Score sequences in oriented k-hypergraphs

S. Pirzada ${ }^{1, *}$, Zhou Guofei ${ }^{2, \uparrow}$
${ }^{1}$ Department of Mathematics, University of Kashmir, Srinagar, 190006, INDIA
${ }^{2}$ Department of Mathematics, Nanjing University, Nanjing, 210093, P.R. CHINA

Abstract

Given two non-negative integers n and k with $n \geq k>1$, an oriented k-hypergraph on n vertices is a pair (V, A), where V is a set of vertices with $|V|=n$ and A is a set of k-tuples of vertices, called arcs, such that for any k-subset S of V, A contains at most one of the $k!k$-tuples whose entries belong to S. In this paper, we define the score of a vertex in an oriented k-hypergraph and then obtain a necessary and sufficient condition for the sequence of non-negative integers $\left[s_{1}, s_{2}, \cdots, s_{n}\right]$ to be a score sequence of some oriented k-hypergraph. AMS subject classifications: 05C20

Key words: Hypergraphs, Oriented k-hypergraphs, Score Sequences

1. Introduction

An edge of a graph is a pair of vertices and an edge of a hypergraph is a subset of the vertex set, consisting of at least two vertices. An edge in a hypergraph consisting of k vertices is called a k-edge, and a hypergraph all of whose edges are k-edges is called a k-hypergraph.

A k-hypertournament is a complete k-hypergraph with each k-edge endowed with an orientation, that is, a linear arrangement of the vertices contained in the hyperedge. In other words, given two non-negative integers n and k with $n \geq k>1$, a k-hypertournament on n vertices is a pair (V, A), where V is a set of vertices with $|V|=n$ and A is a set of k-tuples of vertices, called arcs, such that for any k-subset S of V, A contains exactly one of the k ! k-tuples whose entries belong to S. If $n<k, A=\phi$ and this type of hypertournament is called a null-hypertournament. Clearly, a 2-hypertournament is simply a tournament.

Instead of scores of vertices in a tournament, Zhou et al. [8] considered scores and losing scores of vertices in a k-hypertournament, and derived a result analogous to Landau's theorem [5]. The score $s\left(v_{i}\right)$ or s_{i} of a vertex v_{i} is the number of arcs containing v_{i} and in which v_{i} is not the last element, and the losing score $r\left(v_{i}\right)$ or r_{i} of a vertex v_{i} is the number of arcs containing v_{i} and in which v_{i} is the last element. The score sequence (losing score sequence) is formed by listing the scores (losing scores) in non-decreasing order.

[^0]The following characterizations of score sequences and losing score sequences in k-hypertournaments are due to Zhou et al. [8].

Theorem 1.1. Given two non-negative integers n and k with $n \geq k>1$, a non-decreasing sequence $R=\left[r_{1}, r_{2}, \cdots, r_{n}\right]$ of non-negative integers is a losing score sequence of some k hypertournament if and only if for each j,

$$
\sum_{i=1}^{j} r_{i} \geq\binom{ j}{k}
$$

with equality when $j=n$.
Theorem 1.2. Given non-negative integers n and k with $n \geq k>1$, a non-decreasing sequence $S=\left[s_{1}, s_{2}, \cdots, s_{n}\right]$ of non-negative integers is a score sequence of some k-hypertournament if and only if for each j,

$$
\sum_{i=1}^{j} s_{i} \geq j\binom{n-1}{k-1}+\binom{n-j}{k}-\binom{n}{k}
$$

with equality when $j=n$.
Bang and Sharp [2] proved Landau's theorem using Hall's theorem on a system of distinct representatives of a collection of sets. Based on Bang and Sharp's ideas, Koh and Ree [4] have given a different proof of Theorem 1.1 and 1.2. Some more results on scores of k hypertournaments can be found in [3, 7].

An oriented graph is a graph with each edge endowed with an orientation. As given by Avery [1], the score $s\left(v_{i}\right)$ or s_{i} of a vertex v_{i} in an oriented graph with n vertices is $s\left(v_{i}\right)=$ $n-1+d^{+}\left(v_{i}\right)-d^{-}\left(v_{i}\right)$, where $d^{+}\left(v_{i}\right)$ and $d^{-}\left(v_{i}\right)$ are respectively the outdegree and indegree of v_{i}. The score sequence of an oriented graph is formed by listing the scores in non-decreasing order.

The following result due to Avery [1] characterizes score sequences in oriented graphs, and a new proof of it is due to Pirzada et al. [6].

Theorem 1.3. A sequence $S=\left[s_{1}, s_{2}, \cdots, s_{n}\right]$ of non-negative integers in non-decreasing order is a score sequence of an oriented graph if and only if for each $j(1 \leq j \leq n)$

$$
\sum_{i=1}^{j} s_{i} \geq 2\binom{j}{2}
$$

with equality when $j=n$.
An oriented k-hypergraph is a k-hypergraph with each k-edge endowed with an orientation, that is, a linear arrangement of the vertices contained in the hyperedge. In other words, given two non-negative integers n and k with $n \geq k>1$, an oriented k-hypergraph on n vertices is a pair (V, A), where V is a set of vertices with $|V|=n$ and A is a set of k-tuples of vertices, called arcs, such that for any k-subset S of V, A contains at most one of the k !
k-tuples whose entries belong to S. Clearly, an oriented 2-hypergraph is simply an oriented graph.

Let $D=(V, A)$ denote an oriented k-hypergraph with n vertices and let $1<k \leq n$. Clearly, there can or cannot be an arc among any k distinct vertices $v_{1}, v_{2}, \cdots, v_{k}$ of V. If there is an arc among $v_{1}, v_{2}, \cdots, v_{k}$, we denote it by $e=\left(v_{1}, v_{2}, \cdots, v_{k}\right)$ and if there is not an arc among $v_{1}, v_{2}, \cdots, v_{k}$, it is denoted by $\left\langle v_{1}, v_{2}, \cdots, v_{k}\right\rangle$, and we call it a non arc. We note that D contains at most $\binom{n}{k}$ arcs, that is $|A| \leq\binom{ n}{k}$, and a vertex v_{i} in D can be in at most $\binom{n-1}{k-1}$ arcs. We denote by $d^{+}\left(v_{i}\right)\left(d^{-}\left(v_{i}\right)\right)$, the number of arcs in which v_{i} is not the last element ($\left(v_{i}\right.$ is the last element), furthermore, we denote by $d_{i}^{+}(U)\left(d_{i}^{-}(U)\right)$ the number of arcs that are contained in U and in which v_{i} is not the last element ($\left(v_{i}\right.$ is the last element).

Now, let $V_{1}=\left\{v_{1}, v_{2}, \cdots, v_{j}\right\} \subset V$ and $V_{2}=V-V_{1}$. If q is the number of those arcs which contain at least one vertex from V_{1} and at least one vertex from V_{2}, then

$$
q \leq \sum_{i=1}^{k-1}\binom{j}{i}\binom{n-j}{k-i}
$$

The set of those arcs having at least one vertex in V_{1} and at least one vertex in V_{2} is denoted by $V_{1} * V_{2}$.

Let $e=\left(v_{1}, v_{2}, \cdots, v_{k}\right)$ be an arc in D and $i<j \leq k$.
We denote by $e\left(v_{i}, v_{j}\right)=\left(v_{1}, \cdots, v_{i-1}, v_{j}, v_{i+1}, \cdots, v_{j-1}, v_{i}, v_{j+1}, \cdots, v_{k}\right)$, that is, the new arc obtained from e by interchanging v_{i} and v_{j} in e. Similarly, we denote by $f\left\langle v_{i}, v_{j}\right\rangle$ the new non arc obtained from the non arc $f=\left\langle v_{1}, v_{2}, \cdots, v_{j}\right\rangle$ by interchanging v_{i} and v_{j} in f.

Define the score $s\left(v_{i}\right)$ or s_{i} of a vertex v_{i} in oriented k-hypergraph D as
$s\left(v_{i}\right)=(k-1)\binom{n-1}{k-1}+d^{+}\left(v_{i}\right)-(k-1) d^{-}\left(v_{i}\right)$.
Clearly, $0 \leq s_{i} \leq k\binom{n-1}{k-1}$. The score sequence $S=\left[s_{1}, s_{2}, \cdots, s_{n}\right]$ of D is formed by listing the scores in non-decreasing order.

Let $R=\left[s_{1}, s_{2}, \cdots, s_{n}\right]$ be an integer sequence. For $1 \leq i<j \leq n$, we define $S\left(s_{i}^{+}, s_{j}^{-}\right)=$ $\left[s_{1}, s_{2}, \cdots, s_{i}+1, \cdots, s_{j}-1, \cdots, s_{n}\right]$, and $S^{+}\left(s_{i}^{+}, s_{j}^{-}\right)=\left(s_{1}^{\prime}, s_{2}^{\prime}, \cdots, s_{n}^{\prime}\right)$ denotes an arrangement of $S\left(s_{i}^{+}, s_{j}^{-}\right)$such that $s_{1}^{\prime} \leq s_{2}^{\prime} \leq \cdots \leq s_{n}^{\prime}$.

Let $S=\left[s_{1}, s_{2}, \cdots, s_{n}\right]$ be a non-decreasing sequence of non-negative integers with each s_{i} having the form $s_{i}=x_{i} k+y_{i}(k-1)$, where x_{i} and y_{i} are nonnegative integers and satisfy $0 \leq x_{i}, y_{i} \leq\binom{ n-1}{k-1}, S$ is called to be strict if for all $s_{i}<s_{j}$, we have $y_{i}>y_{j}$.

2. Main results

Our main result is the following theorem.

Theorem 2.1. Given two non-negative integers n and k with $n \geq k>1$, a non-decreasing strict sequence $S=\left[s_{1}, s_{2}, \cdots, s_{n}\right]$ of non-negative integers with $s_{i}=x_{i} k+y_{i}(k-1)$, where x_{i}, y_{i} are nonnegative integers and satisfies $0 \leq x_{i}, y_{i} \leq\binom{ n-1}{k-1}$, is a score sequence of some oriented k-hypergraph if and only if

$$
\begin{equation*}
\sum_{i=1}^{j} s_{i} \geq j(k-1)\binom{n-1}{k-1}+\sum_{i=1}^{k-1}(i-k)\binom{j}{i}\binom{n-j}{k-i} \tag{2.1}
\end{equation*}
$$

with equality for $j=n$.
In order to prove this theorem, we need some lemmas.
Lemma 2.1. If D is an oriented k-hypergraph of order n, then $s\left(v_{i}\right)=x k+y(k-1)$, where x and y are non-negative integers.

Proof. Let $d^{*}\left(v_{i}\right)$ be the number of non arcs in which vertex v_{i} is contained. Then, $d^{+}\left(v_{i}\right)+d^{-}\left(v_{i}\right)+d^{*}\left(v_{i}\right)=\binom{n-1}{k-1}$,
or $d^{-}\left(v_{i}\right)=\binom{n-1}{k-1}-d^{+}\left(v_{i}\right)-d^{*}\left(v_{i}\right)$
Therefore, $s\left(v_{i}\right)=(k-1)\binom{n-1}{k-1}+d^{+}\left(v_{i}\right)-(k-1) d^{-}\left(v_{i}\right)$
gives

$$
\begin{aligned}
s\left(v_{i}\right) & =(k-1)\binom{n-1}{k-1}+d^{+}\left(v_{i}\right)-(k-1)\left[\binom{n-1}{k-1}-d^{+}\left(v_{i}\right)-d^{*}\left(v_{i}\right)\right] \\
& =k d^{+}\left(v_{i}\right)+(k-1) d^{*}\left(v_{i}\right)
\end{aligned}
$$

As $d^{+}\left(v_{i}\right)$ and $d^{*}\left(v_{i}\right)$ are non-negative integers, the proof follows.
It follows from Lemma 2.1 that the score of a vertex v_{i} besides satisfying $0 \leq s_{i} \leq$ $k\binom{n-1}{k-1}$ should also satisfy $s_{i}=x k+y(k-1)$, where x and y are non-negative integers. A vertex v_{i} if belonging to an arc and not the last element contributes k to the score of v_{i}, and if not belonging to an arc contributes $k-1$ to the score of v_{i}.

For $k=2, D$ is simply an oriented graph and the score of a vertex in that case becomes $s\left(v_{i}\right)=\binom{n-1}{2}+d^{+}\left(v_{i}\right)-d^{-}\left(v_{i}\right)$,
which is same as defined by Avery.
Lemma 2.2. If $\left[s_{1}, s_{2}, \cdots, s_{n}\right.$] is a score sequence of an oriented k-hypergraph of order n, then $\sum_{i=1}^{n} s_{i}=n(k-1)\binom{n-1}{k-1}$.
Proof. In the following, d_{i}^{+}and d_{i}^{-}denote $d\left(v_{i}\right)^{+}$and $d\left(v_{i}\right)^{-}$respectively. Let D be an oriented k-hypergraph with score sequence $\left[s_{1}, s_{2}, \cdots, s_{n}\right]$. We have,

$$
\begin{aligned}
\sum_{i=1}^{n} s_{i} & =\sum_{i=1}^{n}\left[(k-1)\binom{n-1}{k-1}+d_{i}^{+}-(k-1) d_{i}^{-}\right] \\
& =n(k-1)\binom{n-1}{k-1}+\sum_{i=1}^{n} d_{i}^{+}-(k-1) \sum_{i=1}^{n} d_{i}^{-} .
\end{aligned}
$$

Let D contains $p k$-arcs. Then, $\sum_{i=1}^{n} d_{i}^{+}=(k-1) p$ and $\sum_{i=1}^{n} d_{i}^{-}=p$.
Therefore,

$$
\begin{aligned}
\sum_{i=1}^{n} s_{i} & =n(k-1)\binom{n-1}{k-1}+(k-1) p-(k-1) p \\
& =n(k-1)\binom{n-1}{k-1}
\end{aligned}
$$

Lemma 2.3. If $S=\left[s_{1}, s_{2}, \cdots, s_{n}\right]$ is a score sequence of an oriented k-hypergraph D with $s_{i}<s_{j}$ and $s_{i}=x k+y(k-1), s_{j}=\alpha k+\beta(k-1)$, where x, y, α and β are non-negative integers. If $y>\beta$, then $S^{+}\left(s_{i}^{+}, s_{j}^{-}\right)$is a score sequence of an oriented k-hypergraph D^{\prime}.

Proof. For simplicity, $A(D)$ denotes the set of arcs in $D ; A^{*}(D)$ denotes the set of non arcs in D.

Since $d(v)^{*}=y>\beta \geq 0$, we have $A^{*}(D) \neq \emptyset$.
Case 1. There exists a non arc $e^{*}=\left\langle u_{1}, u_{2}, \cdots, u_{k-1}, v_{i}\right\rangle \in A^{*}(D)$ which does not contain v_{j} and such that $e=\left(u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{k-1}^{\prime}, v_{j}\right) \in A(D)$, where $\left(u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{k-1}^{\prime}\right)$ is a permutation of ($u_{1}, u_{2}, \cdots, u_{k-1}$).

If there exists an arc e_{1} that contains both v_{i} and v_{j} and that v_{i} is the last entry. Then by exchanging v_{i} and v_{j} in e_{1}, adding the arc $e^{\prime}=\left(u_{1}, u_{2}, \cdots, u_{k-1}, v_{i}\right)$ to D, and deleting e from D, we get an oriented k-hypergraph D^{\prime} with $S^{+}\left(s_{i}^{+}, s_{j}^{-}\right)$as its score sequence. So in the following, we assume that for each arc containing both v_{i} and v_{j}, v_{i} is not the last entry.

If there exists a pair of arcs $f=\left(w_{1}, w_{2}, \cdots, w_{k-1}, v_{i}\right)$, and $f^{\prime}=\left(w_{1}^{\prime}, w_{2}^{\prime}, \cdots, v_{j}, \cdots, w_{k-1}^{\prime}\right)$, where ($w_{1}^{\prime}, w_{2}^{\prime}, \cdots, w_{k-1}^{\prime}$) is a permutation of ($w_{1}, w_{2}, \cdots, w_{k-1}$). Then by exchanging v_{i} and v_{j} between f and f^{\prime}, adding the arc $e^{\prime}=\left(u_{1}, u_{2}, \cdots, u_{k-1}, v_{i}\right)$ to D, and deleting e from D, we get an oriented k-hypergraph D^{\prime} with $S^{+}\left(s_{i}^{+}, s_{j}^{-}\right)$as its score sequence. So in the following, we assume that no such pair of arcs exist. Furthermore, for each $f^{\prime}=\left(w_{1}^{\prime}, w_{2}^{\prime}, \cdots, v_{j}, \cdots, w_{k-1}^{\prime}\right)$, $f=\left(w_{1}, w_{2}, \cdots, v_{i}, \cdots, w_{k-1}\right)$ must be an arc, where $\left(w_{1}^{\prime}, w_{2}^{\prime}, \cdots, w_{k-1}^{\prime}\right)$ is a permutation, of ($w_{1}, w_{2}, \cdots, w_{k-1}$), otherwise, by adding ($w_{1}, w_{2}, \cdots, v_{i}, \cdots, w_{k-1}$) to D and deleting f^{\prime} from D, we get an oriented k-hypergraph D^{\prime} with $S^{+}\left(s_{i}^{+}, s_{j}^{-}\right)$as its score sequence. And therefore, we have $d^{+}\left(v_{j}\right) \leq d^{+}\left(v_{i}\right)$. Meanwhile, since $y>\beta, s_{i}<s_{j}$ and by the proof of Lemma 2.1, $s_{i}=k d^{+}\left(v_{i}\right)+(k-1) d^{*}\left(v_{i}\right)<s_{j}=k d^{+}\left(v_{j}\right)+(k-1) d^{*}\left(v_{j}\right)$, which implies that $k\left(d^{+}\left(v_{j}\right)-d^{+}\left(v_{i}\right)\right)>(k-1)\left(d^{*}\left(v_{i}\right)-d^{*}\left(v_{j}\right)\right)>0$, thus we have $\left(d^{+}\left(v_{j}\right)-d^{+}\left(v_{i}\right)>0\right.$, which contradicts the fact that $d^{+}\left(v_{j}\right) \leq d^{+}\left(v_{i}\right)$.

Case 2. For each non arc $e^{*}=\left\langle u_{1}, u_{2}, \cdots, u_{k-1}, v_{i}\right\rangle$, either $f^{*}=\left\langle u_{1}, u_{2}, \cdots, u_{k-1}, v_{j}\right\rangle$ is a non arc, or $\left\{u_{1}, u_{2}, \cdots, u_{k-1}, v_{j}\right\}$ forms an arc, but v_{j} is not the last entry. Note that the later case will deduce that result is valid, so we assume that for each non arc $e^{*}=$ $\left\langle u_{1}, u_{2}, \cdots, u_{k-1}, v_{i}\right\rangle, f^{*}=\left\langle u_{1}, u_{2}, \cdots, u_{k-1}, v_{j}\right\rangle$ is also a non arc. This implies that $d^{*}\left(v_{i}\right) \leq$ $d^{*}\left(v_{j}\right)$, which contradicts that $y>\beta$.

We note when $y \leq \beta$, Lemma 2.3 need not be true. To see this consider a 3 -hypergraph $D=(V, A)$ with $V=\{1,2,3,4\}$ and $A=\{(1,2,3),(3,4,1)\}$ it is easy to check that $[5,5,7,7]$ is the score sequence of D. But the sequence $[5,6,6,7]$, which is just $S^{+}\left(s_{i}^{+}, s_{j}^{-}\right)$, where $s_{i}=5$ and $s_{j}=7$, is not a score sequence of any 3 -hypergraph.

Lemma 2.4. If $S=\left[s_{1}, s_{2}, \cdots, s_{n}\right]$ with $s_{1} \leq s_{2} \leq \cdots \leq s_{n}$ is a non-negative integer sequence satisfying (1), and if $s_{n}<k\binom{n-1}{k-1}$, then there exists $p(1 \leq p \leq n-1)$ such that $S\left(s_{n}^{+}, s_{p}^{-}\right)$is non-decreasing and satisfies (2.1).

Proof. Let p be the maximum integer such that

$$
s_{p-1}<s_{p}=s_{p+1}=\cdots=s_{n-1} \text { with } s_{0}=0 \text { if } p=1 .
$$

To see $S\left(s_{n}^{+}, s_{p}^{-}\right)$satisfies (2.1), we only need to show for each $j(p \leq j \leq n-1)$,

$$
\begin{equation*}
\sum_{i=1}^{j} s_{i}>j(k-1)\binom{n-1}{k-1}+\sum_{i=1}^{k-1}(i-k)\binom{j}{i}\binom{n-j}{k-i} . \tag{2.2}
\end{equation*}
$$

Since $s_{n}<k\binom{n-1}{k-1}$, therefore

$$
\begin{aligned}
& \sum_{i=1}^{n-1} s_{i}=\sum_{i=1}^{n} s_{i}-s_{n} \\
&=n(k-1)\binom{n-1}{k-1}-s_{n} \\
&>n(k-1)\binom{n-1}{k-1}-k\binom{n-1}{k-1} \\
&=(n-1)(k-1)\binom{n-1}{k-1}-\binom{n-1}{k-1} . \\
& \text { As }\binom{n-1}{k-1} \leq \sum_{i=1}^{k-1}(k-i)\binom{n-1}{i}\binom{n-(n-1)}{k-i}, \\
& \text { so } \begin{array}{l}
-\binom{n-1}{k-1}
\end{array} \quad \geq-\sum_{i=1}^{k-1}(k-i)\binom{n-1}{i}\binom{1}{k-i} \\
&=\sum_{i=1}^{k-1}(i-k)\binom{n-1}{i}\binom{1}{k-i} .
\end{aligned}
$$

Therefore, $\sum_{i=1}^{n-1} s_{i}>(n-1)(k-1)\binom{n-1}{k-1}+\sum_{i=1}^{k-1}(i-k)\binom{n-1}{i}\binom{1}{k-i}$.
Thus for $p=1$, (2.2) holds. Now, we assume $p \leq n-2$. Clearly, (2.2) holds for $j=n-1$.
If there exists $j_{0}\left(p \leq j_{0} \leq n-2\right)$ such that $\sum_{i=1}^{j_{0}} s_{i}=j_{0}(k-1)\binom{n-1}{k-1}+\sum_{i=1}^{k-1}(i-k)\binom{j_{0}}{i}\binom{n-j_{0}}{k-i}$,
choose j_{0} as large as possible.

$$
\sum_{i=1}^{\substack{\text { Since } \\ j_{0}+1}} s_{i}>\left(j_{0}+1\right)(k-1)\binom{n-1}{k-1}+\sum_{i=1}^{k-1}(i-k)\binom{j_{0}+1}{i}\binom{n-\left(j_{0}+1\right)}{k-i}
$$

therefore

$$
\begin{aligned}
s_{j_{0}} & =s_{j_{0}+1} \\
& =\sum_{i=1}^{j_{0}+1} s_{i}-\sum_{i=1}^{j_{0}} s_{i} \\
& >\left(j_{0}+1\right)(k-1)\binom{n-1}{k-1}+\sum_{i=1}^{k-1}(i-k)\binom{j_{0}+1}{i}\binom{n-j_{0}-1}{k-i}-j_{0}(k-1)\binom{n-1}{k-1} \\
& =(k-1)\binom{n-1}{k-1}+\sum_{i=1}^{k-1}(i-k)\binom{j_{0}+1}{i}\binom{n-j_{0}-1}{k-i}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\sum_{i=1}^{j_{0}-1} s_{i} & =\sum_{i=1}^{j_{0}} s_{i}-s_{j_{0}} \\
& <j_{0}(k-1)\binom{n-1}{k-1}-\left[(k-1)\binom{n-1}{k-1}+\sum_{i=1}^{k-1}(i-k)\binom{j_{0}+1}{i}\binom{n-j_{0}-1}{k-i}\right] \\
& =\left(j_{0}-1\right)(k-1)\binom{n-1}{k-1}-\sum_{i=1}^{k-1}(i-k)\binom{j_{0}+1}{i}\binom{n-j_{0}-1}{k-i}
\end{aligned}
$$

Now, $\binom{j_{0}+1}{i}=\frac{j_{0}\left(j_{0}+1\right)}{\left(j_{0}-i+1\right)\left(j_{0}-i\right)}\binom{j_{0}-1}{i}$
and $\quad\binom{n-j_{0}-1}{k-i}=\frac{\left(n-j_{0}-k+i+1\right)\left(n-j_{0}-k+i\right)}{\left(n-j_{0}+1\right)\left(n-j_{0}\right)}\binom{n-\left(j_{0}-1\right)}{k-i}$.
So, $\sum_{i=1}^{j_{0}-1} s_{i}<\left(j_{0}-1\right)(k-1)\binom{n-1}{k-1}$
$-\sum_{i=1}^{k-1} \frac{(i-k) j_{0}\left(j_{0}+1\right)\left(n-j_{0}-k+i+1\right)\left(n-j_{0}-k+i\right)}{\left(j_{0}-i+1\right)\left(j_{0}-i\right)\left(n-j_{0}+1\right)\left(n-j_{0}\right)}\binom{j_{0}-1}{i}\binom{n-\left(j_{0}-1\right)}{k-i}$,
or $\sum_{i=1}^{j_{0}-1} s_{i}<\left(j_{0}-1\right)(k-1)\binom{n-1}{k-1}+\sum_{i=1}^{k-1}(i-k)\binom{j_{0}-1}{i}\binom{n-\left(j_{0}-1\right)}{k-i}$,
a contradiction to the hypothesis on S. Hence, (2.2) holds.
Proof of Theorem 2.1. Necessity. Let $S=\left[s_{1}, s_{2}, \cdots, s_{n}\right]$ be the score sequence of an oriented k-hypergraph D. Further, let $V_{1}=\left[v_{1}, v_{2}, \cdots, v_{j}\right]$ and $V_{2}=V-V_{1}$. Clearly, $\left|V_{1}\right|=$ $j,\left|V_{2}\right|=n-j$.

Now,

$$
\begin{aligned}
\sum_{i=1}^{j} s_{i} & =\sum_{i=1}^{j}(k-1)\binom{n-1}{k-1}+d_{i}^{+}(D)-(k-1) d_{i}^{-}(D) \\
& =j(k-1)\binom{n-1}{k-1}+\sum_{i=1}^{j} d_{i}^{+}(D)-(k-1) \sum_{i=1}^{j} d_{i}^{-}(D) \\
& =j(k-1)\binom{n-1}{k-1}+\sum_{i=1}^{j}\left[d_{i}^{+}\left(V_{1}\right)+d_{i}^{+}\left(V_{1} * V_{2}\right)\right]-(k-1) \sum_{i=1}^{j}\left[d_{i}^{-}\left(V_{1}\right)+d_{i}^{-}\left(V_{1} * V_{2}\right)\right]
\end{aligned}
$$

If there are α arcs in V, then $\sum_{i=1}^{j} d_{i}^{+}\left(V_{1}\right)=(k-1) \alpha$ and $\sum_{i=1}^{j} d_{i}^{-}\left(V_{1}\right)=\alpha$,
so that $\sum_{i=1}^{j} d_{i}^{+}\left(V_{1}\right)-(k-1) \sum_{i=1}^{j} d_{i}^{-}\left(V_{1}\right)=(k-1) \alpha-(k-1) \alpha=0$.
Also, $\sum_{i=1}^{j} d_{i}^{-}\left(V_{1} * V_{2}\right) \leq \sum_{i=1}^{k-1}\binom{j}{i}\binom{n-j}{k-i}$,
and $\sum_{i=1}^{j} d_{i}^{+}\left(V_{1} * V_{2}\right) \geq \sum_{i=1}^{k-1}(i-1)\binom{j}{i}\binom{n-j}{k-i}$.
Therefore,

$$
\begin{aligned}
& \sum_{i=1}^{j} s_{i} \geq j(k-1)\binom{n-1}{k-1}+\sum_{i=1}^{k-1}(i-1)\binom{j}{i}\binom{n-j}{k-i}-(k-1) \sum_{i=1}^{k-1}\binom{j}{i}\binom{n-j}{k-i} \\
& \quad=j(k-1)\binom{n-1}{k-1}+\sum_{i=1}^{k-1}(i-k)\binom{j}{i}\binom{n-j}{k-i}
\end{aligned}
$$

Sufficiency. Induct on n. If $n=k$, there is only one arc (or one non arc) in which case the scores are $n, n, \cdots, n, 0(n-1, n-1, \cdots, n-1)$, and the result is true.

Assume $n>k$. Now,

$$
\begin{aligned}
s_{n} & =\sum_{i=1}^{n} s_{i}-\sum_{i=1}^{n-1} s_{i} \\
& \leq n(k-1)\binom{n-1}{k-1}-(n-1)(k-1)\binom{n-1}{k-1}-\sum_{i=1}^{k-1}(i-k)\binom{n-1}{i}\binom{1}{k-i} \\
& =k\binom{n-1}{k-1} .
\end{aligned}
$$

Case 1. If $s_{n}=k\binom{n-1}{k-1}$.
Let $s_{i}^{\prime}=s_{i}-\frac{k(k-2)}{n-1}\binom{n-1}{k-1}, \quad 1 \leq i \leq n-1$. Clearly, s_{i}^{\prime} is of the form $x k+y(k-1)$.
Then,

$$
\begin{aligned}
\sum_{i=1}^{n-1} s_{i}^{\prime} & =\sum_{i=1}^{n-1}\left[s_{i}-\frac{k(k-2)}{n-1}\binom{n-1}{k-1}\right] \\
& =(n(k-1)-k)\binom{n-1}{k-1}-k(k-2)\binom{n-1}{k-1}
\end{aligned}
$$

since

$$
\begin{aligned}
\sum_{i=1}^{n-1} s_{i} & =\sum_{i=1}^{n} s_{i}-s_{n} \\
& =n(k-1)\binom{n-1}{k-1}-k\binom{n-1}{k-1} \\
& =(n(k-1)-k)\binom{n-1}{k-1}
\end{aligned}
$$

So,

$$
\begin{aligned}
\sum_{i=1}^{n-1} s_{i}^{\prime} & =(n(k-1)-k(k-2))\binom{n-1}{k-1} \\
& =(n(k-1)-k(k-2))\left(\frac{n-1}{n-k}\right)\binom{n-2}{k-1} \\
& =(n-1)(k-1)\binom{n-2}{k-1}
\end{aligned}
$$

Also, for $1 \leq j<n-1$,

$$
\begin{aligned}
\sum_{i=1}^{j} s_{i}^{\prime} & =\sum_{i=1}^{j}\left[s_{i}-\frac{k(k-2)}{n-1}\binom{n-1}{k-1}\right] \\
& \geq j(k-1)\binom{n-1}{k-1}+\sum_{i=1}^{k-1}(i-k)\binom{j}{i}\binom{n-j}{k-i}-\frac{j k(k-2)}{n-1}\binom{n-1}{k-1} \\
& =\left[j(k-1)-\frac{j k(k-2)}{n-1}\right]\left(\frac{n-1}{n-k}\right)\binom{n-2}{k-1}+\sum_{i=1}^{k-1}(i-k)\binom{j}{i}\binom{n-j-1}{k-i} \\
& \geq \frac{j(n-1)(k-1)-j k(k-2)}{n-k}\binom{n-2}{k-1}+\sum_{i=1}^{k-1}(i-k)\binom{j}{i}\binom{n-1-j}{k-i} \\
& =\frac{j[(k-1)(n-k)+1]}{n-k}\binom{n-2}{k-1}+\sum_{i=1}^{k-1}(i-k)\binom{j}{i}\binom{n-1-j}{k-i} \\
& \geq \frac{j(k-1)(n-k)}{n-k}\binom{n-2}{k-1}+\sum_{i=1}^{k-1}(i-k)\binom{j}{i}\binom{n-1-j}{k-i} .
\end{aligned}
$$

Thus, the sequence $\left[s_{1}^{\prime}, s_{2}^{\prime}, \cdots, s_{n-1}^{\prime}\right]$ satisfies (2.1) and by induction hypothesis is a score sequence of some oriented k-hypergraph D^{\prime}. Now, construct the oriented k-hypergraph D as follows.

Let $V\left(D^{\prime}\right)=\left\{v_{1}, v_{2}, \cdots, v_{n-1}\right\}$ with $s\left(v_{i}\right)=s_{i}^{\prime}$. Adding a new vertex v_{n}, and taking all $\binom{n-1}{k-1}\binom{1}{1}$ arcs with v_{n} not in the last entry in any of these arcs, we get an oriented k-hypergraph D of order n with score sequence

$$
\left[s_{1}^{\prime}+\frac{k(k-2)}{n-1}\binom{n-1}{k-1}, \cdots, \frac{k(k-2)}{n-1}\binom{n-1}{k-1}, k\binom{n-1}{k-1}\right]=\left[s_{1}, s_{2}, \cdots, s_{n}\right] .
$$

Case 2. If $s_{n}<k\binom{n-1}{k-1}$. By (2.1), we get that $s_{n} \geq(k-1)\binom{n-1}{k-1}$. Let $x_{n}=$ $s_{n}-(k-1)\binom{n-1}{k-1}$, and $y_{n}=k\binom{n-1}{k-1}-s_{n}$, then $s_{n}=k x_{n}+(k-1) y_{n}$. Now applying Lemma 2.4 repeatedly until we obtain a new non-decreasing sequence $S^{\prime}=\left[s_{1}^{\prime}, s_{2}^{\prime}, \cdots, s_{n}^{\prime}\right]$ such that $s_{n}^{\prime}=k\binom{n-1}{k-1}$. It is obvious that Lemma 2.4 is applied y_{n} times. We denote by P_{1} the operation that makes S become some $S_{1}=S\left(s_{n}^{+}, s_{p_{1}}^{-}\right)$and P_{2} the operation that makes S_{1} become some $S_{2}=S_{1}\left(s_{n}^{+}, s_{p_{2}}^{-}\right)$, and so on. Furthermore will denote by P_{i}^{-1} the corresponding reversal operation. Note that since $s_{i}-1=\left(x_{i}-1\right) k+\left(y_{i}+1\right)(k-1)$ and $s_{n}+1=\left(x_{n}+1\right) k+\left(y_{n}-1\right)(k-1)$, the resulting sequence $S_{y_{n}}=S^{\prime}$ is still strict.

So by case $1, S^{\prime}$ is a score sequence of some oriented k-hypergraph. Now, we make the operations $P_{y_{n}}^{-1}, \cdots, P_{2}^{-1}, P_{1}^{-1}$, applying Lemma 2.3 on each operation, we finally get the original non-decreasing sequence $S=\left[s_{1}, s_{2}, \cdots, s_{n}\right]$. Note that after each operation P_{i}^{-1}, the
corresponding integer sequence remains strict, so by Lemma $2.3, S$ is a score sequence of an oriented k-hypergraph.

Remark. If $k=2$ in Theorem 2.1, then the necessary and sufficient condition for the sequence of non-negative integers $\left[s_{1}, s_{2}, \cdots, s_{n}\right]$ in non-decreasing order becomes

$$
\begin{aligned}
\sum_{i=1}^{j} s_{i} & \geq j\binom{n-1}{1}+\sum_{i=1}^{1}(i-2)\binom{j}{i}\binom{n-j}{2-i} \\
& =j\binom{n-1}{1}-\binom{j}{1}\binom{n-j}{1} \\
& =j(n-1)-j(n-j)=j^{2}-j=j(j-1)
\end{aligned}
$$

with $\quad \sum_{i=1}^{n} s_{i}=n(2-1)\binom{n-1}{1}=n(n-1)$,
which is Avery's theorem for oriented graphs.

References

[1] P. Avery, Score sequences of oriented graphs, J. Graph Theory, Vol. 15, No. 3(1991) 251-257.
[2] C. M. Bang and H. Sharp Jr., Score vectors of tournaments, J. Combin.Theory Ser. B 26 (1) (1979) 81-84.
[3] Y. Koh and S. Ree, Score sequences of hypertournament matrices, J. Korea Soc. Math. Educ. Ser. B: Pure and Appl. Math. 8 (2) (2001) 185-191.
[4] Y. Koh and S. Ree, On k-hypertournament matrices, Linear Algebra and its Applications 373 (2003) 183-195.
[5] H. G. Landau, On dominance relations and the structure of animal societies. III. The condition for a score structure, Bull. Math. Biophys. 15 (1953) 143-148.
[6] S. Pirzada, T. A. Naikoo and N. A. Shah, Score sequences in oriented graphs, J. Applied Mathematics and Computing (2006), 22(1-2) (2007) 257-268.
[7] C. Wang and G. Zhou, Note on the degree sequences of k-hypertournaments, Discrete Mathematics, To appear.
[8] G. Zhou, T. Yao and K. Zhang, On score sequences of k-hypertournaments, European J. Combin. 21 (8) (2000) 993-1000.

[^0]: *Corresponding author. Email addresses: sdpirzada@yahoo.co.in (S. Pirzada) gfzhou@nju.edu.cn (Z. Guofei)
 ${ }^{\dagger}$ The work of the second author was supported in part by the National Natural Science Foundation of China and The Dr. Delia Koo Grant in Michigan State University

