EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 2, Article Number 6115 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Fekete–Szegő Inequalities for New Subclasses of Bi-Univalent Functions Defined by Sălăgean q-Differential Operator

Mohammad Al-Ityan¹, Ala Amourah^{2,*}, Abdullah Alsoboh^{3,*}, Sultan Alsaadi², Mohammad Bani Raba'a⁴, Suha Hammad⁵

- Department of Mathematics, Faculty of Science, Al-Balqa Applied University, 19117, Salt, Jordan
- ² Mathematics Education Program, Faculty of Education and Arts, Sohar University, Sohar 311, Sultanate of Oman
- ³ Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, Post Box No. 42, Post Code No. 400, Ibra, Sultanate of Oman
- ⁴ Department of Mathematics, Faculty of Science and Technology, Irbid National University, Irbid, Jordan
- ⁵ Department of Mathematics, College of Education for Pure Sciences ?University of Tikrit, Iraq

Abstract. In this paper, we introduce a new operator based on the Sălăgean q-differential approach to define a new class of analytic functions. Using this operator, we obtain estimates for the first two coefficients in the Taylor series, $|a_2|$ and $|a_3|$. A significant part of the study focuses on the Fekete–Szegő inequalities for the function classes $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(\lambda,\kappa,\alpha)$ and $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(\gamma,\lambda,\kappa)$. Through our analysis, we derive several important results, including some special cases that we present in this paper as Corollaries.

2020 Mathematics Subject Classifications: 30C45, 30C50, 33D15, 47B38

Key Words and Phrases: Analytic Functions, q-Sălăgean Operator, Starlike Functions, Taylor Coefficients

1. Introduction

Let Λ denote the class of all analytic functions \mathfrak{I} defined in the open unit disk $\emptyset = \{z \in \mathbb{C} : |z| < 1\}$ and normalized by the conditions $\mathfrak{I}(0) = 0$ and $\mathfrak{I}'(0) = 1$. Each $\mathfrak{I} \in \Lambda$

DOI: https://doi.org/10.29020/nybg.ejpam.v18i2.6115

Email addresses: Mohammad65655vv22@gmail.com (M. EL-Ityan), AAmourah@su.edu.om (A. Amourah), abdullah.alsoboh@asu.edu.om (A. Alsoboh), alsaad99@hotmail.com (S. Alsaadi), 0779382684mohammad@gmail.com (M. Bani Raba'a), suhajumaa1987@tu.edu.iq (S. Hammad)

^{*}Corresponding author.

^{*}Corresponding author.

has a Taylor series expansion of the form:

$$\Im(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad z \in \mathbb{U}.$$
 (1)

For every $\mathfrak{I} \in \mathcal{S}$, there exists an inverse map \mathfrak{I}^{-1} satisfying the following conditions:

$$\mathfrak{I}^{-1}(\mathfrak{I}(z)) = z, \quad z \in \mathbb{U}.$$

$$\mathfrak{I}(\mathfrak{I}^{-1}(\varpi)) = \varpi, \quad |\varpi| < r_0(\mathfrak{I}); \quad r_0(\mathfrak{I}) \ge \frac{1}{4}.$$

The inverse function is given by the series:

$$\mathfrak{I}^{-1}(\varpi) = \varpi - a_2 \varpi^2 + (2a_2^2 - a_3)\varpi^3 - (5a_2^3 - 5a_2 a_3 + a_4)\varpi^4 + \cdots$$
 (2)

Definition 1. A single-valued complex function \mathfrak{I} is said to be univalent in a simply connected domain D if it does not take the same value twice in D; that is, $\mathfrak{I}(z_1) \neq \mathfrak{I}(z_2)$ whenever $z_1 \neq z_2$, for all $z_1, z_2 \in D$.

Definition 2. A function $\mathfrak{I} \in \Lambda$ is said to be bi-univalent in \mathbb{U} if both $\mathfrak{I}(z)$ and $\mathfrak{I}^{-1}(z)$ are univalent in \mathbb{U} .

Let Σ denote the class of bi-univalent functions in $\mathbb U$ defined by (1). Examples of functions in Σ include:

$$\frac{z}{1-z}$$
, $-\log(1-z)$, $\frac{1}{2}\log\left(\frac{1+z}{1-z}\right)$,...

It is worth noting that the familiar Koebe function is not a member of Σ because it maps the unit disk \mathbb{U} univalently onto the entire complex plane except for the part of the negative real axis from $-\frac{1}{4}$ to $-\infty$.

The class $\mathcal{S}^*(\alpha)$ of starlike functions of order α in \cup has been extensively studied and is a subset of \mathcal{S} . By definition:

$$S^*(\alpha) = \left\{ \mathfrak{I} \in S : \operatorname{Re}\left(\frac{\mathfrak{I}'(z)}{\mathfrak{I}(z)}\right) > \alpha, \ z \in \mathbb{U}, \ 0 \le \alpha < 1 \right\}. \tag{3}$$

Ezrohi [1] introduced the class $\mathcal{H}(\alpha)$, defined as:

$$\mathcal{H}(\alpha) = \left\{ \Im \in \mathcal{S} : \operatorname{Re} \{ \Im'(z) \} > \alpha, \ z \in \mathbb{U}, \ 0 \le \alpha < 1 \right\}. \tag{4}$$

Similarly, the class $\mathcal{K}(\alpha)$ was introduced by [2]:

$$\mathcal{K}(\alpha) = \left\{ \mathcal{F} \in \mathcal{S} : \operatorname{Re}\left(1 + \frac{z\mathcal{F}''(z)}{\mathcal{F}'(z)}\right) > \alpha, \ z \in \mathbb{U}, \ 0 \le \alpha < 1 \right\}.$$
 (5)

A function $\mathfrak{I} \in \Lambda$ belongs to the class $\mathcal{S}^*_{\Sigma}(\alpha)$ of strongly bi-starlike functions of order α $(0 < \alpha \le 1)$ if:

$$|\arg\left(\frac{z\Im'(z)}{\Im(z)}\right)| < \frac{\alpha\pi}{2}, \quad z \in \mathbb{U},$$

$$|\arg\left(\frac{\varpi\mathcal{G}'(\varpi)}{\mathcal{G}(\varpi)}\right)| < \frac{\alpha\pi}{2}, \quad \varpi \in \mathbb{U},$$

where $\mathcal{G} = \mathfrak{I}^{-1}$.

Here, we revisit the q-difference operator, a fundamental tool in q-calculus that plays a key role in various fields such as hypergeometric series, quantum physics, and operator theory. The q-calculus framework, introduced by Jackson [3], has been extended to fractional q-calculus operators, as utilized by Kanas and Răducanu [4]. For more details, readers are referred to [3, 5–31]. Below, we outline key definitions and concepts, assuming 0 < q < 1.

The Jackson q-derivative of a function $\mathfrak{I} \in \Lambda$ is defined as [3]:

$$D_q \Im(z) = \begin{cases} \frac{\Im(z) - \Im(qz)}{(1-q)z}, & z \neq 0, \\ \Im'(0), & z = 0, \end{cases}$$

$$\tag{6}$$

with the second q-derivative given by:

$$D_q^2 \Im(z) = D_q(D_q \Im(z)).$$

Using the above, $D_q \Im(z)$ can be expressed as:

$$D_q \Im(z) = 1 + \sum_{n=2}^{\infty} [n]_q a_n z^{n-1}, \tag{7}$$

where the q-basic number $[n]_q$ is defined as:

$$[n]_q = \frac{1 - q^n}{1 - q}.$$

As $q \to 1^-$, $[n]_q \to n$. For $h(z) = z^n$, the q-derivative becomes:

$$D_q h(z) = [n]_q z^{n-1}.$$

This result converges to the classical derivative $h'(z) = nz^{n-1}$ as $q \to 1^-$.

Recently, Govindaraj and Sivasubramanian [32] introduced the Sălăgean q-differential operator:

$$\mathcal{D}_{q}^{0}\mathfrak{I}(z) = \mathfrak{I}(z), \quad \mathcal{D}_{q}^{1}\mathfrak{I}(z) = z\mathcal{D}_{q}\mathfrak{I}(z),$$

$$\mathcal{D}_{q}^{m}\mathfrak{I}(z) = z\mathcal{D}_{q}^{m}\left(\mathcal{D}_{q}^{m-1}\mathfrak{I}(z)\right),$$

$$\mathcal{D}_{q}^{m}\mathfrak{I}(z) = z + \sum_{n=2}^{\infty} [n]_{q}^{m} a_{n} z^{n}, \quad m \in \mathbb{N}_{0}, \ z \in \mathbb{U}.$$
(8)

[33] Define the generalized operator:

$$\mathbb{D}^0\mathfrak{I}(z)=\mathcal{D}_q^m\mathfrak{I}(z),$$

$$\mathbb{D}_{\sigma,q}^{1,m}\mathfrak{I}(z) = (1-\sigma)\mathcal{D}_q^m\mathfrak{I}(z) + \sigma z \left(\mathcal{D}_q^m\mathfrak{I}(z)\right)',$$

$$= z + \sum_{n=2}^{\infty} [n]_q^m [1 + (n-1)\sigma] a_n z^n,$$
 (9)

$$\mathbb{D}_{\sigma,q}^{\zeta,m}\mathfrak{I}(z) = z + \sum_{n=2}^{\infty} [n]_q^m \left[1 + (n-1)\sigma \right]^{\zeta} a_n z^n, \quad \sigma > 0, \ \zeta \in \mathbb{N}_0.$$
 (10)

As $q \to 1^-$, the operator reduces to:

$$\mathbb{D}_{\sigma}^{\zeta,m}\mathfrak{I}(z) = z + \sum_{n=2}^{\infty} n^m \left[1 + (n-1)\sigma \right]^{\zeta} a_n z^n, \quad \sigma > 0, \, m, \zeta \in \mathbb{N}_0.$$
 (11)

Definition 3. A function $\mathfrak{I}(z)$, as described in (1), belongs to the class $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(\lambda,\kappa,\alpha)$ if:

$$|\arg\left(1+\frac{1}{\kappa}[(1-\lambda)(\frac{d}{dq}\mathbb{D}_{\sigma,q}^{\zeta,m}\Im(z))+\lambda\frac{\mathbb{D}_{\sigma,q}^{\zeta,m}\Im(z)}{z}-1]\right)|<\frac{\alpha\pi}{2},$$

and

$$|\arg\left(1+\frac{1}{\kappa}[(1-\lambda)(\frac{d}{dq}\mathbb{D}_{\sigma,q}^{\zeta,m}\mathcal{G}(\varpi))+\lambda\frac{\mathbb{D}_{\sigma,q}^{\zeta,m}\mathcal{G}(\varpi)}{z}-1]\right)|<\frac{\alpha\pi}{2},$$

where $0 < \alpha \le 1, \ \lambda \ge 0, \ \kappa \ge 1, \sigma > 0, \ m, \zeta \in \mathbb{N}_0 \ z, \varpi \in \mathbb{U}.$

Definition 4. A function $\mathfrak{I}(z)$, as described in (1), belongs to the class $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(\gamma,\lambda,\kappa)$ if:

$$Re\left(1+\frac{1}{\kappa}[(1-\lambda)(\frac{d}{dq}\mathbb{D}_{\sigma,q}^{\zeta,m}\Im(z))+\lambda\frac{\mathbb{D}_{\sigma,q}^{\zeta,m}\Im(z)}{z}-1]\right)>\gamma,$$

and

$$Re\left(1+\frac{1}{\kappa}[(1-\lambda)(\frac{d}{dq}\mathbb{D}_{\sigma,q}^{\zeta,m}\mathcal{G}(\varpi))+\lambda\frac{\mathbb{D}_{\sigma,q}^{\zeta,m}\mathcal{G}(\varpi)}{z}-1]\right)>\gamma,$$

where $0 \le \gamma < 1, \ \lambda \ge 0, \ \kappa \ge 1, \sigma > 0, \ m, \zeta \in \mathbb{N}_0 \ z, \varpi \in \mathbb{U}$.

To prove our theorem, we will make use of the following lemma:

Lemma 1 ([34]). If h belongs to the family \mathcal{H} , where \mathcal{H} represents all analytic functions in \cup satisfying Re(h(z)) > 0 and $h(z) = 1 + h_1 z + h_2 z^2 + \cdots$, then $|h_i| \leq 2$ for each index i

Coefficients Bounds for Classes $\mathcal{M}^{\zeta,m}_{\sigma,q,\Sigma}(\lambda,\kappa,\alpha)$ and $\mathcal{M}^{\zeta,m}_{\sigma,q,\Sigma}(\gamma,\lambda,\kappa)$

Theorem 1. Let $\Im(z)$ given by (1) be in the class $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(\lambda,\kappa,\alpha)$, with $0 < \alpha \leq 1, \lambda \geq 0, \kappa \geq 1, \sigma > 0, m, \zeta \in \mathbb{N}_0 \ z, \varpi \in \mathbb{U}$. Then

$$|a_2| \le \frac{8\alpha\kappa}{\sqrt{4\alpha\kappa \left[1 + 2\sigma\right]^{\zeta} ((1 - \lambda)[3]_q^{m+1} + \lambda[3]_q^m) - (\alpha - 1)\left[1 + \sigma\right]^{2\zeta} ((1 - \lambda)[2]_q^{m+1} + \lambda[2]_q^m)^2}},$$

and

$$|a_3| \leq \frac{2\alpha}{\left|\frac{\left[1+2\sigma\right]^{\zeta}}{\kappa}((1-\lambda)[3]_q^{m+1} + \lambda[3]_q^m)\right|} + \frac{8\alpha^2\kappa^2}{\left|\left[1+\sigma\right]^{2\zeta}((1-\lambda)[2]_q^{m+1} + \lambda[2]_q^m)^2\right|}.$$

Proof. To establish the theorem, the definition (3) is utilized in its equivalent forms:

$$1 + \frac{1}{\kappa} [(1 - \lambda)(\frac{d}{dq} \mathbb{D}_{\sigma,q}^{\zeta,m} \mathfrak{I}(z)) + \lambda \frac{\mathbb{D}_{\sigma,q}^{\zeta,m} \mathfrak{I}(z)}{z} - 1] = [v(z)]^{\alpha}, \tag{12}$$

$$1 + \frac{1}{\kappa} [(1 - \lambda)(\frac{d}{dq} \mathbb{D}_{\sigma,q}^{\zeta,m} \mathcal{G}(\varpi)) + \lambda \frac{\mathbb{D}_{\sigma,q}^{\zeta,m} \mathcal{G}(\varpi)}{z} - 1] = [c(\varpi)]^{\alpha}, \tag{13}$$

where v(z) and c(w) belong to the class H and satisfy the conditions defined in (1) . These functions can be expressed as:

$$v(z) = 1 + v_1 z + v_2 z^2 + v_3 z^3 + \cdots, (14)$$

$$c(\varpi) = 1 + c_1 \varpi + c_2 \varpi^2 + c_3 \varpi^3 + \cdots$$
 (15)

By equating coefficients in the above equations, the following relations are obtained:

$$\frac{\left[1+\sigma\right]^{\zeta}}{\kappa}((1-\lambda)[2]_q^{m+1}+\lambda[2]_q^m)a_2 = \alpha v_1,\tag{16}$$

$$\frac{\left[1+2\sigma\right]^{\zeta}}{\kappa}((1-\lambda)[3]_q^{m+1}+\lambda[3]_q^m)a_3 = \alpha v_2 + \frac{\alpha(\alpha-1)}{2}v_1^2,\tag{17}$$

$$-\frac{\left[1+\sigma\right]^{\zeta}}{\kappa}((1-\lambda)[2]_q^{m+1}+\lambda[2]_q^m)a_2 = \alpha c_1,\tag{18}$$

and

$$\frac{\left[1+2\sigma\right]^{\zeta}}{\kappa}((1-\lambda)[3]_q^{m+1}+\lambda[3]_q^m)(2a_2^2-a_3) = \alpha c_2 + \frac{\alpha(\alpha-1)}{2}c_1^2.$$
 (19)

Using the equations (16),(18), it follows that:

$$v_1 = -c_1, (20)$$

$$\frac{\left[1+\sigma\right]^{2\zeta}}{\kappa^2}((1-\lambda)[2]_q^{m+1}+\lambda[2]_q^m)^2a_2^2=\alpha^2(v_1^2+c_1^2). \tag{21}$$

From equations (17) and (19), it can be concluded that:

$$4\alpha\kappa [1+2\sigma]^{\zeta}((1-\lambda)[3]_q^{m+1}+\lambda[3]_q^m)a_2^2 = 2\alpha^2\kappa^2(v_2+c_2)+$$

$$(\alpha - 1) \left[1 + \sigma \right]^{2\zeta} ((1 - \lambda) [2]_q^{m+1} + \lambda [2]_q^m)^2 a_2^2. \tag{22}$$

Consequently, we obtain:

$$a_2^2 = \frac{2\alpha^2 \kappa^2 (v_2 + c_2)}{4\alpha \kappa \left[1 + 2\sigma\right]^{\zeta} ((1 - \lambda)[3]_q^{m+1} + \lambda[3]_q^m) - (\alpha - 1)\left[1 + \sigma\right]^{2\zeta} ((1 - \lambda)[2]_q^{m+1} + \lambda[2]_q^m)^2},$$
(23)

and the upper bound for $|a_2|$ is determined as:

$$|a_2| \le \frac{8\alpha\kappa}{\sqrt{4\alpha\kappa [1+2\sigma]^{\zeta}((1-\lambda)[3]_q^{m+1} + \lambda[3]_q^m) - (\alpha-1)[1+\sigma]^{2\zeta}((1-\lambda)[2]_q^{m+1} + \lambda[2]_q^m)^2}}.$$

By using equations (17), (19) and (21) we have:

$$a_{3} = \frac{\alpha(v_{2} - c_{2})}{2^{\left[\frac{1+2\sigma\right]^{\zeta}}} ((1-\lambda)[3]_{q}^{m+1} + \lambda[3]_{q}^{m})} + \frac{\alpha^{2}\kappa^{2}(v_{1}^{2} + c_{1}^{2})}{\left[1+\sigma\right]^{2\zeta} ((1-\lambda)[2]_{q}^{m+1} + \lambda[2]_{q}^{m})^{2}},$$
(24)

and the following upper bound is obtained:

$$|a_3| \leq \frac{2\alpha}{|\frac{\left[1+2\sigma\right]^{\zeta}}{\kappa}((1-\lambda)[3]_q^{m+1} + \lambda[3]_q^m)|} + \frac{8\alpha^2\kappa^2}{|\left[1+\sigma\right]^{2\zeta}((1-\lambda)[2]_q^{m+1} + \lambda[2]_q^m)^2|}.$$

This concludes the proof.

Theorem 2. Let $\Im(z)$ given by (1) be in the class $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(\gamma,\lambda,\kappa)$, where $0 \leq \gamma < 1, \lambda, \delta \geq 0, \ \kappa \geq 1, \sigma > 0, \ m, \zeta \in \mathbb{N}_0 \ z, \varpi \in \mathbb{U}$. Then

$$|a_2| \le \sqrt{\frac{2\kappa(1-\gamma)}{\left|\left[1+2\sigma\right]^{\zeta}((1-\lambda)[3]_q^{m+1}+\lambda[3]_q^m)\right|}}$$

and

$$|a_3| \leq \frac{8\kappa^2(1-\gamma)^2}{|[1+\sigma]^{2\zeta}((1-\lambda)[2]_q^{m+1}+\lambda[2]_q^m)^2|} + \frac{2\kappa(1-\gamma)}{|[1+2\sigma]^{\zeta}((1-\lambda)[3]_q^{m+1}+\lambda[3]_q^m)|}$$

Proof. It can be inferred from definition (4) that there exist v(z) and $c(\varpi) \in \mathcal{H}$ such that

$$1 + \frac{1}{\kappa} [(1 - \lambda)(\frac{d}{dq} \mathbb{D}_{\sigma,q}^{\zeta,m} \mathfrak{I}(z)) + \lambda \frac{\mathbb{D}_{\sigma,q}^{\zeta,m} \mathfrak{I}(z)}{z} - 1] = \gamma + (1 - \gamma)v(z), \tag{25}$$

and

$$1 + \frac{1}{\kappa} [(1 - \lambda)(\frac{d}{dq} \mathbb{D}_{\sigma,q}^{\zeta,m} \mathcal{G}(\varpi)) + \lambda \frac{\mathbb{D}_{\sigma,q}^{\zeta,m} \mathcal{G}(\varpi)}{z} - 1] = \gamma + (1 - \gamma)c(\varpi). \tag{26}$$

Equating coefficients in (25) and (26), we obtain:

$$\frac{\left[1+\sigma\right]^{\zeta}}{\kappa}((1-\lambda)[2]_q^{m+1} + \lambda[2]_q^m)a_2 = (1-\gamma)v_1,\tag{27}$$

$$\frac{\left[1+2\sigma\right]^{\zeta}}{\kappa}((1-\lambda)[3]_q^{m+1}+\lambda[3]_q^m)a_3 = (1-\gamma)v_2,\tag{28}$$

$$-\frac{\left[1+\sigma\right]^{\zeta}}{\kappa}((1-\lambda)[2]_q^{m+1}+\lambda[2]_q^m)a_2 = (1-\gamma)c_1,\tag{29}$$

and

$$\frac{\left[1+2\sigma\right]^{\zeta}}{\kappa}((1-\lambda)[3]_q^{m+1}+\lambda[3]_q^m)(2a_2^2-a_3)=(1-\gamma)c_2. \tag{30}$$

Utilizing equations (27) and (29), we deduce the following:

$$v_1 = -c_1, (31)$$

and

$$\frac{\left[1+\sigma\right]^{2\zeta}}{\kappa^2}((1-\lambda)[2]_q^{m+1}+\lambda[2]_q^m)^2a_2^2=(1-\gamma)^2(v_1^2+c_1^2). \tag{32}$$

From equations (28) and (30), it can be concluded that:

$$\frac{2[1+2\sigma]^{\zeta}}{\kappa}((1-\lambda)[3]_q^{m+1}+\lambda[3]_q^m)a_2^2 = (1-\gamma)(v_2+c_2). \tag{33}$$

Consequently, we obtain:

$$a_2 = \sqrt{\frac{\kappa(1-\gamma)(v_2 + c_2)}{2[1+2\sigma]^{\zeta}((1-\lambda)[3]_q^{m+1} + \lambda[3]_q^m)}}.$$
 (34)

This determines the upper bound for $|a_2|$:

$$|a_2| \le \sqrt{\frac{2\kappa(1-\gamma)}{|[1+2\sigma]^{\zeta}((1-\lambda)[3]_q^{m+1}+\lambda[3]_q^m)|}}$$
 (35)

Next, for the purpose of establishing the constraint on $|a_3|$, we subtract (28) and (30), using (32), we get:

$$\frac{2[1+2\sigma]^{\zeta}}{\kappa}((1-\lambda)[3]_q^{m+1}+\lambda[3]_q^m)(a_3-a_2^2)=(1-\gamma)(v_2-c_2).$$
 (36)

Alternatively, it can be expressed as:

$$a_3 = a_2^2 + \frac{\kappa(1 - \gamma)(v_2 - c_2)}{2[1 + 2\sigma]^{\zeta}((1 - \lambda)[3]_q^{m+1} + \lambda[3]_q^m)}.$$
 (37)

By using equation (31) in (32), we have:

$$a_3 = \frac{\kappa^2 (1 - \gamma)^2 (v_1^2 + c_1^2)}{\left[1 + \sigma\right]^{2\zeta} ((1 - \lambda)[2]_q^{m+1} + \lambda[2]_q^m)^2} + \frac{\kappa (1 - \gamma)(v_2 - c_2)}{2\left[1 + 2\sigma\right]^{\zeta} ((1 - \lambda)[3]_q^{m+1} + \lambda[3]_q^m)}$$
(38)

We can establish the following upper bound for $|a_3|$:

$$|a_3| \le \frac{8\kappa^2 (1-\gamma)^2}{\left|\left[1+\sigma\right]^{2\zeta} ((1-\lambda)[2]_q^{m+1} + \lambda[2]_q^m)^2\right|} + \frac{2\kappa (1-\gamma)}{\left|\left[1+2\sigma\right]^{\zeta} ((1-\lambda)[3]_q^{m+1} + \lambda[3]_q^m)\right|}$$
(39)

This completes the proof.

2. Corollaries and Consequences

By substituting $\lambda = 1$ in Theorem (1) and Theorem (2), we arrive at the following corollaries, respectively:

Corollary 1. Let $\Im(z)$ given by (1) be in the class $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(1,\kappa,\alpha)$, with $0 < \alpha \leq 1, \kappa \geq 1, \sigma > 0, \lambda = 1, m, \zeta \in \mathbb{N}_0$ $z, \varpi \in \mathbb{U}$. Then

$$|a_2| \leq \frac{8\alpha\kappa}{\sqrt{4\alpha\kappa\big[1+2\sigma\big]^{\zeta}([3]_q^m) - (\alpha-1)\big[1+\sigma\big]^{2\zeta}([2]_q^m)^2}}.$$

and

$$|a_3| \le \frac{2\alpha}{\left|\frac{\left[1+2\sigma\right]^{\zeta}}{\sigma}([3]_q^m)\right|} + \frac{8\alpha^2\kappa^2}{\left|\left[1+\sigma\right]^{2\zeta}([2]_q^m)^2\right|}.$$

Corollary 2. Let $\Im(z)$ given by (1) be in the class $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(\gamma,1,\kappa)$, where $0 \leq \gamma < 1$, $\kappa \geq 1, \sigma > 0, \lambda = 1, m, \zeta \in \mathbb{N}_0 z, \varpi \in \mathbb{U}$. Then

$$|a_2| \le \sqrt{\frac{2\kappa(1-\gamma)}{|[1+2\sigma]^{\zeta}([3]_q^m)|}}$$

and

$$|a_3| \le \frac{8\kappa^2(1-\gamma)^2}{|[1+\sigma]^{2\zeta}([2]_q^m)^2|} + \frac{2\kappa(1-\gamma)}{|[1+2\sigma]^{\zeta}([3]_q^m)|}$$

By substituting $\kappa = 1$ in Theorem (1) and Theorem (2), we arrive at the following corollaries, respectively:

Corollary 3. Let $\Im(z)$ given by (1) be in the class $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(\lambda,1,\alpha)$, with $0<\alpha\leq 1,\ \lambda\geq 0,\ \kappa=1,\sigma>0,\ m,\zeta\in\mathbb{N}_0\ z,\varpi\in\mathbb{U}$. Then

$$|a_2| \le \frac{8\alpha}{\sqrt{4\alpha \left[1 + 2\sigma\right]^{\zeta} ((1 - \lambda)[3]_q^{m+1} + \lambda[3]_q^m) - (\alpha - 1)\left[1 + \sigma\right]^{2\zeta} ((1 - \lambda)[2]_q^{m+1} + \lambda[2]_q^m)^2}}$$

and

$$|a_3| \le \frac{2\alpha}{\left|\left[1 + 2\sigma\right]^{\zeta}((1 - \lambda)[3]_q^{m+1} + \lambda[3]_q^m)\right|} + \frac{8\alpha^2}{\left|\left[1 + \sigma\right]^{2\zeta}((1 - \lambda)[2]_q^{m+1} + \lambda[2]_q^m)^2\right|}.$$

Corollary 4. Let $\Im(z)$ given by (1) be in the class $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(\gamma,\lambda,1)$, where $0 \leq \gamma < 1, \lambda \geq 0, \ \kappa = 1, \sigma > 0, \ m, \zeta \in \mathbb{N}_0 \ z, \varpi \in \mathbb{U}$. Then

$$|a_2| \le \sqrt{\frac{2(1-\gamma)}{|[1+2\sigma]^{\zeta}((1-\lambda)[3]_q^{m+1}+\lambda[3]_q^m)|}}$$

and

$$|a_3| \le \frac{8(1-\gamma)^2}{|[1+\sigma]^{2\zeta}((1-\lambda)[2]_q^{m+1}+\lambda[2]_q^m)^2|} + \frac{2(1-\gamma)}{|[1+2\sigma]^{\zeta}((1-\lambda)[3]_q^{m+1}+\lambda[3]_q^m)|}$$

By substituting $\alpha = 1$ and $\gamma = 0$ respectively in The previous corollaries, we arrive:

Corollary 5. Let $\Im(z)$ given by (1) be in the class $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(\lambda,1,1)$, with $0 < \alpha \le 1, \lambda \ge 0$, $\kappa = 1, \sigma > 0$, $m, \zeta \in \mathbb{N}_0$ $z, \varpi \in \mathbb{U}$. Then

$$|a_2| \le \frac{8}{\sqrt{4\left[1+2\sigma\right]^{\zeta}((1-\lambda)[3]_q^{m+1}+\lambda[3]_q^m)}}.$$

and

$$|a_3| \leq \frac{2}{|\left[1+2\sigma\right]^{\zeta}((1-\lambda)[3]_q^{m+1}+\lambda[3]_q^m)|} + \frac{8}{|\left[1+\sigma\right]^{2\zeta}((1-\lambda)[2]_q^{m+1}+\lambda[2]_q^m)^2|}.$$

Corollary 6. Let $\Im(z)$ given by (1) be in the class $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(0,\lambda,1)$, where $0 \leq \gamma < 1, \lambda \geq 0, \ \kappa = 1, \sigma > 0, \ m, \zeta \in \mathbb{N}_0 \ z, \varpi \in \mathbb{U}$. Then

$$|a_2| \le \sqrt{\frac{2}{\left|\left[1 + 2\sigma\right]^{\zeta} ((1 - \lambda)[3]_q^{m+1} + \lambda[3]_q^m)\right|}}$$

and

$$|a_3| \le \frac{8}{|[1+\sigma]^{2\zeta}((1-\lambda)[2]_q^{m+1}+\lambda[2]_q^m)^2|} + \frac{2}{|[1+2\sigma]^{\zeta}((1-\lambda)[3]_q^{m+1}+\lambda[3]_q^m)|}$$

3. Fekete–Szegő Inequalities for the Functions in the Classes $\mathcal{M}^{\zeta,m}_{\sigma,q,\Sigma}(\leftthreetimes,\kappa,\alpha)$ and $\mathcal{M}^{\zeta,m}_{\sigma,q,\Sigma}(\gamma,\leftthreetimes,\kappa)$

In this section, the focus is on the Fekete–Szegő inequalities for the Functions in the Classes $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(\lambda,\kappa,\alpha)$ and $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(\gamma,\lambda,\kappa)$.

Theorem 3. Let $\Im(z)$ given by (1) be in the class $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(\lambda,\kappa,\alpha)$, with $0 < \alpha \leq 1, \lambda \geq 0, \kappa \geq 1, \sigma > 0, m, \zeta \in \mathbb{N}_0 \ z, \varpi \in \mathbb{U}$. Then

$$|a_{3} - \Theta a_{2}^{2}| \leq \begin{cases} \frac{2\alpha}{\left|\frac{\left[1+2\sigma\right]^{\zeta}}{\kappa}\left((1-\lambda)\left[3\right]_{q}^{m+1}+\lambda\left[3\right]_{q}^{m}\right)\right|} & for |h(\Theta)| \leq \frac{1}{\left|\frac{\left[1+2\sigma\right]^{\zeta}}{\kappa}\left((1-\lambda)\left[3\right]_{q}^{m+1}+\lambda\left[3\right]_{q}^{m}\right)\right|} \\ 2\alpha|h(\Theta)| & for |h(\Theta)| \geq \frac{1}{\left|\frac{\left[1+2\sigma\right]^{\zeta}}{\kappa}\left((1-\lambda)\left[3\right]_{q}^{m+1}+\lambda\left[3\right]_{q}^{m}\right)\right|} \end{cases}$$

$$(40)$$

Proof. From equations (23) and (24), it is derived that:

$$a_3 - \Theta a_2^2 = \frac{\alpha(v_2 - c_2)}{2\frac{\left[1 + 2\sigma\right]^{\zeta}}{\kappa} ((1 - \lambda)[3]_q^{m+1} + \lambda[3]_q^m)} + (1 - \Theta)a_2^2$$

Also,

$$a_{3} - \Theta a_{2}^{2} = \frac{\alpha(v_{2} - c_{2})}{2^{\left[\frac{1+2\sigma\right]^{\zeta}} \left((1-\lambda)[3]_{q}^{m+1} + \lambda[3]_{q}^{m}\right)}} + \frac{2(1-\Theta)\alpha^{2}\kappa^{2}(v_{2} + c_{2})}{4\alpha\kappa\left[1+2\sigma\right]^{\zeta}\left((1-\lambda)[3]_{q}^{m+1} + \lambda[3]_{q}^{m}\right) - (\alpha-1)\left[1+\sigma\right]^{2\zeta}\left((1-\lambda)[2]_{q}^{m+1} + \lambda[2]_{q}^{m}\right)^{2}}$$

Simplify to:

$$a_{3} - \Theta a_{2}^{2} = \alpha \left[\left(h(\Theta) + \frac{1}{\frac{\left[1 + 2\sigma\right]^{\varsigma}}{\kappa} \left((1 - \lambda)[3]_{q}^{m+1} + \lambda[3]_{q}^{m} \right)} \right) v_{2} + \left(h(\Theta) - \frac{1}{\frac{\left[1 + 2\sigma\right]^{\varsigma}}{\kappa} \left((1 - \lambda)[3]_{q}^{m+1} + \lambda[3]_{q}^{m} \right)} \right) c_{2} \right]$$

$$(41)$$

where

$$h(\Theta) = \frac{2\alpha(1-\Theta)\kappa^2}{4\alpha\kappa \left[1+2\sigma\right]^{\zeta} \left((1-\lambda)[3]_q^{m+1} + \lambda[3]_q^m\right) - (\alpha-1)\left[1+\sigma\right]^{2\zeta} \left((1-\lambda)[2]_q^{m+1} + \lambda[2]_q^m\right)^2} \tag{42}$$

Theorem 4. Let $\Im(z)$ given by (1) be in the class $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(\gamma,\lambda,\kappa)$, where $0 \leq \gamma < 1, \lambda, \delta \geq 0, \kappa \geq 1, \sigma > 0, m, \zeta \in \mathbb{N}_0 \ z, \varpi \in \mathbb{U}$. Then

$$|a_{3} - \vartheta a_{2}^{2}| \leq \begin{cases} \frac{2\kappa(1-\gamma)}{|2[1+2\sigma]^{\varsigma}((1-\lambda)[3]_{q}^{m+1} + \lambda[3]_{q}^{m})|} & for \ |h(\vartheta)| \leq \frac{1}{|2[1+2\sigma]^{\varsigma}((1-\lambda)[3]_{q}^{m+1} + \lambda[3]_{q}^{m})|} \\ 2\kappa(1-\gamma)|h(\vartheta)| & for \ |h(\vartheta)| \geq \frac{1}{|2[1+2\sigma]^{\varsigma}((1-\lambda)[3]_{q}^{m+1} + \lambda[3]_{q}^{m})|} \end{cases}$$

$$(43)$$

Proof. From equations (37) and (33), it is derived that:

$$a_3 - \vartheta a_2^2 = \frac{\kappa (1 - \gamma)(v_2 - c_2)}{2[1 + 2\sigma]^{\zeta} ((1 - \lambda)[3]_q^{m+1} + \lambda[3]_q^m)} + (1 - \vartheta)a_2^2$$

Also,

$$a_3 - \vartheta a_2^2 = \frac{\kappa(1 - \gamma)(v_2 - c_2)}{2[1 + 2\sigma]^{\zeta}((1 - \lambda)[3]_q^{m+1} + \lambda[3]_q^m)} + \frac{\kappa(1 - \vartheta)(1 - \gamma)(v_2 + c_2)}{2[1 + 2\sigma]^{\zeta}((1 - \lambda)[3]_q^{m+1} + \lambda[3]_q^m)}$$

Simplify to:

$$a_{3} - \vartheta a_{2}^{2} = \kappa (1 - \gamma) \left[\left(h(\vartheta) + \frac{1}{2 \left[1 + 2\sigma \right]^{\zeta} ((1 - \lambda)[3]_{q}^{m+1} + \lambda[3]_{q}^{m})} \right) v_{2} + \left(h(\vartheta) - \frac{1}{2 \left[1 + 2\sigma \right]^{\zeta} ((1 - \lambda)[3]_{q}^{m+1} + \lambda[3]_{q}^{m})} \right) c_{2} \right]$$

$$(44)$$

where

$$h(\vartheta) = \frac{(1-\vartheta)}{2[1+2\sigma]^{\zeta}((1-\lambda)[3]_q^{m+1} + \lambda[3]_q^m)}$$
(45)

4. Corollaries and Consequences

By substituting $\lambda = 1$ in Theorem (1) and Theorem (2), we arrive at the following corollaries, respectively:

Corollary 7. Let $\Im(z)$ given by (1) be in the class $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(1,\kappa,\alpha)$, with $0 < \alpha \le 1, \times \ge 0$, $\kappa \ge 1, \sigma > 0$, $m, \zeta \in \mathbb{N}_0$ $z, \varpi \in \mathbb{U}$. Then

$$|a_{3} - \Theta a_{2}^{2}| \leq \begin{cases} \frac{2\kappa\alpha}{\left|\left[1 + 2\sigma\right]^{\zeta}\left([3]_{q}^{m}\right)\right|} & for |h(\Theta)| \leq \frac{1}{\left|\left[\frac{1 + 2\sigma}{\kappa}\right]^{\zeta}\left([3]_{q}^{m}\right)\right|} \\ 2\alpha \left|\frac{2\alpha(1 - \Theta)\kappa^{2}}{4\alpha\kappa\left[1 + 2\sigma\right]^{\zeta}\left([3]_{q}^{m}\right) - (\alpha - 1)\left[1 + \sigma\right]^{2\zeta}\left([2]_{q}^{m}\right)^{2}} \right| & for |h(\Theta)| \geq \frac{1}{\left|\left[\frac{1 + 2\sigma}{\kappa}\right]^{\zeta}\left([3]_{q}^{m}\right)\right|} \end{cases}$$

$$(46)$$

where

$$h(\Theta) = \frac{2\alpha(1-\Theta)\kappa^2}{4\alpha\kappa \left[1+2\sigma\right]^{\zeta} \left([3]_q^m\right) - (\alpha-1)\left[1+\sigma\right]^{2\zeta} \left([2]_q^m\right)^2}$$
(47)

 $4\alpha\kappa \left[1+2\sigma\right]^{\zeta} \left([3]_{q}^{m}\right)-(\alpha-1)\left[1+\sigma\right]^{2\zeta} \left([2]_{q}^{m}\right)^{2}$ Corollary 8. Let $\Im(z)$ given by (1) be in the class $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(\gamma,1,\kappa)$, where $0\leq\gamma<1,\ \lambda,\delta\geq0,\ \kappa\geq1,\sigma>0,\ m,\zeta\in\mathbb{N}_{0}\ z,\varpi\in\mathbb{U}$. Then

$$|a_{3} - \vartheta a_{2}^{2}| \leq \begin{cases} \frac{2\kappa(1-\gamma)}{|2[1+2\sigma]^{\varsigma}([3]_{q}^{m})|} & for \ |\frac{(1-\vartheta)}{2[1+2\sigma]^{\varsigma}([3]_{q}^{m})}| \leq \frac{1}{|2[1+2\sigma]^{\varsigma}([3]_{q}^{m})|} \\ 2\kappa(1-\gamma)|\frac{(1-\vartheta)}{2[1+2\sigma]^{\varsigma}([3]_{q}^{m})}| & for \ |\frac{(1-\vartheta)}{2[1+2\sigma]^{\varsigma}([3]_{q}^{m})}| \geq \frac{1}{|2[1+2\sigma]^{\varsigma}([3]_{q}^{m})|} \end{cases}$$

$$(48)$$

By substituting $\kappa = 1$ in Theorem (1) and Theorem (2), we arrive at the following corollaries, respectively:

Corollary 9. Let $\Im(z)$ given by (1) be in the class $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(\lambda,1,\alpha)$, with $0<\alpha\leq 1,\ \lambda\geq 0,\ \sigma>0,\ m,\zeta\in\mathbb{N}_0\ z,\varpi\in\mathbb{U}$. Then

$$|a_{3} - \Theta a_{2}^{2}| \leq \begin{cases} \frac{2\alpha}{\left|\left[1+2\sigma\right]^{\zeta}\left((1-\lambda)\left[3\right]_{q}^{m+1}+\lambda\left[3\right]_{q}^{m}\right)\right|} & for |h(\Theta)| \leq \frac{1}{\left|\left[1+2\sigma\right]^{\zeta}\left((1-\lambda)\left[3\right]_{q}^{m+1}+\lambda\left[3\right]_{q}^{m}\right)\right|} \\ 2\alpha|h(\Theta)| & for |h(\Theta)| \geq \frac{1}{\left|\left[1+2\sigma\right]^{\zeta}\left((1-\lambda)\left[3\right]_{q}^{m+1}+\lambda\left[3\right]_{q}^{m}\right)\right|} \end{cases}$$

$$(49)$$

where

$$h(\Theta) = \frac{2\alpha(1-\Theta)}{4\alpha\left[1+2\sigma\right]^{\zeta}\left((1-\lambda)[3]_q^{m+1} + \lambda[3]_q^m\right) - (\alpha-1)\left[1+\sigma\right]^{2\zeta}\left((1-\lambda)[2]_q^{m+1} + \lambda[2]_q^m\right)^2} \tag{50}$$

Corollary 10. Let $\Im(z)$ given by (1) be in the class $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(\gamma,\lambda,1)$, where $0 \leq \gamma < 1, \lambda, \delta \geq 0, \sigma > 0, m, \zeta \in \mathbb{N}_0 z, \varpi \in \mathbb{U}$. Then

$$|a_{3} - \vartheta a_{2}^{2}| \leq \begin{cases} \frac{2(1-\gamma)}{|2[1+2\sigma]^{\varsigma}((1-\lambda)[3]_{q}^{m+1} + \lambda[3]_{q}^{m})|} & for \ |h(\vartheta)| \leq \frac{1}{|2[1+2\sigma]^{\varsigma}((1-\lambda)[3]_{q}^{m+1} + \lambda[3]_{q}^{m})|} \\ 2(1-\gamma)|h(\vartheta)| & for \ |h(\vartheta)| \geq \frac{1}{|2[1+2\sigma]^{\varsigma}((1-\lambda)[3]_{q}^{m+1} + \lambda[3]_{q}^{m})|} \end{cases}$$

$$(51)$$

where

$$h(\vartheta) = \frac{(1-\vartheta)}{2\left[1+2\sigma\right]^{\zeta}((1-\lambda)[3]_q^{m+1} + \lambda[3]_q^m)}$$
(52)

By substituting $\alpha = 1$ and $\gamma = 0$ respectively in The previous corollaries , we arrive:

Corollary 11. Let $\Im(z)$ given by (1) be in the class $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(\lambda,1,1)$, with $0<\alpha\leq 1,\ \lambda\geq 0,\ \sigma>0,\ m,\zeta\in\mathbb{N}_0\ z,\varpi\in\mathbb{U}$. Then

$$|a_{3} - \Theta a_{2}^{2}| \leq \begin{cases} \frac{2}{|[1+2\sigma]^{\varsigma}((1-\lambda)[3]_{q}^{m+1} + \lambda[3]_{q}^{m})|} & for \ |h(\Theta)| \leq \frac{1}{|[1+2\sigma]^{\varsigma}((1-\lambda)[3]_{q}^{m+1} + \lambda[3]_{q}^{m})|} \\ 2|h(\Theta)| & for \ |h(\Theta)| \geq \frac{1}{|[1+2\sigma]^{\varsigma}((1-\lambda)[3]_{q}^{m+1} + \lambda[3]_{q}^{m})|} \end{cases}$$
(53)

where

$$h(\Theta) = \frac{2(1-\Theta)}{4\left[1+2\sigma\right]^{\zeta}\left((1-\lambda)\left[3\right]_q^{m+1}+\lambda\left[3\right]_q^m\right)}$$
(54)

Corollary 12. Let $\Im(z)$ given by (1) be in the class $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(0,\lambda,1)$, where $0 \leq \gamma < 1, \lambda, \delta \geq 0, \ \sigma > 0, \ m, \zeta \in \mathbb{N}_0 \ z, \varpi \in \mathbb{U}$. Then

$$|a_{3} - \vartheta a_{2}^{2}| \leq \begin{cases} \frac{1}{|[1+2\sigma]^{\zeta}((1-\lambda)[3]_{q}^{m+1} + \lambda[3]_{q}^{m})|} & for \ |h(\vartheta)| \leq \frac{1}{|2[1+2\sigma]^{\zeta}((1-\lambda)[3]_{q}^{m+1} + \lambda[3]_{q}^{m})|} \\ 2|h(\vartheta)| & for \ |h(\vartheta)| \geq \frac{1}{|2[1+2\sigma]^{\zeta}((1-\lambda)[3]_{q}^{m+1} + \lambda[3]_{q}^{m})|} \end{cases}$$
(55)

where

$$h(\vartheta) = \frac{(1-\vartheta)}{2[1+2\sigma]^{\zeta}((1-\lambda)[3]_q^{m+1} + \lambda[3]_q^m)}$$
(56)

5. Conclusions

In this paper, we introduced a new operator based on the Salagean q-differential approach to define a new class of analytic functions. We provided estimates for the Maclaurin coefficients $|a_2|$ and $|a_3|$, and addressed the Fekete–Szegő problems. Additionally, by

specializing the parameters $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(\lambda,\kappa,\alpha)$ and $\mathcal{M}_{\sigma,q,\Sigma}^{\zeta,m}(\gamma,\lambda,\kappa)$, we hope this study will inspire other researchers to extend this family to harmonic functions and symmetric q-calculus. Our approach can also be adapted to incorporate the symmetric q-sine and q-cosine domains as alternatives to the current domain.

Acknowledgements

The authors express their gratitude to the editor and the anonymous reviewers for their valuable comments and suggestions, which significantly enhanced the quality of this work.

References

- [1] TG Ezrohi. Certain estimates in special classes of univalent functions regular in the circle— z—; 1. Dopovidi Akademiji Nauk Ukrajins Koji RSR, pages 984–988, 1965.
- [2] HM Srivastava and Sevtap Sümer Eker. Some applications of a subordination theorem for a class of analytic functions. *Applied Mathematics Letters*, 21(4):394–399, 2008.
- [3] Frederick H Jackson. Xi.—on q-functions and a certain difference operator. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 46(2):253–281, 1909.
- [4] Stanisława Kanas and Dorina Răducanu. Some class of analytic functions related to conic domains. *Mathematica slovaca*, 64(5):1183–1196, 2014.
- [5] Fatima M Al-Oboudi. On univalent functions defined by a generalized sălăgean operator. *International Journal of Mathematics and Mathematical Sciences*, 2004(27):1429–1436, 2004.
- [6] Isra Al-Shbeil, Shahid Khan, Fairouz Tchier, Ferdous MO Tawfiq, Amani Shatarah, and Adriana Cătaş. Sharp estimates involving a generalized symmetric sălăgean q-differential operator for harmonic functions via quantum calculus. Symmetry, 15(12):2156, 2023.
- [7] Zeliha Karahuseyin, Sahsene Altinkaya, and Sibel Yalçin. On h3 (1) hankel determinant for univalent functions defined by using q- derivative operator. *TJMM*, 9:25–33, 2017.
- [8] Muhammad Naeem, Saqib Hussain, Tahir Mahmood, Shahid Khan, and Maslina Darus. A new subclass of analytic functions defined by using salagean q-differential operator. *Mathematics*, 7(5):458, 2019.
- [9] Abdullah Alsoboh, Ala Amourah, Maslina Darus, and Rami Issa Al Sharefeen. Applications of neutrosophic q-poisson distribution series for subclass of analytic functions and bi-univalent functions. *Mathematics*, 11(4):868, 2023.
- [10] GS Sălăgean. Subclasses of univalent functions, complex analysis-fifth romanian-finnish seminar, part 1 (bucharest, 1981). Lecture Notes in Math, 1013, 1983.
- [11] Hari Mohan Srivastava. Some generalizations and basic (or q-) extensions of the bernoulli, euler and genocchi polynomials. *Appl. Math. Inf. Sci*, 5(3):390–444, 2011.

- [12] A. Amourah, O. Alnajar, M. Darus, A. Shdouh, and O. Ogilat. Estimates for the coefficients of subclasses defined by the bell distribution of bi-univalent functions subordinate to gegenbauer polynomials. *Mathematics*, 11(8):1799, 2023.
- [13] O. Alnajar, A. Amourah, and M. Darus. The characteristics of inclusion pertaining to univalent functions associated with bell distribution functions. *International Journal of Open Problems in Complex Analysis*, 15(13):46–61, 2023.
- [14] A. Amourah, O. Alnajar, J. Salah, and M. Darus. Geometric properties and neighborhoods of certain subclass of analytic functions defined by using bell distribution. Contemporary Mathematics, pages 5473–5481, 2024.
- [15] T. Al-Hawary, A. Amourah, A. Alsoboh, A. M. Freihat, O. Ogilat, I. Harny, and M. Darus. Subclasses of yamakawa-type bi-starlike functions subordinate to gegenbaur polynomials associated with quantum calculus. *Results in Nonlinear Analysis*, 7(4):75–83, Oct 17 2024.
- [16] A. Amourah, A. Alsoboh, D. Breaz, and S. M. El-Deeb. A bi-starlike class in a leaflike domain defined through subordination via q-calculus. *Mathematics*, 12(11):1735, 2024.
- [17] A. Alsoboh and G. I. Oros. A class of bi-univalent functions in a leaf-like domain defined through subordination via q-calculus. *Mathematics*, 12(10):1594, May 20 2024.
- [18] O. Alnajar, A. Amourah, J. Salah, and M. Darus. Fekete-szegő functional problem for analytic and bi-univalent functions subordinate to gegenbauer polynomials. *Contemporary Mathematics*, pages 5731–5742, 2024.
- [19] O. Alnajar, O. Ogilat, A. Amourah, M. Darus, and M. S. Alatawi. The miller-ross poisson distribution and its applications to certain classes of bi-univalent functions related to horadam polynomials. *Heliyon*, 10(7), 2024.
- [20] A. Amourah, B. Frasin, J. Salah, and F. Yousef. Subfamilies of bi-univalent functions associated with the imaginary error function and subordinate to jacobi polynomials. *Symmetry*, 17(2):157, 2025.
- [21] T. Al-Hawary, A. Amourah, F. Yousef, and J. Salah. Investigating new inclusive subclasses of bi-univalent functions linked to gregory numbers. WSEAS Transactions on Mathematics, 24:231–239, 2025.
- [22] A. A. Amourah, F. Yousef, T. Al-Hawary, and M. Darus. On h3(p) hankel determinant for certain subclass of p-valent functions. *Italian Journal of Pure and Applied Mathematics*, 37:611–618, 2017.
- [23] M. Illafe, M. H. Mohd, F. Yousef, and S. Supramaniam. Bounds for the second hankel determinant of a general subclass of bi-univalent functions. *International Journal of Mathematics*, Engineering, and Management Sciences, 9(5):1226–1239, 2024.
- [24] M. Illafe, M. H. Mohd, F. Yousef, and S. Supramaniam. A subclass of bi-univalent functions defined by asymmetric q-derivative operator and gegenbauer polynomials. *European Journal of Pure and Applied Mathematics*, 17(4):2467–2480, 2024.
- [25] M. Illafe, M. H. Mohd, F. Yousef, and S. Supramaniam. Investigating inclusion, neighborhood, and partial sums properties for a general subclass of analytic functions. *International Journal of Neutrosophic Science*, 25(3):501–510, 2025.

- [26] M. Illafe, A. Hussen, M. H. Mohd, and F. Yousef. On a subclass of bi-univalent functions affiliated with bell and gegenbauer polynomials. *Boletim da Sociedade Paranaense de Matematica*, 43(3):1–10, 2025.
- [27] M. Illafe, F. Yousef, M. H. Mohamed, and S. Supramaniam. Fundamental properties of a class of analytic functions defined by a generalized multiplier transformation operator. *International Journal of Mathematics and Computer Science*, 19(4):1203– 1211, 2024.
- [28] M. Illafe, F. Yousef, M. H. Mohd, and S. Supramaniam. Initial coefficients estimates and fekete–szegő inequality problem for a general subclass of bi-univalent functions defined by subordination. *Axioms*, 12(3):235, 2023.
- [29] F. Yousef, S. Alroud, and M. Illafe. New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems. *Analysis and Mathematical Physics*, 11:1–12, 2021.
- [30] Mohammad El-Ityan, Qasim Ali Shakir, Tariq Al-Hawary, Rafid Buti, Daniel Breaz, and Luminita-Ioana Cotîrlă. On the third hankel determinant of a certain subclass of bi-univalent functions defined by (p, q)-derivative operator. *Mathematics*, 13(8):1269, 2025.
- [31] Adel Salim Tayyah and Waggas Galib Atshan. Starlikeness and bi-starlikeness associated with a new carathéodory function. *Journal of Mathematical Sciences*, pages 1–25, 2025.
- [32] M Govindaraj and Srikandan Sivasubramanian. On a class of analytic functions related to conic domains involving q-calculus. *Analysis Mathematica*, 43(3):475–487, 2017.
- [33] Basem Aref Frasin and Gangadharan Murugusundaramoorthy. A subordination results for a class of analytic functions defined by q-differential operator. *Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica*, 19:53–64, 2020.
- [34] Dayana Chang and Aini Janteng. Fekete-szegö inequality for a subclass of bi-univalent functions by applying sălăgean q-differential operator. *Malaysian Journal of Fundamental and Applied Sciences*, 19(6):1002–1010, 2023.