EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 3, Article Number 6172 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Finite Γ -AG-Groupoids With Left Identities and Left Zeros

Cholathorn Chanoi¹, Apichaya Kauppamung¹, Panuwat Luangchaisri¹, Thawhat Changphas^{1,*}

¹Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

Abstract. Let Γ be a nonempty set. A nonempty set A is called a Γ -AG-groupoid if there is a function f from $A \times \Gamma \times A$ into A, customary denoted $a\gamma b$ for $f(a, \gamma, b)$, satisfying the identity $(a\gamma b)\beta c = (c\gamma b)\beta a$ for any $a, b, c \in A$ and $\gamma, \beta \in \Gamma$. For each $\gamma \in \Gamma$, an operation on A associated to γ is given by $ab = a\gamma b$. Suppose further that A is finite, contains a left identity and a left zero a_0 . The objective of this paper is to provide sufficient conditions under which the set $A \setminus \{a_0\}$ is a commutative group under the operation on A determined by γ for all $\gamma \in \Gamma$.

2020 Mathematics Subject Classifications: 20N02

Key Words and Phrases: AG-groupoid, Γ -AG-groupoid, semigroup, Γ -semigroup, group.

1. Introduction

An Abel-Grassmann's groupoid, abreviated by AG-groupoid, is a groupoid A such that the identity

$$(ab)c = (cb)a$$

holds for any $a, b, c \in A$.

An AG-groupoid is also called a *left almost semigroup* (it is abreviated by LA-semigroup), a *left invertive groupoid*, or a *right modular groupoid* (cf. [1], [2], [3], [4]).

An AG-groupoid is closely related to a commutative semigroup, because if an AG-groupoid contains a right identity, then it becomes a commutative monoid. Moreover, if an AG-groupoid A with a left identity and a left zero a_0 is finite, then (under certain conditions) $A \setminus \{a_0\}$ is a commutative group (cf. [5] Theorem 2.2). The purpose of this paper is to extend this result to Γ -AG-groupoids.

*Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v18i3.6172

Email addresses: thacha@kku.ac.th (T. Changphas)

2. Preliminaries

Let Γ be a nonempty set. A nonempty set A is called a Γ -groupoid if there is a function f of $A \times \Gamma \times A$ into A, we often write $a\gamma b$ for $f(a, \gamma, b)$. Suppose A is a Γ -groupoid. For each $\gamma \in \Gamma$, an operation on A determined by γ is defined by for any $a, b \in A$, $ab = a\gamma b$.

A Γ -groupoid A is called a Γ -semigroup if the identity

$$(a\gamma b)\beta c = a\gamma(b\beta c)$$

holds for all $a, b, c \in A$ and $\gamma, \beta \in \Gamma$.

A Γ -semigroup A is said to be *commutative* if

$$a\gamma b = b\gamma a$$

for all $a, b \in A$ and $\gamma \in \Gamma$.

The notion of Γ -semigroup was introduced and studied by M. K. Sen (cf. [6], [7]). Suppose A is a semigroup. For a nonempty set Γ , define $a\gamma b=ab$ for any $a,b\in A$ and $\gamma\in\Gamma$; then A is a Γ -semigroup. If A is a Γ -semigroup, then for any $\gamma\in\Gamma$, A is a semigroup under the operation determined by γ .

Example 1. Let A and Γ be the set of all nonpositive integers and the set of all nonpositive even integers, respectively. For $a, b \in A$ and $\gamma \in \Gamma$, define $a\gamma b$ to be the usual multiplication of integers; then A is a Γ -semigroup.

Example 2. Let $Mat_{2\times 3}(\mathbb{Q})$ denote the set of all 2×3 matrices over \mathbb{Q} , the set of rational numbers. And, let Γ denote the set of all 3×2 matrices over \mathbb{Q} . For $A, B \in Mat_{2\times 3}(\mathbb{Q})$ and $\gamma \in \Gamma$, define $A\gamma B$ to be the usual matrix product. Then $Mat_{2\times 3}(\mathbb{Q})$ is a Γ -semigroup. Note that $Mat_{2\times 3}(\mathbb{Q})$ is not a semigroup under the usual product of matrices.

We need the following theorem proved in [8] (also, in [9]).

Theorem 1. Suppose A is a Γ -semigroup. If A is a group under the operation defined by γ for some $\gamma \in \Gamma$, then A is a group under the operation determined by γ for all $\gamma \in \Gamma$.

Let Γ be a nonempty set. A nonempty set A is called a Γ -AG-groupoid if there is a function f from $A \times \Gamma \times A$ into A, it is customary to write $a\gamma b$ for $f(a, \gamma, b)$, such that

$$(a\gamma b)\beta c = (c\gamma b)\beta a$$

for all $a, b, c \in A$ and $\gamma, \beta \in \Gamma$.

Suppose A is an AG-groupoid and Γ is a nonempty set. Then A is a Γ -AG-groupoid under the function defined by $a\gamma b = ab$ for all $a, b \in A$ and $\gamma \in \Gamma$. If A is a Γ -AG-groupoid, then for any $\gamma \in \Gamma$, A is an AG-groupoid under the operation determined by γ .

Example 3. Let $\Gamma = \{1, 2, ..., n\}$. Define a function from $\mathbb{Z} \times \Gamma \times \mathbb{Z}$ into \mathbb{Z} , the set of all integers, by

$$a\gamma b = b - \gamma - a$$

for all $a, b \in \mathbb{Z}$ and $\gamma \in \Gamma$, where - is a usual subtraction of integers. Then \mathbb{Z} is a Γ -AG-groupoid.

Example 4. Let $A = \Gamma = \{0, i, -i\}$. Define a function from $A \times \Gamma \times A$ into A by $a\gamma b$ for all $(a, \gamma, b) \in A \times \Gamma \times A$; here $a\gamma b$ is the usual multiplication of complex numbers. Then A is a Γ -AG-groupoid, where as A is not an AG-groupoid.

The following theorem is in [10] (see also in [11]).

Theorem 2. Any Γ -AG-groupoid satisfies the medial law. That is, if A is a Γ -AG-groupoid, then

$$(a\gamma b)\beta(c\alpha d) = (a\gamma c)\beta(b\alpha d)$$

for any $a, b, c, d \in A$ and $\gamma, \beta, \alpha \in \Gamma$.

An element e of a Γ -AG-groupoid A is said to be a *left identity* if for all $a \in A$ and $\gamma \in \Gamma$,

$$e\gamma a=a.$$

An element a_0 of a Γ -AG-groupoid A is said to be a *left zero* if for all $a \in A$ and $\gamma \in \Gamma$,

$$a_0 \gamma a = a_0$$
.

A Γ -AG-groupoid A is said to be *cancellative* if for all $a, b, c \in A$ and $\gamma \in \Gamma$,

$$(a\gamma c = b\gamma c \text{ or } c\gamma a = c\gamma b) \text{ imply } a = b.$$

Example 5. Consider an AG-groupoid $A = \{1, 2, 3, 4\}$ with the operation defined as follows:

	1	2	3	5
1	1	2	3	5
$\frac{1}{2}$	$\begin{vmatrix} 1 \\ 3 \\ 3 \end{vmatrix}$	3	3	3
		3	3	3
5	2	3	3	3

Let Γ be a nonempty set. For $a, b \in A$ and $\gamma \in \Gamma$, define $a\gamma b = a \cdot b$. We have that A is a finite Γ -AG-groupoid with left identity 1, and left zero 3.

3. Results

We begin this section with the following theorem.

Theorem 3. If A is a Γ -AG-groupoid satisfying the identity

$$a\gamma(b\beta c) = (c\gamma b)\beta a$$

for all $a, b, c \in A$ and $\gamma, \beta \in \Gamma$, then A is a Γ -semigroup.

Proof. Assume the condition holds. Then, for $a, b, c \in A$ and $\gamma, \beta \in \Gamma$, we have

$$(a\gamma b)\beta c = (c\gamma b)\beta a = a\gamma (b\beta c).$$

Thus A is a Γ -semigroup.

Theorem 4. If A is a cancellative Γ -AG-groupoid satisfying the identity

$$a\gamma(b\beta c) = (c\gamma b)\beta a$$

for all $a, b, c \in A$ and $\beta, \gamma \in \Gamma$, then for any $\gamma \in \Gamma$, A is a commutative semigroup under the operation determined by γ .

Proof. Assume the condition holds. By Theorem 3, for any $\gamma \in \Gamma$, A is a semigroup under the operation determined by γ . Let $a, b \in A$ and $\gamma \in \Gamma$. Consider:

$$(a\gamma(a\gamma b))\gamma a = ((a\gamma a)\gamma b)\gamma a$$
$$= (a\gamma a)\gamma(b\gamma a)$$
$$= (a\gamma b)\gamma(a\gamma a)$$
$$= ((a\gamma b)\gamma a)\gamma a.$$

So $(a\gamma(a\gamma b))\gamma a = ((a\gamma b)\gamma a)\gamma a$. By cancellative law, $a\gamma(a\gamma b) = (a\gamma b)\gamma a$. By assumption, $a\gamma(a\gamma b) = a\gamma(b\gamma a)$. Using cancellative law, $a\gamma b = b\gamma a$. Hence A is a commutative semigroup under the operation determined by γ .

An AG-groupoid A is said to be *cancellative* if for all $a, b, c \in A$, ac = bc or ca = cb imply a = b. We specifically have the following corollary:

Corollary 1. If A is a cancellative AG-groupoid satisfying the identity

$$a(bc) = (cb)a$$

for all $a, b, c \in A$, then A is a commutative semigroup.

Now, we present the main result.

Theorem 5. Let A be a finite Γ -AG-groupoid containing at least two elements (|A| > 1). Suppose A contains a left identity e and a left zero a_0 , and A satisfies the identity

$$a\gamma(b\beta c) = (c\gamma b)\beta a$$

for all $a, b, c \in A$ and $\gamma, \beta \in \Gamma$. Suppose further that there exist $\gamma_0 \in \Gamma$ and an operation * of $A \times A$ into A, write a * b for *(a, b), such that (i)-(v) hold:

- (i) A is an AG-groupoid under *.
- (ii) For any $a \in A$ there exists $b \in A$ such that $b * a = a_0$.
- (iii) $a_0 * a = a$ for all $a \in A$.
- (iv) $(a*b)\gamma_0c = (a\gamma_0c)*(b\gamma_0c)$ for all $a,b,c \in A$.

(v) For any $a, b \in A$, if $a\gamma_0 b = a_0$ then $a = a_0$ or $b = a_0$.

Then $A \setminus \{a_0\}$ is a commutative group under the operation determined by γ for all $\gamma \in \Gamma$.

Proof. Let

$$A = \{a_0, a_1, \dots, a_m\}, \text{ where } m \ge 1.$$

Claim 1: $A \setminus \{a_0\}$ is an AG-groupoid under the operation determined by γ_0 . Since $m \geq 1$, $A \setminus \{a_0\} \neq \emptyset$. Suppose $a_i \gamma_0 a_j = a_0$ for some $a_i, a_j \in A \setminus \{a_0\}$. By (v), $a_i = a_0$ or $a_j = a_0$. This is a contradiction. Thus $a_i \gamma_0 a_j \in A \setminus \{a_0\}$ for all $a_i, a_j \in A \setminus \{a_0\}$; so $A \setminus \{a_0\}$ is a groupoid under the operation determined by γ_0 . From $A \setminus \{a_0\} \subseteq A$, it follows that $(a_i \gamma_0 a_j) \gamma_0 a_k = (a_k \gamma_0 a_j) \gamma_0 a_i$ for all $a_i, a_j, a_k \in A \setminus \{a_0\}$.

Claim 2: $e \neq a_0$. Suppose not. If $a_i \in A$ then

$$a_i = e\gamma_0 a_i = a_0 \gamma_0 a_i = a_0.$$

Thus $A = \{a_0\}$, this is a contradiction. So $e \neq a_0$.

Claim 3: $a_0 \gamma_0 a_i = a_i \gamma_0 a_0$ for all $a_i \in A$. Let $a_i \in A$. Consider:

$$(a_i \gamma_0 a_0) \gamma_0 e = (e \gamma_0 a_0) \gamma_0 a_i = a_0 \gamma_0 a_i = a_0.$$

By (v), $a_i\gamma_0a_0 = a_0$ or $e = a_0$. By Claim 2, $a_i\gamma_0a_0 = a_0$. Hence $a_0\gamma_0a = a_0 = a_i\gamma_0a_0$. Claim 4: For each $a_k \in A \setminus \{a_0\}$ there exists $a_k^{-1} \in A \setminus \{a_0\}$ such that

$$a_k \gamma_0 a_k^{-1} = e = a_k^{-1} \gamma_0 a_k.$$

Let $a_k \in A \setminus \{a_0\}$. Consider:

$$H_{k,\gamma_0} = \{a_k \gamma_0 a_1, a_k \gamma_0 a_2, \dots, a_k \gamma_0 a_m\}.$$

To show that $|H_{k,\gamma_0}| = m$, suppose $a_k \gamma_0 a_r = a_k \gamma_0 a_s$ for some $r \neq s$. Consider:

$$a_r \gamma_0 a_k = (e\gamma_0 a_r) \gamma_0 a_k$$

$$= (a_k \gamma_0 a_r) \gamma_0 e$$

$$= (a_k \gamma_0 a_s) \gamma_0 e$$

$$= (e\gamma_0 a_s) \gamma_0 a_k$$

$$= a_s \gamma_0 a_k.$$

By (ii), there exists $a_r^{-1} \in A$ such that $a_r^{-1} * a_r = a_0$. Consider (Using (i), (iii), (iv)):

$$(a_s * a_r^{-1})\gamma_0 a_k = (a_s \gamma_0 a_k) * (a_r^{-1} \gamma_0 a_k)$$

$$= (a_r \gamma_0 a_k) * (a_r^{-1} \gamma_0 a_k)$$

$$= (a_r * a_r^{-1})\gamma_0 a_k$$

$$= (a_0 * (a_r * a_r^{-1}))\gamma_0 a_k$$

$$= ((a_0 * a_0) * (a_r * a_r^{-1}))\gamma_0 a_k$$

$$= (((a_r * a_r^{-1}) * a_0) * a_0)\gamma_0 a_k$$

$$= (((a_0 * a_r^{-1}) * a_r) * a_0)\gamma_0 a_k$$

$$= ((a_r^{-1} * a_r) * a_0)\gamma_0 a_k$$

$$= (a_0 * a_0)\gamma_0 a_k$$

$$= a_0\gamma_0 a_k$$

$$= a_0.$$

By (v), $a_s * a_r^{-1} = a_0$ or $a_k = a_0$. Since $a_k \neq a_0$, $a_s * a_r^{-1} = a_0$. Consider:

$$a_{r} = a_{0} * a_{r}$$

$$= (a_{s} * a_{r}^{-1}) * a_{r}$$

$$= (a_{r} * a_{r}^{-1}) * a_{s}$$

$$= (a_{0} * (a_{r} * a_{r}^{-1})) * a_{k}$$

$$= ((a_{0} * a_{0}) * (a_{r} * a_{r}^{-1})) * a_{k}$$

$$= (((a_{r} * a_{r}^{-1}) * a_{0}) * a_{0}) * a_{k}$$

$$= (((a_{0} * a_{r}^{-1}) * a_{r}) * a_{0}) * a_{k}$$

$$= ((a_{r}^{-1} * a_{r}) * a_{0}) * a_{k}$$

$$= (a_{0} * a_{0}) * a_{k}$$

$$= a_{0} * a_{s}$$

$$= a_{s}.$$

Then $a_r = a_s$; this is a contradiction. Hence $|H_{k,\gamma_0}| = m$. Let $a_k \gamma_0 a_j \in H_{k,\gamma_0}$. Suppose $a_k \gamma_0 a_j = a_0$. By (v), $a_k = a_0$ or $a_j = a_0$. This is a contradiction. Then $a_k \gamma_0 a_j \neq a_0$, and $a_k \gamma_0 a_j \in A \setminus \{a_0\}$. So $H_{k,\gamma_0} \subseteq A \setminus \{a_0\}$. From $|H_{k,\gamma_0}| = m = |A \setminus \{a_0\}|$, it follows that

$$H_{k,\gamma_0} = A \setminus \{a_0\}.$$

Since $e \in H_{k,\gamma_0}$, $e = a_k \gamma_0 a_i$ for some $a_i \in A \setminus \{a_0\}$. Moreover,

$$a_i \gamma_0 a_k = e \gamma_0 (a_i \gamma_0 a_k) = (a_k \gamma_0 a_i) \gamma_0 e = e \gamma_0 e = e.$$

Setting $a_k^{-1} = a_i$, we then have $a_k \gamma_0 a_k^{-1} = e = a_k^{-1} \gamma_0 a_k$. By Claim 4, $A \setminus \{a_0\}$ is a group under the operation determined by γ_0 . And, by Theorem 1, $A \setminus \{a_0\}$ is a group under the operation determined by γ for all $\gamma \in \Gamma$. Finally, by Theorem 4, we conclude that $A \setminus \{a_0\}$ is a commutative group under the operation determined by γ for all $\gamma \in \Gamma$. This completes the proof.

An element e of an AG-groupoid A is said to be a *left identity* if for all $a \in A$, ea = a. An element a_0 of A is said to be a *left zero* if for all $a \in A$, $a_0a = a_0$. The following corollary is particularly true.

Corollary 2. Let (A, \cdot) be a finite AG-groupoid with |A| > 1, a left identity e, a left zero a_0 , and

$$a \cdot (b \cdot c) = (c \cdot b) \cdot a$$

for all $a, b, c \in A$. Suppose there exists an operation * on A such that (i)-(v) hold:

- (i) (A,*) is an AG-groupoid.
- (ii) For any $a \in A$ there exists $b \in A$ such that $b * a = a_0$.
- (iii) $a_0 * a = a$ for all $a \in A$.
- $(iv) \ (a*b) \cdot c = (a \cdot c)*(b \cdot c) \ for \ all \ a,b,c \in A.$
- (v) For any $a, b \in A$, $a \cdot b = a_0$ implies $a = a_0$ or $b = a_0$.

Then $(A \setminus \{a_0\}, \cdot)$ is a commutative group.

The following proposition demonstrates the necessity of the identity $a\gamma(b\beta c)=(c\gamma b)\beta a$ for all $a,b,c\in A$ and $\gamma,\beta\in\Gamma$ as stated in Theorem 5.

Proposition 1. Let A be a finite Γ -AG-groupoid containing at least two elements (|A| > 1). Suppose A contains a left identity e and a left zero a_0 . Suppose further that there exist $\gamma_0 \in \Gamma$ and an operation * of $A \times A$ into A, write a * b for *(a,b), such that (i)-(v) hold:

- (i) A is an AG-groupoid under *.
- (ii) For any $a \in A$ there exists $b \in A$ such that $b * a = a_0$.
- (iii) $a_0 * a = a$ for all $a \in A$.
- (iv) $(a*b)\gamma_0c = (a\gamma_0c)*(b\gamma_0c)$ for all $a,b,c \in A$.
- (v) For any $a, b \in A$, if $a\gamma_0 b = a_0$ then $a = a_0$ or $b = a_0$.

Then, under the operation determined by γ_0 , $A \setminus \{a_0\}$ is a cancellative AG-groupoid with left identity and inverses (i.e., for each $a_k \in A \setminus \{a_0\}$ there exists $a_k^{-1} \in A \setminus \{a_0\}$ such that $a_k \gamma_0 a_k^{-1} = e = a_k^{-1} \gamma_0 a_k$).

Proof. As the proof of Theorem 5, under the operation determined by γ_0 , we have $A \setminus \{a_0\}$ is an AG-groupoid with left identity, and for any $a_k \in A \setminus \{a_0\}$, $e = a_k \gamma_0 a_i$ for some $a_i \in A \setminus \{a_0\}$. Consider (using Theorem 2):

$$a_{i}\gamma_{0}a_{k} = e\gamma_{0}(a_{i}\gamma_{0}a_{k})$$

$$= (e\gamma_{0}e)\gamma_{0}(a_{i}\gamma_{0}a_{k})$$

$$= (e\gamma_{0}a_{i})\gamma_{0}(e\gamma_{0}a_{k})$$

$$= ((e\gamma_{0}a_{k})\gamma_{0}a_{i})\gamma_{0}e$$

$$= (a_{k}\gamma_{0}a_{i})\gamma_{0}e$$

$$= e\gamma_0 e$$
$$= e.$$

Then $a_i \gamma_0 a_k = e$.

Finally, let $a_i, a_j, a_k \in A \setminus \{a_0\}$ be such that $a_i \gamma_0 a_k = a_j \gamma_0 a_k$. Moreover, as the proof of Theorem 5, there exists $a_k^{-1} \in A \setminus \{a_0\}$ such that

$$a_k^{-1} \gamma_0 a_k = e = a_k \gamma_0 a_k^{-1}.$$

Consider:

$$a_i = e\gamma_0 a_i$$

$$= (a_k^{-1}\gamma_0 a_k)\gamma_0 a_i$$

$$= (a_i\gamma_0 a_k)\gamma_0 a_k^{-1}$$

$$= (a_j\gamma_0 a_k)\gamma_0 a_k^{-1}$$

$$= (a_k^{-1}\gamma_0 a_k)\gamma_0 a_j$$

$$= e\gamma_0 a_j$$

$$= a_j.$$

Similarly, if $a_i, a_j, a_k \in A \setminus \{a_0\}$ such that $a_k \gamma_0 a_i = a_k \gamma_0 a_j$ then $a_i = a_j$. Hence the proof is complete.

Acknowledgements

The Research on "Finite Γ -AG-groupoids with left identities and left zeros" is supported by Research, Innovation and Academic Services Fund, Faculty of Science, Khon Kaen University.

References

- [1] W. A. Dudek and R. S. Gigoń. Completely inverse AG**-groupoids. Semigroup Forum, 87(1):201–229, 2013.
- [2] M. A. Kazim and M. Naseeruddin. On almost semigroups. *Portugaliae mathematica*, 36(1):41–47, 1977.
- [3] A. D. Keedwell and J. Dénes. Latin squares and their applications. 1974.
- [4] P. V. Protic and N. Stevanovic. On Abel-Grassmann's groupoids. *Proc. Math. Conf. Priötina*, page 31–38, 1994.
- Q. Mushtaq and M. S. Kamran. Finite AG-groupoid with left identity and left zero. *International Journal of Mathematics and Mathematical Sciences*, 27(6):3873–389, 2000.
- [6] M. K. Sen. On Γ-semigroups, algebra and its applications. Algebra and its applications, page 301–308, 1981.

- [7] M. K. Sen and N. Saha. K: On Γ-semigroup I. Bulletin of Calcutta Mathematical Society, 78:181–186, 1986.
- [8] M. K. Sen and S. Chattopadhyay. Wreath product of a semigroup and a Γ -semigroup. Discussiones Mathematicae General Algebra and Applications, 28:161–178, 2008.
- [9] K. Wattanatripop and T. Changphas. On left and right A-ideals of a Γ -semigroup. Thai Journal of Mathematics, page 87–96, 2018.
- [10] T. Shah and I. Rehman. On Γ -ideals and Γ -bi-ideals in Γ -AG-groupoids. *International Journal of Algebra*, 4:267–276, 2010.
- [11] M. Khan, S. Anis, and F. Faisal. On fuzzy- Γ -ideals of Γ -Abel-Grassmann's groupoids. Research Journal of Applied Sciences, Engineering and Technology, 6:1326–1334, 2013.