EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 2, Article Number 6135 ISSN 1307-5543 – ejpam.com Published by New York Business Global

A Study on (c,d) $\mathcal{IF} - \mathcal{Q}$ Uniform Ir* Centred Structure Compactification

S. Thirukumaran¹, G. K. Revathi*¹

¹ Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology Chennai, Chennai-127, Tamilnadu

Abstract. Compactification is one of the novel extensions in topological space. Nets and filters are used to study the detailed characterization of compactness and convergence in topological spaces. The major framework of this article delves into (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform Ir^* centred structure compactification. An innovative space that integrates a (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform topological space with (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform Ir^* space. It explains about the irreducibility in (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform topological space. Also combines with (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform centred system that deals the intersection of open sets. This study also involves (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform Ir^* centred structure filters and (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform Ir^* centred structure nets which explains a detailed analysis on sequences and its convergence in (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform topological space.

2020 Mathematics Subject Classifications: 54A40, 03E72

Key Words and Phrases: (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* structure space, (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure space, (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure filter and (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure net

1. Introduction

L. Zadeh in 1965, [1] had proposed a set that deals with vagueness, imprecision called Fuzzy set from universal set X and [2] give a detailed explanation on this fuzzy set. Fuzzy set explores the characterisation using parameter, linguistic variables etc. Each elements in fuzzy set is represented as membership values from the set X to [0,1]. It had various applications in image processing, decision making, fuzzy logics and fuzzy inference systems etc. K. Atanassov in 1986, [3] enhances a unique concept called intuitionistic fuzzy sets. It ensures the both membership and non-membership values in intuitionistic fuzzy sets. Mathematical analysis explores the concepts of limits, contuinity, open sets, closed sets, compactness are discussed in Real numbers. After that, various mathematicians convey his ideas and explores his conception to different geometrical space is represented as topology.

DOI: https://doi.org/10.29020/nybg.ejpam.v18i2.6135

Email addresses: thirumaths1996@gmail.com (S. Thirukumaran), gk_revathi@yahoo.co.in (G. K. Revathi)

^{*}Corresponding author.

Topological space is other wise expressed as rubber- sheet geometry, it characterizes the shapes and its deformations. Connectedness, compactness and continuity are major three C's in topological space. Among these, compactness ensures about the open coverings in a give topological spaces. This also leads to a higher dimension topological space called large inductive dimension, short inductive covering dimensions, embeddings, manifolds, functions spaces, and also it leads to a another dimensional concept as algebraic topology. C. L. Chang in 1968, [4], defines fuzzy topological spaces. It enhances a various ideas on structures and spaces also its properties. Later, intuitionistic fuzzy topological space was defined by D. Coker in 1997 [5]. In both fuzzy topological space and intuitionistic fuzzy topological space leads to an concepts for connectedness, compactness etc.

B. Hutton in 1975 and 1977 [6, 7] notion on uniformities and normalities in fuzzy topological space. Among all, the main aim in this article is to explores a new essence called $(c,d) \mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure compactification using $(c,d) \mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure filters and (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform Ir^* centred structure nets. In this concept, various results regarding compactifications and its properties are explored. The relationship between nets and filters in topological spaces is to understand the compact spaces and its characteristics. The (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure compactification is motivated by a need to bridge certain gaps in the theory of compactifications of uniform spaces, particularly those involving irregular and quasi-uniform structures. Traditional compactifications, such as Stone-Cech and Samuel compactifications, are largely constructed under assumptions of regularity, symmetry, or completeness. However, many natural and important spaces in both topology and analysis, especially quasi-uniform spaces and structures arising in generalized function theory, lack these properties. The extension of (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir* centred structure compactification more flexible treatment of quasi-uniformities that do not necessarily satisfy classical uniform conditions, enabling a broader class of spaces to be compactified meaningfully. Also the broader field of topology, this research positions itself at the intersection of compactification theory, uniform space theory, and generalized convergence structures. It contributes to the ongoing effort to generalize classical results to more flexible, non-standard settings, which are increasingly relevant in modern applications such as rigid motions in theoretical physics, other higher dimension topological spaces, and the study of generalized metric spaces. An filters can associate with nets and vice versa to analyze convergence and compactness. Among that the relationship between nets, filters and compactifications are also associated with each other. Filters are used to analyse the compact spaces and construct compactifications. Likewise, the nets are tedious to ensure the convergence in compactified space.

2. Literature Review

E. Narmada and et. al [8] had framed a C structure to define an compactification in intuitionistic fuzzy topological spaces. The article, explores an detailed analysis of C structure spaces using T^C filters for compactification. In 2014, G. K. Revathi et. al [9] had researched a new approach on Wallman-type compactification via intuitionistic fuzzy

rough centred texture spaces. Also in 2015, G. K. Revathi et. al [10] express an novel idea of compactification via semigroup and intuitionistic fuzzy convergence topological spaces. Later on that, in 2015, Ridvan Sahin developed his ideas to soft set. Soft sets deals with paramaters. The author had define a compactification and its properties on soft sets. In 2019, Ceren Sultan ELIMALI et. al [11] defined an FAN-GOTTESMAN compactifications and stone spaces along with properties are discussed. Likewise [12]the topological group of transformations explain about the pointwise convergence topology and admissible group topology with the structure equivariant compactifications. Also [13] introduced the category of stable compactifications and Raney extensions of proximity frames in duality spaces. In this articles, the author defines an comparitive analysis on other type of compactifications. Also they explore his ideas in clopen sets, ultrafilters, non-convergent spaces, etc. An application related to compactifications [14–16] are used in both the theoretical approaches like lie algebra, bounded operators, etc,. and also applied in different fields like physics, robotics, etc.

3. Motivation and Contribution of the Study

The major motivation behind the (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform topological space is an major extension of intuitionsitic fuzzy topological space. A (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform topological space is a highly generalized mathematical structure that blends concepts from uniform topology, intuitionistic fuzzy sets, and quasi-uniformity. It is designed to model uncertainity in topological spaces. This space has led to the numerous concepts in topological space is functors, morphisms etc. Also in (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* structure space deals with the irreducibility in topological spaces. This leads to Zariski topology, spectral space and Jac-spectral space etc., These are the higher dimension topological space combined with algebraic geometry and commutative algebra. Here, this motivate for novel research ideas which can be incorporated to various domains. Likewise, Centred systems deals only with the collection of open sets in the given topological space. So, here the reserach work incorporates the different spaces in (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform topological space. Based on the literature survey in Section-2, the authors introduced the novel idea called (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir topological space. Many researchers depicted and applied compactifications in robotics, physics, lie groups, etc., which leads authors to study $(c,d) \mathcal{IF} - \mathcal{Q}$ uniform Ir* centred structure compactification. To increase the readers interest, the authors introduced (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure filters and (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure nets which supported the study of (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir* centred structure compactification.

4. Proposed Structure of the Paper

In this article, an idea of Compactification on (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure space is defined. The below flowchart shows the process of compactification is executed via (c,d) $\operatorname{IF} - \mathcal{Q}$ uniform Ir^* centred Filters and (c,d) $\operatorname{IF} - \mathcal{Q}$ uniform Nets.

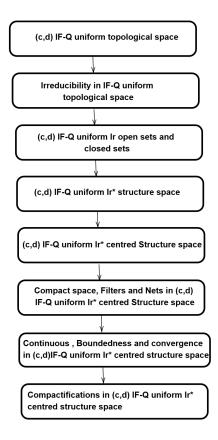


Figure 1: A Study on (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform \mathtt{Ir}^* centred structure compactification

5. Preliminaries

Here IF denotes the intuitionistic fuzzy set on X and throughout the article, and the universe of discourse X is a non-empty set.

Definition 1. [3] Let X be a universal set and an IF set A in X is defined as $A = \{\langle x, \mu_A(x), \nu_{A(x)} \rangle : x \in X\}$ where $\mu_A(x) : X \to [0,1]$ and $\nu_A(x) : X \to [0,1]$ are the membership and non-membership functions respectively for every $x \in X$, with the condition $0 \le \mu_A(x) + \nu_A(x) \le 1$.

Definition 2. [5] An IF topology τ on X is a collection of intuitionistic fuzzy sets, the following assertion are to be hold:

- (i) $0_{\sim}, 1_{\sim} \in \tau$,
- (ii) Each $A_i \in \tau$, then $\bigcap_{i=1}^n A_i \in \tau$.
- (iii) For all $A_i \in \tau$ then $\cup_i \in JA \in \tau$.

The pair (X,τ) is referred to as IF topological space on X

Definition 3. [17] Suppose Ξ_X represents the collection of IF mappings, $g: IF(X) \to IF(X)$ then the following are:

- (i) $g(0_{\sim}) = 0_{\sim}$
- (ii) $A \subseteq g(A), \forall A \in IF(X)$
- (iii) $g(\cup A_i) = \cup g(A_i), \forall A_i \in IF(X), i \in J$

For $g \in \Xi_X$, the function $g^{-1}(A) = \cap \{B : g(\bar{B}) \subseteq \bar{A}\} \in \Xi_X$, given for all $A \in IF(X)$, $g \cap g'(A) = \cap \{g(A_1) \cup g'(A_2) : A_1 \cup A_2 = A\}, (g \circ g') (A) = g(g'(A)).$

Definition 4. [17] Let $v: \Xi_X \to I \times I$ be an IF mapping. Then v is characterized as an IF quasi uniformity on X, if it fulfills the circumstances:

- (i) $v(g_1 \sqcap g_2) \supseteq v(g_1) \cap v(g_2)$ for $g_1, g_2 \in \Xi_X$
- (ii) $g \in \Xi_X$ we have $\cup \{v(g_1) : g_1 \circ g_1 \subseteq g\} \supseteq v(g)$
- (iii) $g_1 \supseteq g$ then $v(g_1) \supseteq v(g)$
- (iv) $g \in \Xi_X$ then $v(f)=1_{\sim}$.

A pair (X, v) is claimed as $\mathcal{IF} - \mathcal{Q}$ uniform space.

Definition 5. [17] A pair (X, v) be an $\mathcal{IF} - \mathcal{Q}$ uniform space. Let $c \in (0, 1] = I_0$ and $d \in [0, 1) = I_1$ with $c + d \le 1$ and $A \in IF(X)$. $(c, d)IFQI_v(A) = \bigcup \{B : f(B) \subseteq A, \text{ some of } f \in \Xi(X) \text{ and } v(f) > (c, d)\}$

Definition 6. [17] Consider (X, v) be an $\mathcal{IF} - \mathcal{Q}$ uniform space The mapping τ_v is defined by: $IF(X) \to I \times I$ is defined by

 $\tau_v(A) = \bigcup \{(c,d) : (c,d) \ IFQI_v(A) = A, \ c \in I_0, \ d \in I_1 \ \text{with} \ c+d \leq 1\}.$ Hence, a pair (X,τ_v) is called $\mathcal{IF} - \mathcal{Q}$ uniform topological space. The elements of (X,τ_v) is called (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform open sets and its complement is (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform closed sets.

Example 1. Assume $X = \{w,y\}$. $A = \left\langle x, \left(\frac{w}{0.3}, \frac{y}{0.5}\right), \left(\frac{w}{0.4}, \frac{y}{0.1}\right)\right\rangle$, $B = \left\langle x, \left(\frac{w}{0.1}, \frac{y}{0.2}\right), \left(\frac{w}{0.5}, \frac{y}{0.6}\right)\right\rangle$ and $C = \left\langle x, \left(\frac{w}{0.3}, \frac{y}{0.2}\right), \left(\frac{w}{0.4}, \frac{y}{0.3}\right)\right\rangle$ be any three IF sets on X and let E is a non-void IF set.

Let Ξ_X : $IF(X) \to IF(X)$ be an IF mapping. Let g_1, g_2, g_3 and $g_4 \in \Xi_X$ be defined as:

$$g_1(E) = \begin{cases} 0_{\sim}, & if E = 0_{\sim} \\ 1_{\sim}, & otherwise \end{cases}$$

$$g_2(E) = \begin{cases} 0_{\sim}, & if E = 0_{\sim} \\ A, & if E \subseteq A \\ 1_{\sim}, & otherwise. \end{cases}$$

$$g_3(E) = \begin{cases} 0_{\sim}, & if E = 0_{\sim} \\ B, & if E \subseteq B \\ 1_{\sim}, & otherwise. \end{cases}$$

$$g_4(E) = \begin{cases} 0_{\sim}, & if E = 0_{\sim} \\ C, & if E \subseteq C \\ 1_{\sim}, & otherwise. \end{cases}$$

$$v(g) = \begin{cases} (1,0), & if g = g_1 \\ (2/7, 5/8), & if g = g_2 \\ (3/6, 1/5), & if g = g_2 \\ (3/6, 1/5), & if g = g_3 \\ (5/9, 9/11), & if g = g_2 \sqcap g_3 \\ (5/7, 8/9), & if g = g_2 \sqcap g_4 \\ (5/9, 6/7), & if g = g_3 \sqcap g_4 \\ (0,1), & otherwise \end{cases}$$

Clearly, (X, v) is an $\mathcal{IF} - \mathcal{Q}$ uniform space, for c=0.02 and d=0.05. define intuitionistic fuzzy mapping, τ_v : $IF(X) \to I \times I$ as

$$\tau_{v}(E) = \begin{cases} (0,1), & if E = 0 \\ (4/5, 2/7), & if E = A \\ (2/5, 3/7), & if E = B \\ (1/8, 2/7), & if E = C \\ (1,0), & otherwise \end{cases}$$

Hence $\tau_v = \{A, B, C, 0_{\sim}, 1_{\sim}\}$. Clearly (X, τ_v) is an $\mathcal{IF} - \mathcal{Q}$ uniform topological space.

Definition 7. [17] A pair (X, τ_v) be an $\mathcal{IF} - \mathcal{Q}$ uniform topological space and A be an IF set. The $\mathcal{IF} - \mathcal{Q}$ uniform interior of A is then described as $(c,d)IFQint_v(A) = \cup \{B : B \subseteq A \text{ and } B \text{ is a } (c,d) \mathcal{IF} - \mathcal{Q} \text{ uniform open set where } c \in I_0, d \in I_1, \text{ and } c+d \leq 1\}.$

Definition 8. [17] Let (X, τ_v) be an $\mathcal{IF} - \mathcal{Q}$ uniform topological space and A be a IF set. Then the $\mathcal{IF} - \mathcal{Q}$ uniform closure of A is expressed as $(c,d)IFQcl_v(A) = \cap \{B : B \supseteq A \text{ and } B \text{ is an } (c,d) \mathcal{IF} - \mathcal{Q} \text{ uniform closed set where } c \in I_0, d \in I_1 \text{ with } c+d \leq 1\}$

6. Compactification in (c,d) $\mathcal{IF} - \mathcal{Q}$ Uniform Ir*-structure space

Throughout the article the word "bounded" is represented as "bdd".

6.1. Irreducibility and (c,d) $\mathcal{IF} - \mathcal{Q}$ Uniform Ir* Centred Structure space in $\mathcal{IF} - \mathcal{Q}$ Uniform Topological space

Definition 9. Let (X, τ_v) represents an $\mathcal{IF} - \mathcal{Q}$ uniform topological space. A, B and $C \in IF(X)$. An IF set A is said to be irreducible iff $A \subseteq B \cup C$, such that $A \subseteq B$ or $A \subseteq C$ with $B \neq 1_{\sim}$ and $C \neq 1_{\sim}$

Definition 10. A pair (X, τ_v) be $\mathcal{IF} - \mathcal{Q}$ uniform topological space and A, B, C be any (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform open sets is said be to irreducible, iff $A \subseteq B \cup C$ such that $A \subseteq B$ or $A \subseteq C$. Then A is said to be (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform irreducible open set. The complement of (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform irreducible open sets is said to be (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform irreducible closed set.

Example 2. Let $X = \{g,h\}$ be a non empty set, $A = \left\langle x, \left(\frac{g}{0.1}, \frac{h}{0.2}\right), \left(\frac{g}{0.3}, \frac{h}{0.5}\right) \right\rangle B = \left\langle x, \left(\frac{g}{0.2}, \frac{h}{0.3}\right), \left(\frac{g}{0.2}, \frac{h}{0.2}\right) \right\rangle, C = \left\langle x, \left(\frac{g}{0.4}, \frac{h}{0.4}\right), \left(\frac{h}{0.1}, \frac{h}{0.1}\right) \right\rangle$ and $D = \left\langle x, \left(\frac{g}{0.8}, \frac{h}{0.1}\right), \left(\frac{g}{0.03}, \frac{h}{0.01}\right) \right\rangle$ be any four IF sets on X and let E is a non-empty IF set on X. Consider the IF mapping, Ξ_X : $IF(X) \to IF(X)$ g_1, g_2, g_3, g_4 and $g_5 \in \Xi_X$ be defined as:

$$g_1(E) = \begin{cases} 0_{\sim}, & if E = 0_{\sim} \\ 1_{\sim}, & otherwise. \end{cases}$$

$$g_2(E) = \begin{cases} 0_{\sim}, & if E = 0_{\sim} \\ A, & if E \subseteq A \\ 1_{\sim}, & otherwise. \end{cases}$$

$$g_3(E) = \begin{cases} 0_{\sim}, & if E = 0_{\sim} \\ B, & if E \subseteq B \\ 1_{\sim}, & otherwise. \end{cases}$$

$$g_4(E) = \begin{cases} 0_{\sim}, & if E = 0_{\sim} \\ C, & if E \subseteq C \\ 1_{\sim}, & otherwise. \end{cases}$$

$$g_5(\mathcal{E}) = \begin{cases} 0_{\sim}, & if E = 0_{\sim} \\ D, & if E \subseteq D \\ 1_{\sim}, & otherwise. \end{cases}$$

$$v(g) = \begin{cases} (1,0), & if g = g_1 \\ (2/7,5/8), & if g = g_2 \\ (3/6,1/5), & if g = g_3 \\ (3/7,1/6), & if g = g_4 \\ (3/8,1/8), & if g = g_2 \sqcap g_3 \\ (4/9,1/9), & if g = g_2 \sqcap g_3 \\ (5/7,5/9), & if g = g_2 \sqcap g_4 \\ (6/7,6/9), & if g = g_2 \sqcap g_5 \\ (3/7,8/9), & if g = g_3 \sqcap g_4 \\ (4/9,1/10), & if g = g_3 \sqcap g_5 \\ (1/6,4/7), & if g = g_4 \sqcap g_5 \\ (0,1), & otherwise \end{cases}$$

Clearly, (X, v) is an $\mathcal{IF} - \mathcal{Q}$ uniform space, for c=0.08 and d=0.03. define an IF mapping, τ_v : $IF(X) \to I \times I$ as

$$\tau_{v}(E) = \begin{cases} (0,1), & if E = 0_{\sim} \\ (2/5, 3/7), & if E = A \\ (1/8, 2/7), & if E = B \\ (1/3, 3/8), & if E = C \\ (2/5, 3/5), & if E = D \\ (1,0), & otherwise \end{cases}$$

Then $\tau_v = \{A, B, C, D, 0_{\sim}, 1_{\sim}\}$ be an $\mathcal{IF} - \mathcal{Q}$ uniform topological space. The elements of τ_v are called (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform open sets and the complements are (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform closed sets. Clearly (X, τ_v) is an $\mathcal{IF} - \mathcal{Q}$ uniform topological space. Let A, B and C are (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform irreducible open sets. From the Definition 6.2, the collection $\mathbf{Ir} = \{A, B, C, 0_{\sim}\}$ are (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform irreducible open sets.

Remark 1. From the above Example 6.3, Clearly $Ir^* = Ir \cup \{1_{\sim}\}$. Then $Ir^* = \{A, B, C, 0_{\sim}\} \cup 1_{\sim}$ is said to be (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* irreducible open sets.

Definition 11. Let (X, τ_v) be an $\mathcal{IF} - \mathcal{Q}$ uniform topological space on X. Then (X, τ_v) is said to be (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* structure space, then the corresponding requirements are to be fulfilled:

(i) $0_{\sim}, 1_{\sim} \in Ir^*$.

- (ii) If $\{A_i : i \in I, \forall A_i \in \mathtt{Ir}^*\}$ where $\bigcup_{i \in I} A_i \in \mathtt{Ir}^*$.
- (iii) If $A, B \in Ir^*$, then $A \cap B \in Ir^*$.

Every member of (X, τ_v) is said to be (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* structure space. The elements of (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* structure space is (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* structure open sets. The complements of (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* structure open set is (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* structure closed sets.

Definition 12. Let (X,τ_v) be $\mathcal{IF} - \mathcal{Q}$ uniform topological space. Then (X,τ_v) is said to be (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* structure hausdorff space, iff for every $x_1, x_2 \in X$ and $x_1 \neq x_2$ implies that there exists $G_1 = \langle x, \mu_{G_1}, \nu_{G_1} \rangle$, $G_2 = \langle x, \mu_{G_2}, \nu_{G_2} \rangle \in \tau_v$ with $\mu_{G_1}(x_1) = 1_{\sim}$, $\nu_{G_1}(x_1) = 0_{\sim}$, $\mu_{G_2}(x_2) = 1_{\sim}$, $\nu_{G_2}(x_2) = 0_{\sim}$ and $G_1 \cap G_2 = 0_{\sim}$

Definition 13. Let (X, τ_v) is said to be (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* structure hausdorff space. The collection $P = \{A_i\}_{i \in \delta}$ of all (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* structure open sets of (X, τ_v) referred to as (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure system, if for any finite collection of elements in $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* structure space such that $\bigcap_{i=1}^n A_i \neq 0_{\sim}$.

Definition 14. Consider, the sets $P_X = \{P_i : i \in \delta\}$ where P_i 's are (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure systems in (X, τ_v) which are also called as (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure points. Then the family τ_P is said to be an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure, if it satisfies the following conditions:

- (i) $\emptyset, P_X \in \tau_{\mathcal{P}}$
- (ii) $\cup_{i \in J} \tau_P$ is in τ_P .(arbitrary union)
- (iii) $\bigcap_{i=1}^n \tau_P$ is in τ_P .(finite intersection)

The pair (P_X, τ_P) is called (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure space. Each members of (P_X, τ_P) are called (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure open set. The complement of an (c,d) $\mathcal{IF} - \mathcal{Q}$ Ir^* centred structure uniform open set is (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure closed set.

Definition 15. Let (P_X, τ_P) be (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure space and $A \subseteq P_X$. Then (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure closure and (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure interior of A is defined as

 $\operatorname{Ir}^* C_p \operatorname{Cl}(A) = \cap \{B : B \text{ is an } (c,d) \ \mathcal{IF} - \mathcal{Q} \text{ uniform } \operatorname{Ir}^* \text{ centred structure closed set and } A \subseteq B\}$

 $\operatorname{Ir}^* C_p \operatorname{Int}(A) = \cap \{B : B \text{ is an } (c,d) \ \mathcal{IF} - \mathcal{Q} \text{ uniform } \operatorname{Ir}^* \text{ centred structure closed set and } A \supseteq B\}$

Definition 16. Let (P_X, τ_P) be the (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure space. A collection $\{A_i : i \in \delta\}$ of (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure open sets in a (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure space (P_X, τ_P) is called a (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure open cover of (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred subset B of P_X , if $B \subseteq \bigcup \{A_i : i \in \delta\}$.

Definition 17. Let (P_X, τ_P) be the (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure space is said to be a (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure compact, if for every (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* open cover of P_X possess a finite subcover.

Definition 18. A pairs (P_X, τ_P) and (P_Y, τ_P^*) be any two (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure space. Then $f: (P_X, \tau_P) \to (P_Y, \tau_P^*)$ is an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure continuous function, if $f^{-1}(V)$ is an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure open set in (\mathcal{P}_X, τ_P) for each (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred open set V in (P_Y, τ_P^*) .

Definition 19. Let (P_X, τ_P) be a (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure space and let $P \in P_X$. Then a (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure subset $N \subseteq P_X$ is said to be (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* structure neighborhood, if there exists a (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* structure open sets G such that $P \in G \subseteq N$.

Definition 20. Let (P_X, τ_P) be a (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure space. A subset A of P_X is said to be a (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure dense, if $\operatorname{Ir}^*C_P\operatorname{cl}(A)=P_X$.

Definition 21. A pair (P_X, τ_P) be a (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure space. Then a non-empty family \mathbf{F} of subsets of P_X is called (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure filter on P_X , iff it satisfies the following conditions:

- (i) $\emptyset \in \mathbf{F}$
- (ii) Assume $F \in \mathbf{F}$ and $F \subseteq H$, then $H \in \mathbf{F}$.
- (iii) Consider $F_1, F_2 \in \mathbf{F}$, then $F_1 \cap F_2 \in \mathbf{F}$

Definition 22. Consider (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure net in an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure space (P_X, τ_P) is a function from a directed set Δ to P_X . It is denoted as $\{P_\zeta\}_{\zeta \in \varsigma}$

6.2. Nets, Filters and Convergence in (c,d) $\mathcal{IF}-\mathcal{Q}$ Uniform Ir* Centred Structure space

Notation: Here, throughout this article the notation \oslash is used for eventually and \ominus is used for frequently

Definition 23. Let $\{P_{\zeta}\}_{\zeta \in \varsigma}$ be a (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure net in an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure space P_X and let G be a (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure subset of P_X . Then the (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure net is expressed as

- (i) in G iff $\{\mathcal{P}_{\zeta}\}\in G$, $\forall \zeta\in\varsigma$.
- (ii) $\emptyset \in G$ iff there is an existence of $\vartheta \in \varsigma \forall \alpha \in \varsigma \ \alpha \geq \vartheta$, $\{P_{\zeta}\} \in G$

(iii) $\Theta \in G$, iff for all $\vartheta \in \varsigma$, there is an existence of $\zeta \in \varsigma, \zeta \geq \vartheta$ and $\{P_{\zeta}\} \in G$

Definition 24. Let $\{P_{\zeta}\}$ is a (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure net in the (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure P_X and P is a (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure element of P_X . An (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure net converges towards P iff for every (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure neighborhood U of P, such that $\{P_{\zeta}\} \otimes \operatorname{in} U$.

Definition 25. A pair (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure element P_1 of P_X is said to be a (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure accumulation point or cluster point of a (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure net iff for every (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure neighborhood U of P_1 , so that (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure net is \ominus in U.

Definition 26. Let (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure net $\{P\}$ in a set P_X is said to be (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure universal or (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure ultranet, if for every (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure subset A of P_X , either $\{P\}$ is \oslash in A or $\{P\}$ is \oslash in $P_X - A$.

Definition 27. A collection ϕ represents (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure continuous function on an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure space P_X . A (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure net $\{P_i\}$ in P_X will be called as (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure ϕ net, converges to each f in the mapping ϕ .

Definition 28. A mapping ϕ contains a collection of bdd real valued continuous function on P_X . Here, P_X is a (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure compact set, for every ϕ net has an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure cluster point in P_X .

Definition 29. Let P_X be an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure space, $C^*(P_X) = \{f_\zeta : \zeta \in \varsigma\}$ be the collection of all bdd real-valued continuous function on P_X . Regarding a $C^*(P_X)$ net $\{P_i\}$ and $F_{\{P_i\}} = \{U : U \text{ is a } (c,d)$ $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure open set in P_X and $\{P_i\}$ is \emptyset in $U\}$. By knowing that, $F_{\{P_i\}}$ is an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure open filter and some $f_\zeta \in C^*(P_X)$, any $\epsilon > 0$, $(f_\zeta)^{-1}((r_\zeta - \varepsilon, r_\zeta + \varepsilon)) \in F_{\{P_i\}}$ where $r_\zeta = \lim \{f_\zeta(P_i)\}$ $F_{\{P_i\}}$ is the (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure open filter in P_X induced by $\{P_i\}$.

Definition 30. Let F is a (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure filter on P_X . Let $\varsigma_F = \{(P,F) : P \in F \in F \}$. So ς_F is expressed as the relation $(P_1,F_1) \leq (P_2,F_2)$ iff $F_2 \subset F_1$ and the function $M : \varsigma_F \to P_X$ expressed as $M(P,F_1) = P$ is an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure Net in P_X . It is called as (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred net based on F.

Definition 31. The pair (c,d) be an $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure filter F_P converges to P in P_X , if the (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure net converges to P with respect to F_P .

Definition 32. Let P be a (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure open filter on P_X and $\{P_i\}$ be an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred net related to P, and $I = \{U : U \text{ is a } (c,d)$ $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure open in P_X also $\{P_i\}$ is \emptyset in $U\}$. Then I = P

Remark 2. Every $C^*(P_X)$ net $\{P_i\}$ in P_X and also $\{w_k^{P_i}\}$ be the (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred Net based on the (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure open filter $F_{\{P_i\}}$ induced by $\{P_i\}$.

- (i) $\{w_k^{P_i}\}$ is distinctly established as $F_{\{P_i\}}$ and $F_{\{P_i\}} = F_{\{P_j\}}$ iff $\{w_k^{P_i}\} = \{w_k^{P_j}\}$.
- (ii) $F_{\{P_i\}} = F_{\{w_k^{P_i}\}} = \{O : O \text{ is } (c,d) \ \mathcal{IF} \mathcal{Q} \text{ uniform } \mathbf{Ir}^* \text{ centred structure open set in } P_X \text{ and } \{w_k^{P_i}\} \text{ is eventually in } O \}$
- (iii) $\{w_k^{P_i}\}$ is a $C^*(\mathcal{P}_X)$ net along with $\lim \{f_{\zeta}(w_k^{P_i})\}=\lim \{f_{\zeta}(P_i)\}\ \forall\ f_{\zeta}$ in $C^*(P_X)$.
- (iv) requirements are to be hold:
 - (a) $\{w_k^{P_i}\}$ convergent to P
 - (b) Here, converged to P with respect to $\{P_i\}$.
 - (c) $F_{\{P_i\}}$ converges to P.

Let $Y_P = \{\{w_k^{P_i}\}^* : \{P_i\} \text{ is an } C^*(P_X) \text{ net does not converge to } P_X, \{w_k^{P_i}\} \text{ is } (c,d) \, \mathcal{IF} - \mathcal{Q} \text{ uniform } \mathbf{Ir}^* \text{ centred structure Net based on } (c,d) \, \mathcal{IF} - \mathcal{Q} \text{ uniform } \mathbf{Ir}^* \text{ centred structure } \text{ filter } F_{\{P_i\}}\}, \, P_X^* = P_X \cup Y_P, \text{ the disjoint union of } P_X \text{ and } Y_P. \text{ For each } (c,d) \, \mathcal{IF} - \mathcal{Q} \text{ uniform } \mathbf{Ir}^* \text{ centred structure open set } U \subset P_X \text{ define } U^* \subseteq P_X^* \text{ and the set } U^* = U \cup \{\{w_k^{P_i}\}^* : \{w_k^{P_i}\}^*\} \in Y_P \text{ and } \{w_k^{P_i}\} \text{ is } \oslash \text{ in } U\}. \text{ It is apparent that if } U \subset V, \text{ then } U^* \subset V^*.$

Proposition 1. Let U and V be any two (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure open sets in P_X , then $(U \cap V)^* = U^* \cap V^*$.

Proof. Let $P_2 \in (U \cap V)^* \cap Y_P$, then $P_2 = \{w_k^{P_i}\}^*$ and $\{w_k^{P_i}\}$ is \oslash in $U \cap V$. This indicates that $\{w_k^{P_i}\}$ is $\oslash \in U, V$. Here, $\{w_k^{P_i}\}^* \in U^* \cap V^*$. If $P_2 \in (U^* \cap V^*) \cap Y_P$, then $P_2 = \{w_k^{P_i}\}^*$ and $\{w_k^{P_i}\}$ is \oslash is both in U and V. So $\{w_k^{P_i}\}$ is $\oslash \in U \cap V$. Then $P_2 \in (U \cap V)^*$

Proposition 2. Assume $B = \{U^*: U \text{ be an } (c,d) \mathcal{IF} - \mathcal{Q} \text{ uniform } \mathbf{Ir}^* \text{ centred structure open set in } P_X \}$. Then B is an $(c,d) \mathcal{IF} - \mathcal{Q}$ uniform \mathbf{Ir}^* centred structure base for an $(c,d) \mathcal{IF} - \mathcal{Q}$ uniform \mathbf{Ir}^* centred structure on P_X^* , if

- (i) $P_X^* = \{U^* : U^* \in B\}$
- (ii) Each U^* , $V^* \in B$ with $P_2 \in U^* \cap V^*$ some of the $W^* = (U^* \cap V^*) \in B$, $P_2 \in W^* \subset U^* \cap V^*$

Proof.

- (i) $P_X^* = \{U^* : U^* \in B\}$, let $P_2 \in Y_P$, then $\mathcal{P}_2 = \{w_k^{P_i}\}^*$. For any $f_\zeta \in C^*(P_X)$, let $r_\zeta = \lim \{f_\zeta(w_k^{P_i}), \text{ then } \{w_k^{P_i}\} \text{ is } \emptyset \text{ in } f_\alpha^{-1}((r_\zeta \varepsilon, r_\zeta + \varepsilon)), \text{ for any } \varepsilon > 0, \text{ that is } \{w_k^{P_i}\}^* \text{ is in } f_\zeta^{-1}((r_\zeta \varepsilon, r_\zeta + \varepsilon)) \text{ for all } v > 0, \text{ accordingly } Y_P \subset \cup \{U^* : U^* \in B\} \text{ consequently } P_X^* \subset \cup \{U^* : U^* \in B\}. \text{ For } \{U^* : U^* \in B\} \subset P_X^* \text{ is explained.}$
- (ii) if $P_2 \in U^* \cap V^*$, for any U^* and V^* in B, since $(U \cap V)^*$ is in B and $(U \cap V)^* = U^* \cap V^*$, thus $P_2 \in (U \cap V)^* \subset U^* \cap V^*$.

Remark 3. Consider the P_X^* with (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform \mathbf{Ir}^* centred structure induced by the (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform \mathbf{Ir}^* centred structure base B. For all f_{ζ} in $C^*(P_X)$, defined f_{ζ}^* : $P_X^* \to R$ define that $f_{\zeta}^*(P_1) = f_{\zeta}(P_1)$ if $P_1 \in P_X$, $f_{\zeta}^*(\{w_k^{P_i}\}^*) = \lim \{f_{\zeta}(w_k^{P_i})\}$ for any $\{w_k^{P_i}\}^*$ in Y_P and it is stated as f_{ζ}^* is clearly specified that it is bdd real valued function on P_X^* .

Proposition 3. For Any f_{ζ} in $C^*(P_X)$, f_{ζ}^* is a bounded real valued continuous function on P_X^* .

Proof. It is enough to proof the continuity, f_{ζ}^* at any P_3 in P_X^* , let $t_{\zeta} = f_{\zeta}^*(P_3)$. It will be shown that for any $\varepsilon > 0$, there is an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure open set $U^* \in B$ such that $P_3 \in U^* \subset (f_{\zeta}^*)^{-1}((t_{\zeta} - \varepsilon, t_{\zeta} + \varepsilon))$. Let $\mathsf{U} = f_{\zeta}^{-1}((t_{\zeta} - \varepsilon/2, t_{\zeta} + \varepsilon/2))$. If $P_3 \in P_X$, since $f_{\zeta}(P_3) = f_{\zeta}^*(P_3) = t_{\zeta}$, thus $P_3 \in f_{\zeta}^{-1}((t_{\zeta} - \varepsilon/2, t_{\zeta} + \varepsilon/2)) \subset (f_{\zeta}^{-1}((t_{\zeta} - \varepsilon/2, t_{\zeta} + \varepsilon/2)))^*$. If $P_3 \in Y_P$, then $P_3 = \{w_k^{P_i}\}^*$. Since $t_{\zeta} = f_{\zeta}^*(P_3) = \lim \{f_{\zeta}(w_k^{P_i}), \text{ so } \{w_k^{P_i}\} \text{ is } \emptyset \text{ in } f_{\zeta}^{-1}((t_{\zeta} - \varepsilon/2, t_{\zeta} + \varepsilon/2)))^* \subset (f_{\zeta}^*)^{-1}((t_{\zeta} - \varepsilon/2, t_{\zeta} + \varepsilon/2)))^*$. Finally show that, $(f_{\zeta}^{-1}((t_{\zeta} - \varepsilon/2, t_{\zeta} + \varepsilon/2)))^* \subset (f_{\zeta}^*)^{-1}((t_{\zeta} - \varepsilon, t_{\zeta} + \varepsilon))$. If P_1 is in $P_X \cap (f_{\zeta}^{-1}((t_{\zeta} - \varepsilon/2, t_{\zeta} + \varepsilon/2)))^*$ then $P_1 \in f_{\zeta}^{-1}((t_{\zeta} - \varepsilon/2, t_{\zeta} + \varepsilon/2))$ that is $f_{\zeta}^*(P_1) = f_{\zeta}(P_1)$ $\in (t_{\zeta} - \varepsilon, t_{\zeta} + \varepsilon)$. So, $P_1 \in (f_{\zeta}^*)^{-1}((t_{\zeta} - \varepsilon, t_{\zeta} + \varepsilon))$. If $P_2 \in (f_{\zeta}^{-1}((t_{\zeta} - \varepsilon/2, t_{\zeta} + \varepsilon/2)))^* \cap Y_P$, then $P_2 = \{w_k^{P_i}\}^*$ and $\{w_k^{P_i}\}$ is \emptyset in $(f_{\zeta})^{-1}((t_{\zeta} - \varepsilon/2, t_{\zeta} + \varepsilon/2))$ thus $f_{\zeta}^*(P_2) = \lim \{f_{\zeta}(w_k^{P_i})\}$ $\in [t_{\zeta} - \varepsilon/2, t_{\zeta} + \varepsilon/2] \subset (t_{\zeta} - \varepsilon, t_{\zeta} + \varepsilon)$ that is $P_2 \in (f_{\zeta}^*)^{-1}((t_{\zeta} - \varepsilon, t_{\zeta} + \varepsilon))$.

Proposition 4. Let $K: P_X \to P_X^*$ be defined by $K(P_1) = P_1$, then K is an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure continuous mapping from P_X into P_X^* .

Proof. For any (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure open set $U^* \in B$, $K^{-1}(U^*) = U$ is a (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure open set in P_X , so K is an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure continuous mapping on P_X .

Proposition 5. For any P_2 in $P_X^* - P_X$ with $P_2 = \{w_k^{P_i}\}^*$, $\{k(w_k^{P_i})\}$ converges to $P_2 = \{(w_k^{P_i})\}^*$.

Proof. Let U^* be any (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure open set in B containing P_2 then $\{(w_k^{P_i})\}$ and $\emptyset \in U$ in P_X . This implies that $\{k(w_k^{P_i})\}$ is \emptyset in U^* , thus $\{K(w_k^{P_i})\}$ it is converged to $P_2 = \{w_k^{P_i}\}^*$.

Proposition 6. $K(P_X)$ is an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure dense in P_X^* Proof. For any P_2 in $P_X^* - P_X$. $P_2 = \{w_k^{P_i}\}^*$. By the above Proposition 5, implies that $\{K(w_i^{P_i})\}$ converges to $P_2 = \{w_k^{P_i}\}^*$. Thus Ir^* $C_p \operatorname{Cl}(K(P_X)) = P_X^*$.

Remark 4. Here, $C = \{f_{\zeta}^* : f_{\zeta} \in \delta\}$ represent $\{f_{\zeta}^* : f_{\zeta} \in C^*(P_X)\}$. Each C net P_i in P_X^* and $E = \{O : O \text{ is an } (c,d) \ \mathcal{IF} - \mathcal{Q} \text{ uniform } \operatorname{Ir}^* \text{ centred structure open in } P_X^* \text{ and } \{P_i\} \text{ is } \emptyset \text{ in } O\}.$

 $L = \{U : U \text{ is an } (c,d) \ \mathcal{IF} - \mathcal{Q} \text{ uniform } \mathbf{Ir}^* \text{ centred structure open in } P_X \text{ and } U^* \in E\}.$

Proposition 7. For a C net $\{P_i\}$, in P_X^* . Let $r_{\zeta} = \lim \{f_{\zeta}^*(P_i)\}$. All $f_{\zeta}^* \in C$. Then for arbitrary $\varepsilon > 0$, $(f_{\zeta}^*)^{-1}((r_{\zeta} - \varepsilon, r_{\zeta} + \varepsilon)) \subset (f_{\zeta}^{-1}((r_{\zeta} - \varepsilon, r_{\zeta} + \varepsilon)))^*$.

Proof. Consider, $P_3 \in (f_{\zeta}^*)^{-1}((r_{\zeta} - \varepsilon, r_{\zeta} + \varepsilon))$, then $f_{\zeta}^*(P_3) \in (r_{\zeta} - \varepsilon, r_{\zeta} + \varepsilon)$. If $P_3 = K(P_1) = P_1, \forall P \in P_X$. Given that, $f_{\zeta}(P_1) = f_{\zeta}^*(P_3)$, so P_1 is in $(f_{\zeta})^{-1}((r_{\zeta} - \varepsilon, r_{\zeta} + \varepsilon))^*$. If $P_3 = \{w_k^{P_i}\}^*$ in Y_P , then $\lim \{f_{\zeta}(w_k^{P_i})\} = f_{\zeta}^*(P_3) \in (r_{\zeta} - \varepsilon, r_{\zeta} + \varepsilon)$. This implies that $\{w_k^{P_i}\}$ is \oslash in $(f_{\zeta})^{-1}((r_{\zeta} - \varepsilon, r_{\zeta} + \varepsilon))$ thus $\{w_k^{P_i}\}$ is in $(f_{\zeta})^{-1}(r_{\zeta} - \varepsilon, r_{\zeta} + \varepsilon)^*$.

Corollary 1. For a C net $\{P_i\}$ in P_X^* . Let $r_\alpha = \lim \{f_\zeta^*(P_i)\}$ for every $f_\zeta^* \in C$. Then for arbitrary $\varepsilon > 0$, $(f_\zeta^*)^{-1}((r_\zeta - \varepsilon, r_\zeta + \varepsilon)) \in E$ and $(f_\zeta)^{-1}((r_\zeta - \varepsilon, r_\zeta + \varepsilon)) \in L$.

Proof. Here, $(f_{\zeta}^*)^{-1}$ $((r_{\zeta} - \varepsilon, r_{\zeta} + \varepsilon)) \in E$. By the above Proposition 7, $\{P_i\}$ is \emptyset in $(f_{\zeta})^{-1}((r_{\zeta} - \varepsilon, r_{\zeta} + \varepsilon))^*$, thus $(f_{\zeta})^{-1}((r_{\zeta} - \varepsilon, r_{\zeta} + \varepsilon)) \in L$

Proposition 8. E and L are (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure open filter on P_X^* and P_X respectively.

Proof. Building on the proof of Proposition 1 and Corollary 1, it is evident that \mathcal{E} is an (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform Ir^* centred structure filter on P_X^* . By Corollary 1 $L \neq \emptyset$. If U, V are (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform Ir^* centred structure open sets in L, then U^* and $V^* \in E$. Since $(U \cap V)^* = U^* \cap V^*$ and $U^* \cap V^* \in E$ thus $U \cap V \in L$. If W is an (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform Ir^* centred structure open set both $W \supset O$ and $W^* \supset O^*$. Hence it is implies that $W^* \in E$ and $W \in L$.

Proposition 9. The C net $\{P_i\}$ converges with respect to P_X^* .

Proof. Let $\{w_k\}$ be the (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform Ir^* basis on centred structure net L. Since for any $\alpha \in \delta$ and $\varepsilon > 0$, $(f_{\zeta}^{-1})((r_{\zeta} - \varepsilon, r_{\zeta} + \varepsilon)) \in L$, where $r_{\zeta} = \lim \{f_{\zeta}^* P_i\}$. So, $f_{\zeta}(w_k)$ converges to $r_{\zeta} \, \forall \, \zeta \in \delta$. i.e $\{w_k\}$ is a $C^*(P_X)$ net. Since (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform Ir^* centred structure open filter $F_{\{w_k\}}$ formed by the $C^*(P_X)$ net $\{w_k\}$ is exactly in L. So, if $\{w_k^{P_k}\}$ is the (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform Ir^* centred structure net according to $F_{\{w_k\}}$, then $\{w_k\} = \{w_k^{P_k}\}$.

Case 1: If $\{w_k\}$ converges to an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure point P in \mathcal{P}_X . Let U^* be an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure open set B contains K(P), then $\mathcal{P} \in U$.Here, U is an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure open set in P_X . Since $\{w_k\}$ converges to P, by considering Definition 31, U in L and therefore U^* is in E. It states that $\{P_i\}$ converged to K(P) in P_X^* .

Case 2: If $\{w_k\}$ diverges to $\{P_X\}$ then $\{w_k^*\} = \{w_k^{P_k}\}^*$ is in $Y_{\mathcal{P}}$. For all U^* is in B containing $\{w_k^{P_k}\}$ is \emptyset in U in P_X then by Definition 32 implies that \mathcal{U} in L and therefore U^* is in \mathcal{E} . Thus $\{P_i\}$ converges to $\{w_k^{P_k}\}^* = \{w_k\}^* \in P_X^*$.

Proposition 10. (P_X^*, K) is an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure compactification of P_X .

Proof. A family of C is said to be bdd real-valued continuous functions on \mathcal{P}_X^* and for all C net $\{P_i\}$ converges to P_X^* . From the Definition 28, P_X^* is an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure compact space. Here, the Proposition 6, implies that (P_X^*, K) is an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure compactification of P_X .

Proposition 11. Let $C(P_X^*)$ be the collection of all real valued continuous functions on P_X^* . Then $C(P_X^*) = C = \{f_{\zeta}^* : f_{\zeta} \in C^*(P_X)\}$

Proof. Let $g \in C(P_X^*)$. Since \mathcal{P}_X^* is an (c,d) $\mathcal{IF} - \mathcal{Q}$ uniform Ir^* centred structure compact, so $g \circ K \in C(P_X^*)$. By Proposition 5 and 6 along with based on the continuity of g, it follows that $(g \circ K)^*(\{w_k^{\mathcal{P}_i}\}) = \lim \{(g \circ K)(w_i^{P_i})\} = \lim \{g(K(w_k^{P_i}))\} = g(\lim \{K(w_K^{P_i})\}) = g(\{w_k^{P_i}\}^*) \ \forall \ \{w_k^{P_i}\} \in Y_P \text{ and } (g \circ K)^* (K(P)) = (g \circ K)^* (\mathcal{P}) = g(K(P)) \ \forall \ P \in P_X$. It is stated that, $C(P_X^*) \subset C = \{f_\zeta^* : f_\zeta \in C^*(P_X)\}$.

7. Results and Discussions

The (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform \mathbf{Ir}^* Centred structure compactification is an unique approach of compactification methods compared to others. Here, it was studied with the irreducibility, centred systems, compact spaces, Nets and filters etc., Also with convergence using boundedness and continous functions. While comparing to other compactifications as mentioned in Section-2 Literature survey. Fan-Gottesmann compactification deals with clopen open sets with filters and nets alongs with convergence not using the boundedness. Also, some of the compactifications make a way to conceptual ideas of framing from noncompact spaces to compact spaces and others. Apart from all these, (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform \mathbf{Ir}^* Centred Structure compactification is unique one which is being centred system and irreducible sets.

8. Conclusion

This research work will lead to a fine understanding about (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform \mathbf{Ir}^* centred structure space and its properties. It enhances the theoretical approaches to various contexts in compactifications. The inter-relations between (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform \mathbf{Ir}^* centred structure nets and (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform \mathbf{Ir}^* centred structure filters provide a robust theoretical framework for understanding (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform \mathbf{Ir}^* centred structure compactness in various types of spaces. Likewise, (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform \mathbf{Ir}^* centred structure nets provides a way to generalize sequences and convergence in (c,d)

 $\mathcal{IF}-\mathcal{Q}$ uniform topological space while (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform Ir^* centred structure filters discussed a framework for convergence and compactness. It will lead to applications of compactifications on various fields. Future framework of (c,d) $\mathcal{IF}-\mathcal{Q}$ uniform Ir^* centred structure compactification can be explored into category theory, fixed point theory along with metric spaces.

Acknowledgements

The authors are highly thankful to the referees and editors for their valuable comments and suggestions to our article.

References

- [1] Lotfi Asker Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.
- [2] Hans-Jürgen Zimmermann. Fuzzy set theory—and its applications. Springer Science & Business Media, 2011.
- [3] Krassimir T Atanassov. On intuitionistic fuzzy sets theory, volume 283. Springer, 2012.
- [4] Chin-Liang Chang. Fuzzy topological spaces. Journal of mathematical Analysis and Applications, 24(1):182–190, 1968.
- [5] Doğan Çoker. An introduction to intuitionistic fuzzy topological spaces. Fuzzy sets and systems, 88(1):81–89, 1997.
- [6] Bruce Hutton. Normality in fuzzy topological spaces. Journal of Mathematical Analysis and Applications, 50(1):74–79, 1975.
- [7] Bruce Hutton. Uniformities on fuzzy topological spaces. Journal of Mathematical Analysis and Applications, 58(3):559–571, 1977.
- [8] R Narmada Devi, E Roja, and MK Uma. A new view on intuitionistic fuzzy c structure compactification. Annals of Fuzzy Mathematics and Informatics, 5(3):571–582, 2013.
- [9] GK Revathi, R Narmada Devi, and E Roja. Intuitionistic fuzzy rough centred texture wallman type compactification. *Annals of Fuzzy Mathematics and Informatics*, 7(4):699–714, 2014.
- [10] GK Revathi, E Roja, and MK Uma. Semigroup compactification in an intuitionistic fuzzy convergence topological space. *Italian Journal of Pure and Applied Mathematics*, (35):9–22, 2015.
- [11] Ceren Sultan Elmali and Tamer Ugur. Fan-gottesman compactifications and stone space. Sigma, 10(2):143–147, 2019.
- [12] Boris Vladimirovich Sorin. Compactifications of homeomorphism groups of linearly ordered compacta. *Mathematical Notes*, 112(1):126–141, 2022.
- [13] G Bezhanishvili and J Harding. Duality theory for the category of stable compactifications. In *Topology Proc*, volume 61, pages 1–13, 2023.
- [14] J Flachsmeyer and F Terpe. Some applications of the theory of compactifications of topological spaces and measure theory. *Russian Mathematical Surveys*, 32(5):133, 1977.

- [15] Klaus G Witz. Applications of a compactification for bounded operator semigroups. *Illinois Journal of Mathematics*, 8(4):685–696, 1964.
- [16] Nestor Djintelbe and Michel Coste. Compactification of the group of rigid motions and applications to robotics. *Journal of Pure and Applied Algebra*, 225(7):106604, 2021.
- [17] GK Revathi, E Roja, and MK Uma. A new approach to intuitionistic fuzzy quasi uniform regular g δ compactness. *International Journal of Mathematics Sciences and Applications*, 2, 2012.