EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 3, Article Number 6189 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Applications of Strongest Fuzzy Dot Bd-Subalgebras in Bd-Algebras

Warud Nakkhasen^{1,*}, Narinthon Jaroenwan¹, Panida Huekkhunthod¹, Atthchai Chada²

Abstract. In 2024, Nakkhasen et al. introduced the concept of fuzzy Bd-subalgebras of Bd-algebras. This paper will present the concept of fuzzy dot Bd-subalgebras in Bd-algebras as a generalization of fuzzy Bd-subalgebras. Subsequently, we evaluate the connections of fuzzy dot Bd-subalgebras in the framework of a homomorphism of Bd-algebras. Finally, we propose the concept of strongest fuzzy dot Bd-subalgebras and explain their characteristics in relation to Bd-subalgebras.

2020 Mathematics Subject Classifications: 08A30, 08A72

Key Words and Phrases: Bd-algebra, Bd-subalgebra, fuzzy Bd-subalgebra, fuzzy dot Bd-subalgebra

1. Introduction

The subalgebras, such as BCK/BCI-subalgebras [1], BE-subalgebras [2], and BG-subalgebras [3], are the most frequently examined concepts when examining the characteristics of different ideas in each algebraic structure. Exploring the characteristics of non-empty subsets of an algebra and applying the same operations as that algebra while preserving the structure of the original algebra are key components of the subalgebra notion. In B-algebras, Walendziak [4] investigated the concept of normal subalgebras by showing that the notion of a normal subalgebra is equivalent to the normal subgroup of the derived group. Jun et al. [5] researched d-algebras using the theory of a falling shadow. To accomplish this, they developed the concept of falling d-subalgebras and examined their various characteristics, including how to classify the properties of falling d-subalgebras in d-algebras. In BCK/BCI-algebras, Balami et al. [6] presented the concepts of soft

DOI: https://doi.org/10.29020/nybg.ejpam.v18i3.6189

Email addresses: warud.n@msu.ac.th (W. Nakkhasen), 64010213033@msu.ac.th (N. Jaroenwan), 64010213041@msu.ac.th (P. Huekkhunthod), atthchaichada@gmail.com (A. Chada)

1

¹ Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand

Department of Mathematics, Faculty of Science and Technology, Rajabhat Mahasarakham University, Maha Sarakham 44000, Thailand

^{*}Corresponding author.

BCK/BCI-algebras and soft BCK/BCI-subalgebras and discussed some of their characteristics. Mathematicians also study the features of subalgebras in additional intriguing algebraic structures, such as [7], [8], [9], and [10]. Those who are interested can learn more about these structures.

The concept of the fuzzy set of δ in a non-empty set X is a function δ from X to the closed interval [0, 1] in the real numbers. This concept was introduced by Zadeh [11], and it has since become a fundamental tool in various fields, such as artificial intelligence, control systems, and decision-making processes. Fuzzy sets allow for the representation of uncertain and imprecise information, enabling more flexible and realistic modelling than traditional binary sets. Rosenfeld [12] applied fuzzy sets to establish the concepts of fuzzy subgroups and fuzzy ideals in groups. Subsequently, Kuroki [13] examined the classifications of fuzzy subsemigroups, investigating the features and uses in semigroups. Next, Rezaei and Saeid [14] developed the concept of fuzzy subalgebras into BE-algebras and studied various characterizations of these fuzzy subalgebras. Afterwards, Muhiuddin [15] defined the concept of $(\in, \in \vee q_0^{\delta})$ -fuzzy subalgebras of BCK/BCI-algebras as a more general type of $(\in, \in \lor q)$ -fuzzy subalgebras. Following that, Tacha et al. [16] introduced the concepts of length fuzzy UP-subalgebras and mean fuzzy UP-subalgebras of UP-algebras. The researchers also investigated the relationships between length fuzzy UP-subalgebras (mean fuzzy UP-subalgebras) and hyper fuzzy UP-subalgebras of UP-subalgebras. For research related to fuzzy subalgebras, further studies can be found in [17], [18], [19], and [20].

For the general concept of fuzzy subalgebras, another concept that has been continuously studied is the fuzzy dot. Saeid [21] presented the notion of fuzzy dot BCK-subalgebras and fuzzy dot topological BCK-algebras within the framework of BCK-algebras. Following this, Senapati et al. [22] provided definitions and examined related features of fuzzy dot subalgebras, fuzzy normal dot subalgebras, and fuzzy dot ideals of BG-algebras. In the same year, Senapati et al. [23] introduced fuzzy dot subalgebras, fuzzy normal dot subalgebras, and fuzzy dot ideals to the investigation in B-algebras. Later, Dejen [24] gave the idea of fuzzy dot subalgebras in the structure of fuzzy dot d-subalgebras and studied several of its characteristics. In addition, Jiang [25] established the notions of hesitant fuzzy dot subalgebras, hesitant fuzzy normal dot subalgebras, and hesitant fuzzy dot ideals of B-algebras and explored properties related to these concepts of B-algebras.

In 2022, the concept of Bd-algebras is derived from certain properties of d-algebras and B-algebras, introduced by Bantaojai et al. [26], who defined various concepts, one of which is Bd-subalgebras. Thereafter, the notion of fuzzy Bd-subalgebras of Bd-algebras was recently defined by Nakkhasen et al. [27]. In their presentation, they discussed an opportunity of fuzzy multiplications, fuzzy magnified translations, and fuzzy translations to characterize fuzzy Bd-subalgebras in Bd-algebras. To further investigate the general idea of fuzzy Bd-subalgebras, this article will introduce the notion of fuzzy dot Bd-subalgebras, which serves as a generalization of fuzzy Bd-subalgebras in Bd-algebras. In Section 3, we explore certain features of fuzzy dot Bd-subalgebras in Bd-algebras. Moreover, we further examine the relationships of fuzzy dot Bd-subalgebras under a homomorphism of Bd-

algebras. Finally, Section 4 presents the concept of strongest fuzzy dot Bd-subalgebras in Bd-algebras and studies the connections between strongest fuzzy dot Bd-subalgebras and fuzzy dot Bd-subalgebras in Bd-algebras, while characterizing the strongest fuzzy dot Bd-subalgebras via Bd-subalgebras of Bd-algebra.

2. Preliminaries

In this section, we will review the fundamental concepts necessary for use in the following sections.

Let X be a nonempty set. A fuzzy set [11] ζ of X is a function from X into the interval [0, 1]. Let ζ and ξ be any two fuzzy sets of a nonempty set X. Then we denote:

- (i) $(\zeta \cap \xi)(x) := \min\{\zeta(x), \xi(x)\}\$ for all $x \in X$;
- (ii) $(\zeta \cup \xi)(x) := \max\{\zeta(x), \xi(x)\}\$ for all $x \in X$.

Let $\{r_i \mid i \in \Lambda\}$ be a family of real numbers. Then we denote

$$\bigcap_{i \in \Lambda} r_i = \begin{cases} \min_{i \in \Lambda} r_i & \text{if } \Lambda \text{ is finite,} \\ \inf_{i \in \Lambda} r_i & \text{otherwise.} \end{cases}$$

Let X be a nonempty set and ζ be a fuzzy set of X. The set $\zeta_t := \{x \in X \mid \zeta(x) \geq t\}$, where $t \in [0,1]$ is celled a *level subset* of ζ (see, [27]). Let A be a subset of a nonempty set X. The *characteristic function* (see, [27]) \mathcal{C}_A of A is a fuzzy set of X, defined by for every $x \in X$,

$$C_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 1. If a, b, c, d are elements in real numbers, then $\min\{ab, cd\} \ge \min\{a, c\} \min\{b, d\}$.

Proof. Without loss of generality, assume that $a \leq c$. Then $\min\{a,c\} = a$. If $b \leq d$, then $\min\{b,d\} = b$. Thus, $ab \leq cb \leq cd$. It turns out that $\min\{ab,cd\} = ab = \min\{a,c\}\min\{b,d\}$. On the other case, if d < b, then $\min\{b,d\} = d$. Since $a \leq c$ and d < b, we have $ad \leq cd$ and ad < ab. This implies that $\min\{ab,cd\} \geq ad = \min\{a,c\}\min\{b,d\}$. Therefore, $\min\{ab,cd\} \geq \min\{a,c\}\min\{b,d\}$.

Definition 1. [26] Let X be a nonempty set and * be a binary operation on X. An algebraic structure (X, *, 0) is called a Bd-algebra if it satisfies the following conditions: for each $x, y \in X$,

- (i) x * 0 = x;
- (ii) if x * y = 0 and y * x = 0, then x = y.

Throughout this study, we denote a Bd-algebra (X, *, 0) by \mathbf{X} the bold letter of its universe set.

Definition 2. [26] Let \mathbf{X} be a Bd-algebra. A nonempty subset A of X is said to be a Bd-subalgebra of \mathbf{X} if $0 \in A$ and $x * y \in A$ for all $x, y \in A$.

Definition 3. [27] Let \mathbf{X} be a Bd-algebra. A fuzzy set ζ of \mathbf{X} is called a fuzzy Bd-subalgebra of \mathbf{X} if it satisfies the following inequality: for any $x, y \in X$,

- (i) $\zeta(0) \ge \zeta(x)$;
- (ii) $\zeta(x * y) \ge \min{\{\zeta(x), \zeta(y)\}}$.

3. Fuzzy dot Bd-subalgebras of Bd-algebras

In this section, we apply the usual multiplication in real numbers to the fuzzy sets by introducing the notion of fuzzy dot Bd-subalgebras, which is useful as a generalization of fuzzy Bd-subalgebras in the Bd-algebras. Then we examine certain characteristics of fuzzy dot Bd-subalgebras within the Bd-algebras. Subsequently, we investigate the connections of fuzzy dot Bd-subalgebras under a homomorphism of Bd-algebras.

Definition 4. Let X be a Bd-algebra, and let ζ be a fuzzy sets of X. Then ζ is called a fuzzy dot Bd-subalgebra of X if for every $x, y \in X$:

- (i) $\zeta(0) \geq \zeta(x)$;
- (ii) $\zeta(x*y) \geq \zeta(x) \cdot \zeta(y)$, where "\cdot" denotes ordinary multiplication in real numbers.

Example 1. Let $X = \{0, a, b, c\}$ and * be a binary operation on X as defined in the following table:

	*	0	a	b	c
•	0	0	0	a	0
	a	a	b	a	a
	b	b	b	b	c
	c	c	a	a	c

Table 1: The binary operation * on X.

Then $\mathbf{X} := (X, *, 0)$ is a Bd-algebra. Define a fuzzy set ζ of \mathbf{X} by

$$\zeta(0) = 0.80, \zeta(a) = 0.60, \zeta(b) = 0.70, \text{ and } \zeta(c) = 0.70.$$

By calculate routine, we have ζ is a fuzzy dot Bd-subalgebra of X.

Proposition 1. Every fuzzy Bd-subalgebra of a Bd-algebra X is also a fuzzy dot Bd-subalgebra.

Proof. Let ζ is a fuzzy Bd-subalgebra of a Bd-algebra X. Then $\zeta(0) \geq \zeta(a)$ for all $a \in X$. Now, let $x, y \in X$. If $\zeta(x) \leq \zeta(y)$, then $\min\{\zeta(x), \zeta(y)\} = \zeta(x)$. So, $\zeta(x * y) \geq \min\{\zeta(x), \zeta(y)\} = \zeta(x) \geq \zeta(x) \cdot \zeta(y)$. On the other hand, if $\zeta(x) > \zeta(y)$, then

 $\min\{\zeta(x),\zeta(y)\}=\zeta(y)$. Thus, $\zeta(x*y)\geq\min\{\zeta(x),\zeta(y)\}=\zeta(y)\geq\zeta(x)\cdot\zeta(y)$. Hence, ζ is a fuzzy dot Bd-subalgebra of \mathbf{X} .

Generally, the fuzzy dot Bd-subalgebras need not be a fuzzy Bd-subalgebras in Bd-algebras, as shown in the following example.

Example 2. In Example 1, we have the fuzzy set ζ is a fuzzy dot Bd-subalgebra of a Bd-algebra \mathbf{X} . However, ζ is not a fuzzy Bd-subalgebra of \mathbf{X} , because $\zeta(0*b) = 0.60 \ngeq 0.70 = \min\{\zeta(0), \zeta(b)\}.$

Proposition 2. Let ζ be a fuzzy dot Bd-subalgebra of a Bd-algebra \mathbf{X} . If there exists a nonempty subset A of X such that $\sup_{a \in A} \zeta(a) = 1$, then $\zeta(0) = 1$.

Proof. Assume that X contains a nonempty subset A of X such that $\sup_{a \in A} \zeta(a) = 1$. Since ζ is a fuzzy dot Bd-subalgebra of \mathbf{X} , we have $\zeta(0) \geq \zeta(x)$ for all $x \in X$. Then $1 \geq \zeta(0) \geq \sup_{a \in A} \zeta(a) = 1$. This implies that $\zeta(0) = 1$.

Let ζ be any fuzzy set of a nonempty set X, and m be a positive integer. Define a fuzzy set ζ^m of X by $\zeta^m(x) = (\zeta(x))^m$ for all $x \in X$.

Proposition 3. Let \mathbf{X} be a Bd-algebra. If ζ is a fuzzy dot Bd-subalgebra of \mathbf{X} , then ζ^m is also a fuzzy dot Bd-subalgebra of \mathbf{X} whenever m is a positive integer.

Proof. Let ζ be a fuzzy dot Bd-subalgebra of \mathbf{X} and m be a positive integer. For every $x,y\in X$, we have

$$\zeta^{m}(0) = (\zeta(0))^{m} \ge (\zeta(x))^{m} = \zeta^{m}(x)$$

and

$$\zeta^m(x*y) = (\zeta(x*y))^m \ge (\zeta(x) \cdot \zeta(y))^m = (\zeta(x))^m \cdot (\zeta(y))^m = \zeta^m(x) \cdot \zeta^m(y).$$

Consequently, ζ^m is a fuzzy dot Bd-subalgebra of **X**.

Theorem 1. Let \mathbf{X} be a Bd-algebra. If ζ and ξ are fuzzy dot Bd-subalgebras of \mathbf{X} , then $\zeta \cap \xi$ is a fuzzy dot Bd-subalgebra of \mathbf{X} .

Proof. Assume that ζ and ξ are fuzzy dot Bd-subalgebras of \mathbf{X} . Let $x, y \in X$. By Lemma 1 and assumption, we have

$$(\zeta \cap \xi)(0) = \min\{\zeta(0), \xi(0)\} \ge \min\{\zeta(x), \xi(x)\} = (\zeta \cap \xi)(x)$$

and

$$\begin{split} (\zeta \cap \xi)(x * y) &= \min\{\zeta(x * y), \xi(x * y)\} \\ &\geq \min\{\zeta(x) \cdot \zeta(y), \xi(x) \cdot \xi(y)\} \\ &\geq \min\{\zeta(x), \xi(x)\} \cdot \min\{\zeta(y), \xi(y)\} \\ &= (\zeta \cap \xi)(x) \cdot (\zeta \cap \xi)(y). \end{split}$$

Therefore, $\zeta \cap \xi$ is a fuzzy dot Bd-subalgebra of X.

Corollary 1. Let $\{\zeta_i \mid i \in \Lambda\}$ be a family of fuzzy dot bd-subalgebras of a Bd-algebra \mathbf{X} . Then $\bigcap_{i \in \Lambda} \zeta_i$ is also a fuzzy dot Bd-subalgebra of \mathbf{X} , where Λ is any index set.

Proof. Let $\zeta := \bigcap_{i \in \Lambda} \zeta_i$. We recall that $\zeta(x) = \bigcap_{i \in \Lambda} \zeta_i(x) = \inf_{i \in \Lambda} \zeta_i(x)$ for all $x \in X$. For every $x, y \in X$, we have $\zeta(0) = \inf_{i \in \Lambda} \zeta_i(0) \ge \inf_{i \in \Lambda} \zeta_i(x) = \zeta(x)$ and

$$\zeta(x * y) = \inf_{i \in \Lambda} \zeta_i(x * y) \ge \inf_{i \in \Lambda} \zeta_i(x) \cdot \zeta_i(y) = \inf_{i \in \Lambda} \zeta_i(x) \cdot \inf_{i \in \Lambda} \zeta_i(y) = \zeta(x) \cdot \zeta(y).$$

Hence, $\bigcap_{i \in \Lambda} \zeta_i$ is a fuzzy dot Bd-subalgebra of \mathbf{X} .

Example 3. By Example 1, we have the ζ is a fuzzy dot Bd-subalgebra of a Bd-algebra X where

$$\zeta(0) = 0.80, \zeta(a) = 0.60, \zeta(b) = 0.70, \text{ and } \zeta(c) = 0.70.$$

Additionally, we define a fuzzy dot Bd-subalgebra ξ of \mathbf{X} by

$$\xi(0) = 0.90, \xi(a) = 0.60, \xi(b) = 0.60, \text{ and } \xi(c) = 0.50.$$

We obtain that $(\zeta \cup \xi)(0 * b) = 0.60 \ngeq 0.63 = (\zeta \cup \xi)(0) \cdot (\zeta \cup \xi)(b)$. This show that $\zeta \cup \xi$ is not a fuzzy dot Bd-subalgebra of **X**.

From Example 3, we conclude that the union of fuzzy dot Bd-subalgebras of Bd-algebras doesn't necessarily have to be a fuzzy dot Bd-subalgebra of Bd-algebras in general.

Theorem 2. Let X be a Bd-algebra, and A be a nonempty subset of X. Then A is a Bd-subalgebra of X if and only if C_A is a fuzzy dot Bd-subalgebra of X.

Proof. Assume that A is a Bd-subalgebra of \mathbf{X} . Then $0 \in A$. So, $\mathcal{C}_A(0) = 1 \geq \mathcal{C}_A(x)$ for all $x \in X$. Suppose that there exist $a, b \in X$ such that $\mathcal{C}_A(a*b) < \mathcal{C}_A(a) \cdot \mathcal{C}_A(b)$. Thus, $\mathcal{C}_A(a*b) = 0$ and $\mathcal{C}_A(a) \cdot \mathcal{C}_A(b) = 1$; that is, $\mathcal{C}_A(a) = 1$ and $\mathcal{C}_A(b) = 1$. It follows that $a*b \notin A$ and $a, b \in A$. By assumption, we have $a*b \in A$, which is a contradiction. Hence, $\mathcal{C}_A(x*y) \geq \mathcal{C}_A(x) \cdot \mathcal{C}_A(y)$ for all $x, y \in X$. Therefore, \mathcal{C}_A is a fuzzy dot Bd-subalgebra of \mathbf{X} . Conversely, assume that \mathcal{C}_A is a fuzzy dot Bd-subalgebra of \mathbf{X} . If $0 \notin A$, then $0 = \mathcal{C}_A(0) \geq \mathcal{C}_A(x)$ for all $x \in X$. Also, $\mathcal{C}_A(x) = 0$ for all $x \in X$, implies that $A = \emptyset$. This is a contradiction. So, $0 \in A$. Next, let $x, y \in A$. Then, $\mathcal{C}_A(x*y) \geq \mathcal{C}_A(x) \cdot \mathcal{C}_A(y) = 1$. We obtain that $\mathcal{C}_A(x*y) = 1$; that is, $x*y \in A$. Consequently, A is a Bd-subalgebra of \mathbf{X} .

Theorem 3. Let **X** be a Bd-algebra, and ζ be a fuzzy set of **X**. If a nonempty level subset ζ_t is a Bd-subalgebra of **X** for all $t \in [0,1]$, then ζ is a fuzzy dot Bd-subalgebra of **X**.

Proof. Let $x, y \in X$. Take $\zeta(x) = t'$ for some $t' \in [0,1]$. Then $x \in \zeta_{t'}$, and so $\zeta_{t'} \neq \emptyset$. By assumption, we have $\zeta_{t'}$ is a Bd-algebra of \mathbf{X} . That is, $0 \in \zeta_{t'}$. It follows that $\zeta(0) \geq t' = \zeta(x)$. Next, letting $\zeta(x) \cdot \zeta(y) = s'$ for some $s' \in [0,1]$. Since $\zeta(x), \zeta(y) \in [0,1]$, we get $\zeta(x) \geq \zeta(x) \cdot \zeta(y) = s'$ and $\zeta(y) \geq \zeta(x) \cdot \zeta(y) = s'$. Thus, $x, y \in \zeta_{s'}$. By the given assumption, we have $x * y \in \zeta_{s'}$. This implies that $\zeta(x * y) \geq s' = \zeta(x) \cdot \zeta(y)$. Therefore, ζ is a fuzzy dot Bd-subalgebra of \mathbf{X} .

The converse of Theorem 3 is not always true, as shown in the following example.

Example 4. In Example 1, we have the fuzzy set ζ is a fuzzy dot Bd-subalgebra of \mathbf{X} , but the level subset $\zeta_{0.70} = \{0, b, c\}$ of ζ is not a Bd-subalgebra of \mathbf{X} , since $0 * b = a \notin \zeta_{0.70}$.

Let $\mathbf{X} := (X, *, 0_X)$ and $\mathbf{Y} := (Y, \circ, 0_Y)$ be Bd-algebras. Let $\omega : X \to Y$ be a mapping of Bd-algebras \mathbf{X} and \mathbf{Y} , and let ζ be a fuzzy set of \mathbf{Y} . The fuzzy set ζ^{ω} of \mathbf{X} is defined by $\zeta^{\omega}(x) = \zeta(\omega(x))$ for all $x \in X$. A function $\omega : X \to Y$ is called a homomorphism if $\omega(0_X) = 0_Y$ and $\omega(x * y) = \omega(x) \circ \omega(y)$ for all $x, y \in X$, and a homomorphism ω is called an epimorphism if ω is onto.

Theorem 4. Let $\omega: X \to Y$ be a homomorphism of Bd-algebras $\mathbf{X} := (X, *, 0_X)$ and $\mathbf{Y} := (Y, \circ, 0_Y)$. If ζ is a fuzzy dot Bd-subalgebra of \mathbf{Y} , then ζ^{ω} is a fuzzy dot Bd-subalgebra of \mathbf{X} .

Proof. Assume that ζ is a fuzzy dot Bd-subalgebra of Y. Let $x, y \in X$. Then we have

$$\zeta^{\omega}(0_X) = \zeta(\omega(0_X)) = \zeta(0_Y) \ge \zeta(\omega(x)) = \zeta^{\omega}(x)$$

and

$$\zeta^{\omega}(x*y) = \zeta(\omega(x*y)) = \zeta(\omega(x) \circ \omega(y)) \ge \zeta(\omega(x)) \cdot \zeta(\omega(y)) = \zeta^{\omega}(x) \cdot \zeta^{\omega}(y).$$

Thus, ζ^{ω} is a fuzzy dot Bd-subalgebra of **X**.

By adding specific properties into Theorem 4, the converse of this Theorem will ultimately hold true as delineated below.

Theorem 5. Let $\omega: X \to Y$ be an epimorphism of Bd-algebras $\mathbf{X} := (X, *, 0_X)$ and $\mathbf{Y} := (Y, \circ, 0_Y)$. If ζ^{ω} is a fuzzy dot Bd-subalgebra of \mathbf{X} , then ζ is a fuzzy dot Bd-subalgebra of \mathbf{Y} .

Proof. Assume that ζ^{ω} is a fuzzy dot Bd-subalgebra of \mathbf{X} . Let $a, b \in Y$. Then there exist $x, y \in X$ such that $\omega(x) = a$ and $\omega(y) = b$. Thus, we have

$$\zeta(0_Y) = \zeta(\omega(0_X)) = \zeta^{\omega}(0_X) \ge \zeta^{\omega}(x) = \zeta(\omega(x)) = \zeta(a)$$

and

$$\zeta(a \circ b) = \zeta(\omega(x) \circ \omega(y)) = \zeta(\omega(x * y)) = \zeta^{\omega}(x * y) > \zeta^{\omega}(x) \cdot \zeta^{\omega}(y) = \zeta(\omega(x)) \cdot \zeta(\omega(y)) = \zeta(a) \cdot \zeta(b).$$

Therefore, ζ is a fuzzy dot Bd-subalgebra of \mathbf{Y} .

4. Strongest fuzzy dot Bd-subalgebras on Bd-algebras

In this section, we present some properties of the Cartesian product of fuzzy dot Bd-subalgebras of Bd-algebras. After that, we introduce the concept of strongest fuzzy dot Bd-subalgebras on Bd-algebras and investigate some of its properties and the relationships between strongest fuzzy dot Bd-subalgebras and fuzzy dot Bd-subalgebras in Bd-algebras.

Finally, we characterize the strongest fuzzy dot Bd-subalgebras by Bd-subalgebras of Bd-algebras.

Let $\mathbf{X} := (X, *, 0_X)$ and $\mathbf{Y} := (Y, \circ, 0_Y)$ be Bd-algebras. The mapping $\circledast : (X \times Y) \times (X \times Y) \to X \times Y$ is defined by

$$(x_1, y_1) \circledast (x_2, y_2) = (x_1 * x_2, y_1 \circ y_2)$$

for all $(x_1, y_1), (x_2, y_2) \in X \times Y$. We have that $\mathbf{X} \times \mathbf{Y} := (X \times Y, \circledast, (0_X, 0_Y))$ is a Bd-algebra. In particular, if $\mathbf{Y} = \mathbf{X}$, we have $\mathbf{X} \times \mathbf{X} := (X \times X, \circledast, (0_X, 0_X))$ is a Bd-algebra where the binary operation \circledast on $X \times X$ is defined by $(x_1, y_1) \circledast (x_2, y_2) = (x_1 * x_2, y_1 * y_2)$ for all $(x_1, y_1), (x_2, y_2) \in X \times X$. Throughout this section, the Bd-algebra $(X \times X, \circledast, (0_X, 0_X))$ will be replaced by the symbol $\mathbf{X} \times \mathbf{X}$.

Let ζ and ξ be a fuzzy sets of a nonempty set X. The Cartesian product [28] $\zeta \times \xi$: $X \times X \to [0,1]$ is defined by $(\zeta \times \xi)(x,y) = \zeta(x) \cdot \xi(y)$ for all $x,y \in X$.

Theorem 6. Let \mathbf{X} be a Bd-algebra. If ζ and ξ are fuzzy dot Bd-subalgebras of \mathbf{X} , then $\zeta \times \xi$ is a fuzzy dot Bd-subalgebra of $\mathbf{X} \times \mathbf{X}$.

Proof. Assume that ζ and ξ are fuzzy dot Bd-subalgebras of \mathbf{X} . Let $(x_1, y_1), (x_2, y_2) \in X \times X$. Then we have

$$(\zeta \times \xi)(0,0) = \zeta(0) \cdot \xi(0) \ge \zeta(x_1) \cdot \xi(y_1) = (\zeta \times \xi)(x_1, y_1)$$

and

$$(\zeta \times \xi)((x_1, y_1) \circledast (x_2, y_2)) = (\zeta \times \xi)(x_1 * x_2, y_1 * y_2)$$

$$= \zeta(x_1 * x_2) \cdot \xi(y_1 * y_2)$$

$$\geq [\zeta(x_1) \cdot \zeta(x_2)] \cdot [\xi(y_1) \cdot \xi(y_2)]$$

$$= [\zeta(x_1) \cdot \xi(y_1)] \cdot [\zeta(x_2) \cdot \xi(y_2)]$$

$$= (\zeta \times \xi)(x_1, y_1) \cdot (\zeta \times \xi)(x_2, y_2).$$

Consequently, $\zeta \times \xi$ is a fuzzy dot Bd-subalgebra of $\mathbf{X} \times \mathbf{X}$.

The converse of Theorem 6 is not true, as proved by the following example.

Example 5. Let $X = \{0, 1, 2\}$ be a set with the binary operation * on X define in the following table:

Table 2: The binary operation * on X.

Then $\mathbf{X} := (X, *, 0)$ is a Bd-algebra. Define two fuzzy sets ζ and ξ of \mathbf{X} by

$$\zeta(0) = 0.70, \zeta(1) = 0.70, \zeta(2) = 0.40 \text{ and } \xi(0) = 0.60, \xi(1) = 0.50, \xi(2) = 0.60.$$

It is not difficult to verify that ξ is a fuzzy dot Bd-subalgebra of \mathbf{X} , but ζ is not a fuzzy dot Bd-subalgebra of \mathbf{X} . At the same time, $\zeta \times \xi$ is also a fuzzy dot Bd-subalgebra of $\mathbf{X} \times \mathbf{X}$ as shown below. Now, we consider the results of the Cartesian product $\zeta \times \xi$ as follows.

$$(\zeta \times \xi)(0,0) = 0.42, (\zeta \times \xi)(0,1) = 0.35, (\zeta \times \xi)(0,2) = 0.42, (\zeta \times \xi)(1,0) = 0.42, (\zeta \times \xi)(1,1) = 0.35, (\zeta \times \xi)(1,2) = 0.42, (\zeta \times \xi)(2,0) = 0.24, (\zeta \times \xi)(2,1) = 0.20, (\zeta \times \xi)(2,2) = 0.24.$$

We see that $(\zeta \times \xi)(0,0) \ge (\zeta \times \xi)(x,y)$ for all $(x,y) \in X \times X$. Subsequently, below are some computed results.

$$(\zeta \times \xi)((0,2) \circledast (2,1)) = (\zeta \times \xi)(2,1) = 0.20 > 0.08 = (\zeta \times \xi)(0,2) \cdot (\zeta \times \xi)(2,1),$$

$$(\zeta \times \xi)((1,1) \circledast (0,1)) = (\zeta \times \xi)(1,0) = 0.42 > 0.12 = (\zeta \times \xi)(1,1) \cdot (\zeta \times \xi)(0,1),$$

$$(\zeta \times \xi)((2,0) \circledast (1,2)) = (\zeta \times \xi)(1,2) = 0.42 > 0.10 = (\zeta \times \xi)(2,0) \cdot (\zeta \times \xi)(1,2),$$

$$(\zeta \times \xi)((2,2) \circledast (2,1)) = (\zeta \times \xi)(1,0) = 0.42 > 0.08 = (\zeta \times \xi)(2,2) \cdot (\zeta \times \xi)(1,1).$$

By meticulous computations, we have $(\zeta \times \xi)((x_1, y_1) \circledast (x_2, y_2)) \ge (\zeta \times \xi)(x_1, y_1) \cdot (\zeta \times \xi)(x_2, y_2)$ for all $(x_1, y_1), (x_2, y_2) \in X \times X$. Consequently, $\zeta \times \xi$ is a fuzzy dot Bd-subalgebra of $\mathbf{X} \times \mathbf{X}$.

Let X be a nonempty set and ζ be any fuzzy set of X. A fuzzy relation \mathcal{S} on X [28] is a fuzzy set of $X \times X$. Then the fuzzy relation \mathcal{S}_{ζ} on X is called a fuzzy ζ -product relation on X [22] if $\mathcal{S}_{\zeta}(x,y) \geq \zeta(x) \cdot \zeta(y)$ for all $x,y \in X$. Moreover, the strongest fuzzy ζ -relation \mathcal{S}_{ζ} on X [22] given by $\mathcal{S}_{\zeta}(x,y) = \zeta(x) \cdot \zeta(y)$ for all $x,y \in X$. For any $t \in [0,1]$, the set $(\mathcal{S}_{\zeta})_t := \{(x,y) \mid \mathcal{S}_{\zeta}(x,y) \geq t\}$ is called a level subset of \mathcal{S}_{ζ} , see [28].

Let A be any subset of a nonempty set X and ζ be a fuzzy set of X. The *characteristic* function \mathcal{C}^A_{ζ} of $A \times A$ is defined by for every $x, y \in X$,

$$\mathcal{C}_{\zeta}^{A}(x,y) := \begin{cases} 1 & \text{if } (x,y) \in A \times A, \\ 0 & \text{otherwise.} \end{cases}$$

Next, the notion of strongest fuzzy dot Bd-subalgebras on Bd-algebras is further introduced as follows.

Definition 5. Let \mathbf{X} be a Bd-algebra, ζ be a fuzzy set of X, and S_{ζ} be a strongest fuzzy ζ -relation on X. Then S_{ζ} is called a strongest fuzzy dot Bd-subalgebra on \mathbf{X} if for every $x_1, x_2, y_1, y_2 \in X$:

(i)
$$S_{\zeta}(0,0) \geq S_{\zeta}(x_1,y_1);$$

(ii)
$$S_{\zeta}(x_1 * x_2, y_1 * y_2) \geq S_{\zeta}(x_1, y_1) \cdot S_{\zeta}(x_2, y_2)$$
.

Example 6. Consider the Bd-algebra $\mathbf{X} := (X, *, 0)$ as defined in Example 1. Afterward, we define a fuzzy set ζ of X by

$$\zeta(0) = 0.90, \zeta(a) = 0.70, \zeta(b) = 0.80, \zeta(c) = 0.80.$$

Then the strongest fuzzy ζ -relation S_{ζ} on X is as follows.

$$\begin{split} \mathcal{S}_{\zeta}(0,0) &= 0.81, \mathcal{S}_{\zeta}(0,a) = 0.63, \mathcal{S}_{\zeta}(0,b) = 0.72, \mathcal{S}_{\zeta}(0,c) = 0.72, \\ \mathcal{S}_{\zeta}(a,0) &= 0.63, \mathcal{S}_{\zeta}(a,a) = 0.49, \mathcal{S}_{\zeta}(a,b) = 0.56, \mathcal{S}_{\zeta}(a,c) = 0.56, \\ \mathcal{S}_{\zeta}(b,0) &= 0.72, \mathcal{S}_{\zeta}(b,a) = 0.56, \mathcal{S}_{\zeta}(b,b) = 0.64, \mathcal{S}_{\zeta}(b,c) = 0.64, \\ \mathcal{S}_{\zeta}(c,0) &= 0.72, \mathcal{S}_{\zeta}(c,a) = 0.56, \mathcal{S}_{\zeta}(c,b) = 0.56, \mathcal{S}_{\zeta}(c,c) = 0.64. \end{split}$$

It turns out that $S_{\zeta}(0,0) \geq S_{\zeta}(x,y)$ for all $x,y \in X$. A select few of results are calculated below.

$$S_{\zeta}(a * 0, b * a) = S_{\zeta}(a, b) = 0.56 > 0.35 = S_{\zeta}(a, b) \cdot S_{\zeta}(0, a),$$

$$S_{\zeta}(c * a, 0 * b) = S_{\zeta}(a, a) = 0.49 > 0.40 = S_{\zeta}(c, 0) \cdot S_{\zeta}(a, b),$$

$$S_{\zeta}(b * c, 0 * c) = S_{\zeta}(c, 0) = 0.72 > 0.46 = S_{\zeta}(b, 0) \cdot S_{\zeta}(c, c).$$

By routine calculations, we obtain $S_{\zeta}(x_1 * x_2, y_1 * y_2) \geq S_{\zeta}(x_1, y_1) \cdot S_{\zeta}(x_2, y_2)$ for all $x_1, x_2, y_1, y_2 \in X$. Therefore, S_{ζ} is a strongest fuzzy dot Bd-subalgebra on \mathbf{X} .

Theorem 7. Let \mathbf{X} be a Bd-algebra, ζ be a fuzzy set of \mathbf{X} , and \mathcal{S}_{ζ} be a strongest fuzzy ζ -relation on \mathbf{X} . Then ζ is a fuzzy dot Bd-subalgebra of \mathbf{X} if and only if \mathcal{S}_{ζ} is a strongest fuzzy dot Bd-subalgebra on \mathbf{X} .

Proof. Assume that ζ is a fuzzy dot Bd-subalgebra of \mathbf{X} . Let $x_1, x_2, y_1, y_2 \in X$. Then we have

$$\mathcal{S}_{\zeta}(0,0) = \zeta(0) \cdot \zeta(0) \ge \zeta(x_1) \cdot \zeta(y_1) = \mathcal{S}_{\zeta}(x_1, y_1)$$

and

$$\begin{split} \mathcal{S}_{\zeta}(x_{1}*x_{2},y_{1}*y_{2}) &= \zeta(x_{1}*x_{2}) \cdot \zeta(y_{1}*y_{2}) \\ &\geq \left[\zeta(x_{1}) \cdot \zeta(x_{2}) \right] \cdot \left[\zeta(y_{1}) \cdot \zeta(y_{2}) \right] \\ &= \left[\zeta(x_{1}) \cdot \zeta(y_{1}) \right] \cdot \left[\zeta(x_{2}) \cdot \zeta(y_{2}) \right] \\ &= \mathcal{S}_{\zeta}(x_{1},y_{1}) \cdot \mathcal{S}_{\zeta}(y_{1},y_{2}). \end{split}$$

Therefore, S_{ζ} is a strongest fuzzy dot Bd-subalgebra on X.

Conversely, assume that S_{ζ} is a strongest fuzzy dot Bd-subalgebra on \mathbf{X} . Let $x, y \in X$. We consider

$$(\zeta(0))^2 = \zeta(0) \cdot \zeta(0) = \mathcal{S}_{\zeta}(0,0) \ge \mathcal{S}_{\zeta}(x,x) = \zeta(x) \cdot \zeta(x) = (\zeta(x))^2$$

and

$$(\zeta(x*y))^2 = \zeta(x*y) \cdot \zeta(x*y)$$

$$= \mathcal{S}_{\zeta}(x * y, x * y)$$

$$\geq \mathcal{S}_{\zeta}(x, x) \cdot \mathcal{S}_{\zeta}(y, y)$$

$$= [\zeta(x) \cdot \zeta(x)] \cdot [\zeta(y) \cdot \zeta(y)]$$

$$= [\zeta(x) \cdot \zeta(y)] \cdot [\zeta(x) \cdot \zeta(y)]$$

$$= (\zeta(x) \cdot \zeta(y))^{2}.$$

Since $\zeta(0), \zeta(x), \zeta(x*y), \zeta(x) \cdot \zeta(y) \geq 0$, we have $\zeta(0) \geq \zeta(x)$ and $\zeta(x*y) \geq \zeta(x) \cdot \zeta(y)$. Consequently, ζ is a fuzzy dot Bd-subalgebra of \mathbf{X} .

Theorem 8. Let \mathbf{X} be a Bd-algebra and \mathcal{S}_{ζ} be a strongest fuzzy ζ -relation on \mathbf{X} , where ζ is a fuzzy set of \mathbf{X} . If a nonempty level subset $(\mathcal{S}_{\zeta})_t$ is a Bd-subalgebra of $\mathbf{X} \times \mathbf{X}$ for all $t \in [0, 1]$, then \mathcal{S}_{ζ} is a strongest fuzzy dot Bd-subalgebra on \mathbf{X} .

Proof. Let $x_1, x_2, y_1, y_2 \in X$. Choose $t' = \mathcal{S}_{\zeta}(x_1, y_1)$ for some $t' \in [0, 1]$. Then $(x_1, y_1) \in (\mathcal{S}_{\zeta})_{t'}$; that is, $(\mathcal{S}_{\zeta})_{t'} \neq \emptyset$. By assumption, we have $(\mathcal{S}_{\zeta})_{t'}$ is a Bd-subalgebra of $\mathbf{X} \times \mathbf{X}$. This implies that $(0, 0) \in (\mathcal{S}_{\zeta})_{t'}$, and then $\mathcal{S}_{\zeta}(0, 0) \geq t' = \mathcal{S}_{\zeta}(x_1, y_1)$. Next, take $s' = \mathcal{S}_{\zeta}(x_1, y_1) \cdot \mathcal{S}_{\zeta}(x_2, y_2)$ for some $s' \in [0, 1]$. So, we have $\mathcal{S}_{\zeta}(x_1, y_1) \geq \mathcal{S}_{\zeta}(x_1, y_1) \cdot \mathcal{S}_{\zeta}(x_2, y_2) = s'$ and $\mathcal{S}_{\zeta}(x_2, y_2) \geq \mathcal{S}_{\zeta}(x_1, y_1) \cdot \mathcal{S}_{\zeta}(x_2, y_2) = s'$. It turns out that $(x_1, y_1), (x_2, y_2) \in (\mathcal{S}_{\zeta})_{s'}$. By the hypothesis, we get $(x_1 * x_2, y_1 * y_2) = (x_1, y_1) \circledast (x_2, y_2) \in (\mathcal{S}_{\zeta})_{s'}$. Thus, $\mathcal{S}_{\zeta}(x_1 * x_2, y_1 * y_2) \geq s' = \mathcal{S}_{\zeta}(x_1, y_1) \cdot \mathcal{S}_{\zeta}(x_2, y_2)$. Therefore, \mathcal{S}_{ζ} is a strongest fuzzy dot Bd-subalgebra on \mathbf{X} .

The converse of Theorem 8 is generally not valid, as seen by the following example.

Example 7. By Example 6, we have S_{ζ} is a strongest fuzzy dot Bd-subalgebra on $\mathbf{X} := (X, *, 0)$. Then the level subset $(S_{\zeta})_{0.72} = \{(0, b), (0, c), (b, 0), (c, 0)\}$. We observe that $(S_{\zeta})_{0.72}$ is not a Bd-subalgebra of $\mathbf{X} \times \mathbf{X}$, since $(0, b) \circledast (b, 0) = (a, b) \notin (S_{\zeta})_{0.72}$.

Theorem 9. Let \mathbf{X} be a Bd-algebra, A be a nonempty subset of X, and ζ be a fuzzy set of \mathbf{X} . Then $A \times A$ is a Bd-subalgebra of $\mathbf{X} \times \mathbf{X}$ if and only if \mathcal{C}_{ζ}^{A} is a strongest fuzzy dot Bd-subalgebra on \mathbf{X} .

Proof. Assume that $A \times A$ is a Bd-subalgebra of $\mathbf{X} \times \mathbf{X}$. Then $(0,0) \in A \times A$, implies that $\mathcal{C}_{\zeta}^{A}(0,0) = 1 \geq \mathcal{C}_{\zeta}^{A}(x,y)$ for all $(x,y) \in X \times X$. Now, suppose that there exist $(a_1,b_1), (a_2,b_2) \in X \times X$ such that $\mathcal{C}_{\zeta}^{A}(a_1*a_2,b_1*b_2) < \mathcal{C}_{\zeta}^{A}(a_1,b_1) \cdot \mathcal{C}_{\zeta}^{A}(a_2,b_2)$. We obtain that $\mathcal{C}_{\zeta}^{A}(a_1*a_2,b_1*b_2) = 0$ and $\mathcal{C}_{\zeta}^{A}(a_1,b_1) \cdot \mathcal{C}_{\zeta}^{A}(a_2,b_2) = 1$. Since $\mathcal{C}_{\zeta}^{A}(a_1,b_1) \cdot \mathcal{C}_{\zeta}^{A}(a_2,b_2) = 1$, we have $\mathcal{C}_{\zeta}^{A}(a_1,b_1) = 1$ and $\mathcal{C}_{\zeta}^{A}(a_2,b_2) = 1$. It follows that $(a_1*a_2,b_1*b_2) \not\in A \times A$ and $(a_1,b_1), (a_2,b_2) \in A \times A$. By the hypothesis, we have $(a_1*a_2,b_1*b_2) = (a_1,b_1) \circledast (a_2,b_2) \in A \times A$. This is a contradiction. Hence, $\mathcal{C}_{\zeta}^{A}(x_1*x_2,y_1*y_2) \geq \mathcal{C}_{\zeta}^{A}(x_1,y_1) \cdot \mathcal{C}_{\zeta}^{A}(x_2,y_2)$ for all $(x_1,y_1), (x_2,y_2) \in X \times X$. Therefore, \mathcal{C}_{ζ}^{A} is a strongest fuzzy dot Bd-subalgebra on \mathbf{X} .

Conversely, assume that \mathcal{C}_{ζ}^{A} is a strongest fuzzy dot Bd-subalgebra on \mathbf{X} . If $(0,0) \notin A \times A$, then $0 = \mathcal{C}_{\zeta}^{A}(0,0) \geq \mathcal{C}_{\zeta}^{A}(x,y)$ for all $(x,y) \in X \times X$. Thus, $\mathcal{C}_{\zeta}^{A}(x,y) = 0$ for all $(x,y) \in X \times X$. This means that $A \times A = \emptyset$. This is a contradiction, because A is a nonempty subset of X. Hence, $(0,0) \in A \times A$. Now, let $(x_1,y_1), (x_2,y_2) \in A \times A$. Then,

 $C_{\zeta}^{A}(x_{1}*x_{2},y_{1}*y_{2}) \geq C_{\zeta}^{A}(x_{1},y_{1}) \cdot C_{\zeta}^{A}(x_{2},y_{2}) = 1$, and so $C_{\zeta}^{A}(x_{1}*x_{2},y_{1}*y_{2}) = 1$. This implies that $(x_{1},y_{1}) \circledast (x_{2},y_{2}) = (x_{1}*x_{2},y_{1}*y_{2}) \in A \times A$. Consequently, $A \times A$ is a Bd-subalgebra of $\mathbf{X} \times \mathbf{X}$.

5. Conclusions

In 2024, Nakkhasen et al. [27] applied the concept of fuzzy sets to Bd-algebras, defining the concept of fuzzy Bd-subalgebras. This article presents the notion of fuzzy dot Bd-subalgebras, which provide as a generalization of fuzzy Bd-subalgebras. That means that some of the results obtained from this work will generalize those from [27]. For example, Theorem 1 will be a general implication of Proposition 3.1 in [27]. In Section 3, we studied certain properties of fuzzy dot Bd-subalgebras of the Bd-algebras. Also, the relationships between fuzzy dot Bd-subalgebras under a homomorphism of Bd-algebras were then considered. Subsequently, the notion of strongest fuzzy dot Bd-subalgebras on Bd-algebras introduced in Section 4 and some of its characteristics are examined along with the relationships with fuzzy dot Bd-subalgebras in Bd-algebras. For future work that will extend the knowledge from this article, we will study the properties of the concept of fuzzy dot Bd-ideals on Bd-algebras or may study the properties of fuzzy dot subalgebras on other algebraic structures.

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- [1] Y. B. Jun and S. Z. Song. Soft subalgebras and soft ideals of BCK/BCI-algebras related to fuzzy set theory. *Mathematical Communications*, 14(2):271–282, 2009.
- [2] Y. B. Jun, S. S. Ahn, and E. H. Roh. Dokdo *BE*-subalgebras and *BE*-filters of *BE*-algebras. *European Journal of Pure and Applied Mathematics*, 15(4):1521–1535, 2022.
- [3] T. Senapati. Cubic structure of BG-subalgebras of BG-algebras. The Journal of Fuzzy Mathematics, 24(1):151-162, 2016.
- [4] A. Walendziak. A note on normal subalgebras in *B*-algebras. *Scientiae Mathematicae Japonicae Online*, e-2005:49–53, 2005.
- [5] Y. B. Jun, S. S. Ahn, and K. J. Lee. Falling d-ideals in d-algebras. Discrete Dynamics in Nature and Society, 2011(Article ID 516418):14 pages, 2011.
- [6] H. M. Balami, A. O. Yusuf, and M. Hamza. Some results on soft BCK/BCI-algebras. International Journal of Applied Science and Mathematics, 6(3):69–83, 2019.
- [7] G. Dymek. On strong subalgebras of RM algebras. Afrika Matematika, 36:38, 2025.
- [8] C. Janaa and T. Senapati. Cubic G-subalgebras of G-algebras. Annals of Pure and Applied Mathematics, 10(1):105-115, 2015.

- [9] X. Li. Every classifiable simple C^* -algebra has a cartan subalgebr. *Inventiones mathematicae*, 219:653–699, 2020.
- [10] D. A. Romano. On a generalization of KU-algebras pseudo-KU algebras. Open Journal of Mathematical Sciences, 4:200–210, 2020.
- [11] L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.
- [12] A. Rosenfeld. Fuzzy groups. Journal of Mathematical Analysis and Applications, 35:512–517, 1971.
- [13] N. Kuroki. On fuzzy ideals and fuzzy bi-ideals in semigroups. Fuzzy Sets and Systems, 5:203–215, 1981.
- [14] A. Rezaei and A. B. Saeid. On fuzzy subalgebras of *BE*-algebras. *Afrika Matematika*, 22:115–127, 2011.
- [15] G. Muhiuddin. Characterizations of fuzzy subalgebras in BCK/BCI-algebras. Applied Mathematical Sciences, 9(144):7187–7196, 2015.
- [16] N. Tacha, P. Phayapsiang, and A. Iampan. Length and mean fuzzy *UP*-subalgebras of *UP*-algebras. Caspian Journal of Mathematical Sciences, 11(1):264–303, 2022.
- [17] G. N. Devi, P. Hemavathi, and P. Muralikrishna. Comprehensive work on intervalvalued fuzzy translation and multiplication in Z-subalgebra of Z-algebra. *Philippine* Journal of Science, 153(1):147–156, 2024.
- [18] T. Kuraoka and N. Y. Suzuki. Lattice of fuzzy subalgebras in universal algebra. *Algebra Universalis*, 47:223–237, 2002.
- [19] W. Nakkhasen. On picture fuzzy (m, n)-ideals of semigroups. IAENG International Journal of Applied Mathematics, 52(4):1040-1051, 2022.
- [20] G. Vasantha and T. Sri Lakshmi. Impact fuzzy ideal extension in terms of gamma semigroup. *Communications on Applied Nonlinear Analysis*, 32(9):635–649, 2025.
- [21] A. B. Saeid. Fuzzy dot BCK/BCI-algebras. International Journal of Algebra, 4(7):341–352, 2010.
- [22] T. Senapati, M. Bhowmik, and M. Pal. Fuzzy dot structure of BG-algebras. Fuzzy Information and Engineering, 6(3):315–329, 2014.
- [23] T. Senapati, M. Bhowmik, and M. Pal. Fuzzy dot subalgebras and fuzzy dot ideals of *B*-algebras. *Journal of Uncertain Systems*, 8(1):22–30, 2014.
- [24] G. T. Dejen. Structure of fuzzy dot d-subalgebras. Journal of Applied Mathematics and Computation, 4(4):130–136, 2020.
- [25] M. Jiang. Hesitant fuzzy dot subalgebra and dot ideals of *B*-algebra. *Journal of Intelligent & Fuzzy Systems*, 43(5):6203–6212, 2022.
- [26] T. Bantaojai, C. Suanoom, J. Phuto, and A. Iampan. On Bd-algebras. International Journal of Mathematics and Computer Science, 17(2):731–737, 2022.
- [27] W. Nakkhasen, P. Srisarakham, and W. Sakuntanat. A study on fuzzy Bd-subalgebras of Bd-algebras. $ICIC\ Express\ Letters$, 18(8):777-783, 2024.
- [28] P. Bhattacharya and N. P. Mukherjee. Fuzzy relations and fuzzy groups. *Information Sciences*, 36(3):267–282, 1985.