 — (14 + 9745€ m)pl ]
Ay = = Do [ (360702620 + 1120705e ™ + 816) By + pg — (o875 ) pypy |
(30)
Taking the modulus on both sides of the equations in (30) and applying Lemmas 1-3, we
can express the equations in (30) as follows:

Tase '
| Ag| = '— 58 P, (31)
Tage & 14 + 97p5e 7@
0] = |- o (- (MR 52 ] (32)

| Tase™ 5Tage” ' + 7 [(45Tas e 4 140705 £ 102 5]
- h 6 b2 2407,5¢ 1 + 336 prjp=psgl
(33)
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It is observed that

Ip1| < 2,
|p3‘§27 _ )
po — W 12 SQmax{l,Q(W)-l =2,

45T, 52e 2111407, se t* 4102 2 45T 52e 2111407, se 14102 _

P2 — S I0rose—1o 336 >p1 < 2max {17 ’2 ( S IOrose—io 1336 ) - 1‘} =2.
Thus, the upper bounds for |As| and |As| are obtained by applying Lemma 1 and Lemma
2, respectively. Meanwhile, the bound for |A4| follows from the combined application of
Lemmas 1 and 2, along with the triangle inequality. This completes the proof of Theorem
2.

3.2. Logarithmic coefficients

Next, we estimate the upper bounds of the logarithmic coefficients for functions and their
inverse functions in the class Gg (v, 9).

Theorem 3. Let f (z) € Gg (,0). Then

Tas

’71‘ < g )
Tad

< [0
’72‘ = 127

and
Tat

5 [3 + ‘Ta(;e*w‘ +7

],

[yl <
where Tos = COS — 0.
Proof. Substituting (24) into (9)-(11) and simplifying, we obtain

Tas€ "

- 34
n 16 Pv (34)
Taaeiia —ix 2
72 = ang 196P2 = (57 + 97a5e ™) 17, (35)
Tade_ia N ) i » \
V= “g57g 1288Ps — (487ase" + 336) pipz + (37as”e " + 287ase " +102) pr°].
(36)
Using Lemma 1 on (34) yields
Tas Tas
< 199 gy — [ad
1| < 16 (2) <

Applying Lemma 2 to (35) implies that

57 + 9705 %\
p2 95 P

Tas

|72| = EYR
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Now, by rearranging the terms in (36), we can rewrite it as

Taée_wé

9216

Ivs| =

) 37, 2 ,—2ix 287, —ia 102
{288173 — (487ase ™ + 336) py {pg - ( Tagl€ ~* 20Tase _ T >p12] H

487,567 + 336

Consequently, by applying Lemmas 1 and 2, along with the triangle inequality, and sim-

plifying, we obtain
Tas

48
This completes the proof of Theorem 3.

|’}/3| < [3+ ’Ta(;e_ia + 7H .

Theorem 4. Let f(z) € Gg (a,d). Then

Tas
ITq| < %,

Tasd
IR
Tl < 75
and - )
Ty < 4%‘5 [3 4 [4rase ™™ + 7

where Tos = COSa — 0.
Proof. Substituting (24) into (12)-(14), we have

Tas€ "

T =

1 16 b1, (37)

Ty = —Tage ™ [96ps — (277age ™ + 56) p1?] (38)
— _Ta52e4-m [pz _ (277(15%-61%56) pﬂ 7

I3 = —Tad— [(51 4 567a5e " + 157a5%€2"Y) p1® — (168 + 96745¢ ") p1pa + 144p3)
— —Tuge® {1 (168 + 967ape @) |pp — (e o 20 ) 2] q4dpy |
(39)
The bounds for |T'1| and |T's| follow from Lemma 1 and Lemma 2, respectively. Meanwhile,
the bound for |I's| results from applying both Lemmas 1 and 2, along with the triangle
inequality. This completes the proof of Theorem 4.

3.3. Vandermonde determinant of Taylor coefficients

In this subsection, we use the results of Theorems 1 and 2 to estimate the upper bounds
of the Vandermonde determinant of second-order, where the entries are Taylor coefficients
of functions and inverse functions in Gg (e, d), that is, [V (f)] and |[Vao (f71) !
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Theorem 5. Let f(z) € Gg (,0). Then

5Tas
Vz <
Va2 ()l = =57
where Tos = cosa — 0.
Proof. In view of (15), we can establish
Va2 (f)| = lag — az| < |ag| + [az] . (40)

Using |az| < 4> and |az| < "&* from Theorem 1, we obtain

Tas | Tad 5Tas

< = . 41
Va2 (f)] < 5 1 1 (41)
Thus, we get the desired inequality, thereby completing the proof of Theorem 5.
Theorem 6. Let f (z) € Gg (,6). Then
oT,
1 < ad
‘V272 (f )‘ - 12
where Tos = cOsa — 0.
Proof. From (17), we can establish
Voo (f71)] = |As — Ag| < |As| + | Aq]. (42)
Making use of [A3| < 74¢ and |A3| < "¢ from Theorem 2, we get
_ Ta Ta Y
Voo (F71)] < 220 4 200 = 22 (43)

6 4 127
thereby concluding the proof of Theorem 6.

3.4. Vandermonde determinant of logarithmic coefficients

In this subsection, we use the results of Theorems 3 and 4 to estimate the upper bounds

of the Vandermonde determinant of second-order, where the entries are logarithmic coeffi-
cients of functions and inverse functions in Gg (a, 6), that is, Va1 (v7)[, [Vai2 (vp), [Vair (Tp-1)]
and ‘VQJ (Ff—l)} .

Theorem 7. Let f(z) € Gg (a,d). Then

5T s

<
Vo)l < 8

and
Tas

<
Va2 ()| < T

[7 + ‘7 + Tose i

],

where Tos = COSQ — 0.
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Proof. From (16), we have

Va1 (ve)l = v — 1l < el + [ (44)

and

Va2 ()| = |73 — 72l < |l + el - (45)
Substituting |y1] < g% and [y2| < T into (44), as well as |y < §¥ and [y3| <

Ta
2
Td 34 ‘Ta(ge_m + 7H into (45), respectively, yields

Tas Tas
Vaa(vp)l < 75 + 3
and Tos
|V22(7f)| < [3+ ‘Ta(;e za+7H 1042
This concludes the proof of Theorem 7.
Theorem 8. Let f(z) € Gg (o, ). Then
B5Tas
Vo1 (T
Vor (1) < 22
and -
Voo (Tp-1)| < 2
‘ 272( f 1)‘— 48

where to,s = cosa — 0.

Proof. Using (18), we can establish

57’a5
24

Tas

)

[7 + ‘nge*m + 7H .

L0074 |7+ droge ]

Va1 (Dp-1)| = Ty = Ty < Do + T4 (46)
and
Voo (Ty-1)| = Tg = Tg| < |Tg| + T2 . (47)
Using the result of Theorem 4, we obtain
Tas Tas 5Tas
L) < =24 2

and

Voo (Tp-1)] < 28 3+ trase™® +7[] + 722 = 22 [1.4]7 4 drope~

48
This concludes the proof of Theorem 8.
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4. Consequences and corollaries

This section explores several new implications of Theorems 1-8, as G (a, d) general-
izes the classes Gg (o), Gg (6), and Gg.

Selecting § = 0 from Theorems 1-8, we get the following estimates bounds for the class
Gg ().

Corollary 1. Let f (2) = z+ Y an2" and f~1 (w) = w+ . A, w” be in the class Gg ().
n=2
Then

(i) lan| < 5%, n =2,3,4,5

(“) |A2‘ < cosa”A3| < cosa |A4| < cosa [’56_WCOSQ+7’ _|_3]

(iii) |’)’1’ < Cosoz ’72‘ < Ccib2a’ "73| < cosa [3+ ‘e’w‘cosa—i—ﬂ]

(iv) [T1| < €22 |Dy| < 952 Dy < B2 [3+ [4e ™ cosa + 7|]

(v) Vaz (f)] < 25

(vi) Voo (f7)] < 255

(vii) |Va, 1(7f)| < 5C0m |V22(7f)| < Cosa [7—|— ‘74—6 ior cosozH

(viii) ‘VQJ (qu)‘ < 56050‘ ‘Vgg (Ff )‘ <R [7—1— |7—|—4e ta cosaH

Taking into account a = 0 in Theorems 1-8, we obtain the following estimates bounds for
the class Gg (9).

Corollary 2. Let f (2) = z+ Y ap2™ and f~1 (w) = w+ Y. A,w™ be in the class Gg (9).
n=2 n=2

Then

(i) |an| < 12—;6, n=273,45

(i) |Ag] < 152, |A5) < 120,14, < 200G

24
(iii) || < 152, o) < 552, || < L2210
] — 1-5)(7—26
(iv) |T1| < IT‘;, ITy| < 18 |Ty) < U=2001220)

(v) [Vasa (f)] < 2472

12
(vi) Vo (f71)] < 255°

(vii) Vo ()] < 2072, [Vaa(yy)| < 122050
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(viii) |Vau (Ty1)| < 2520 Voo (Tyn)| < U=240=20)

Putting a = 0 and 6 = 0 in Theorems 1-8, we have the following results for the class Gg.
Corollary 3. Let f(z) =z + io: an2" and f~1 (w) = w + § Apw™ be in the class Gg.
Then " "
(i) lan| < 5=, n=2,3,4,5
(ii) |Ao| <, |As| < §, [Aa] < §
(iii) Im| < 55 el < 150 1l < 35
(iv) T1| < g, 12| <
(v) Va2 (f)] < 12
(vi) Voo (f71)] < 13
(vii) [Vaa(vp)l < 55 (Ve ()| < 15
(viii) ‘Vgl (Ff )

12a |F3| S 24

Mm

N

Do

—~

ﬂ

\H

L

S— =
IN
oolw

5. Conclusion

Recent research has sparked considerable interest in Vandermonde determinants. This
has inspired us to study the Vandermonde determinant of functions and inverse functions
belonging to the class Gg (a, ) of analytic functions, which is associated with general-
ized bounded turning and the generating functions of Gregory coeflicients. Furthermore,
we have defined Vandermonde determinants whose entries are logarithmic coefficients of
functions and inverse functions in S. Thus, in this paper, we have obtained estimates
for Taylor coefficients, logarithmic coefficients, and the second-order Vandermonde deter-
minant whose entries are Taylor coefficients and logarithmic coefficients of functions and
inverse functions belonging to the class Gg («,0). This extends not only the properties
of the class Gg (o, d) but also those of Gg (a), Gg (9), and G as shown in Corollaries
1-3. The lemmas in the preliminary section have proven invaluable in establishing upper
bounds for coefficient functionals in Theorems 1-8. The findings of this work could be
used to further investigate the upper bounds for the second-order Hankel, Toeplitz, and
higher-order Vandermonde determinants, specifically within bounded turning functions
connected to Gregory coefficients.
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