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Score sequences in oriented k-hypergraphs
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Abstract. Given two non-negative integers n and k with n ≥ k > 1, an oriented k-hypergraph on n
vertices is a pair (V, A), where V is a set of vertices with |V | = n and A is a set of k-tuples of vertices,
called arcs, such that for any k-subset S of V , A contains at most one of the k! k-tuples whose entries
belong to S.
In this paper, we define the score of a vertex in an oriented k-hypergraph and then obtain a necessary
and sufficient condition for the sequence of non-negative integers [s1, s2, · · · , sn] to be a score sequence
of some oriented k-hypergraph.
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1. Introduction

An edge of a graph is a pair of vertices and an edge of a hypergraph is a subset of the
vertex set, consisting of at least two vertices. An edge in a hypergraph consisting of k vertices
is called a k-edge, and a hypergraph all of whose edges are k-edges is called a k-hypergraph.

A k-hypertournament is a complete k-hypergraph with each k-edge endowed with an
orientation, that is, a linear arrangement of the vertices contained in the hyperedge. In other
words, given two non-negative integers n and k with n ≥ k > 1, a k-hypertournament on n
vertices is a pair (V, A), where V is a set of vertices with |V | = n and A is a set of k-tuples
of vertices, called arcs, such that for any k-subset S of V , A contains exactly one of the k!
k-tuples whose entries belong to S. If n< k, A= φ and this type of hypertournament is called
a null-hypertournament. Clearly, a 2-hypertournament is simply a tournament.

Instead of scores of vertices in a tournament, Zhou et al. [8] considered scores and losing
scores of vertices in a k-hypertournament, and derived a result analogous to Landau’s theorem
[5]. The score s(vi) or si of a vertex vi is the number of arcs containing vi and in which vi
is not the last element, and the losing score r(vi) or ri of a vertex vi is the number of arcs
containing vi and in which vi is the last element. The score sequence (losing score sequence)
is formed by listing the scores (losing scores) in non-decreasing order.
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The following characterizations of score sequences and losing score sequences in k-hypertournaments
are due to Zhou et al. [8].

Theorem 1.1. Given two non-negative integers n and k with n≥ k > 1, a non-decreasing
sequence R = [r1, r2, · · · , rn] of non-negative integers is a losing score sequence of some k-
hypertournament if and only if for each j,

j
∑

i=1
ri ≥
�

j
k

�

,

with equality when j = n.

Theorem 1.2. Given non-negative integers n and k with n ≥ k > 1, a non-decreasing se-
quence S = [s1, s2, · · · , sn] of non-negative integers is a score sequence of some k-hypertournament
if and only if for each j,

j
∑

i=1
si ≥ j

�

n− 1
k− 1

�

+

�

n− j
k

�

−
�

n
k

�

,

with equality when j = n.

Bang and Sharp [2] proved Landau’s theorem using Hall’s theorem on a system of distinct
representatives of a collection of sets. Based on Bang and Sharp’s ideas, Koh and Ree [4]
have given a different proof of Theorem 1.1 and 1.2. Some more results on scores of k-
hypertournaments can be found in [3,7].

An oriented graph is a graph with each edge endowed with an orientation. As given by
Avery [1], the score s(vi) or si of a vertex vi in an oriented graph with n vertices is s(vi) =
n−1+d+(vi)−d−(vi), where d+(vi) and d−(vi) are respectively the outdegree and indegree of
vi . The score sequence of an oriented graph is formed by listing the scores in non-decreasing
order.

The following result due to Avery [1] characterizes score sequences in oriented graphs,
and a new proof of it is due to Pirzada et al. [6].

Theorem 1.3. A sequence S = [s1, s2, · · · , sn] of non-negative integers in non-decreasing
order is a score sequence of an oriented graph if and only if for each j (1≤ j ≤ n)

j
∑

i=1
si ≥ 2

�

j
2

�

,

with equality when j = n.

An oriented k-hypergraph is a k-hypergraph with each k-edge endowed with an orienta-
tion, that is, a linear arrangement of the vertices contained in the hyperedge. In other words,
given two non-negative integers n and k with n ≥ k > 1, an oriented k-hypergraph on n
vertices is a pair (V, A), where V is a set of vertices with |V | = n and A is a set of k-tuples
of vertices, called arcs, such that for any k-subset S of V , A contains at most one of the k!
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k-tuples whose entries belong to S. Clearly, an oriented 2-hypergraph is simply an oriented
graph.

Let D = (V, A) denote an oriented k-hypergraph with n vertices and let 1< k ≤ n. Clearly,
there can or cannot be an arc among any k distinct vertices v1, v2, · · · , vk of V . If there is an
arc among v1, v2, · · · , vk, we denote it by e = (v1, v2, · · · , vk) and if there is not an arc among
v1, v2, · · · , vk, it is denoted by




v1, v2, · · · , vk
�

, and we call it a non arc. We note that D contains

at most

�

n
k

�

arcs, that is |A| ≤
�

n
k

�

, and a vertex vi in D can be in at most

�

n− 1
k− 1

�

arcs. We denote by d+(vi)
�

d−(vi)
�

, the number of arcs in which vi is not the last element
((vi is the last element), furthermore, we denote by d+i (U) (d−i (U)) the number of arcs that
are contained in U and in which vi is not the last element ((vi is the last element).

Now, let V1 = {v1, v2, · · · , v j} ⊂ V and V2 = V − V1. If q is the number of those arcs which
contain at least one vertex from V1 and at least one vertex from V2, then

q ≤
k−1
∑

i=1

�

j
i

��

n− j
k− i

�

.

The set of those arcs having at least one vertex in V1 and at least one vertex in V2 is
denoted by V1 ∗ V2.

Let e = (v1, v2, · · · , vk) be an arc in D and i < j ≤ k.
We denote by e(vi , v j) = (v1, · · · , vi−1, v j , vi+1, · · · , v j−1, vi , v j+1, · · · , vk), that is, the new

arc obtained from e by interchanging vi and v j in e. Similarly, we denote by f
¬

vi , v j

¶

the new

non arc obtained from the non arc f =
¬

v1, v2, · · · , v j

¶

by interchanging vi and v j in f .

Define the score s(vi) or si of a vertex vi in oriented k-hypergraph D as

s(vi) = (k− 1)

�

n− 1
k− 1

�

+ d+(vi)− (k− 1)d−(vi).

Clearly, 0 ≤ si ≤ k

�

n− 1
k− 1

�

. The score sequence S = [s1, s2, · · · , sn] of D is formed by

listing the scores in non-decreasing order.
Let R = [s1, s2, · · · , sn] be an integer sequence. For 1 ≤ i < j ≤ n, we define S(s+i , s−j ) =

[s1, s2, · · · , si + 1, · · · , s j − 1, · · · , sn], and S+(s+i , s−j ) = (s
′
1, s′2, · · · , s′n) denotes an arrangement

of S(s+i , s−j ) such that s′1 ≤ s′2 ≤ · · · ≤ s′n.
Let S = [s1, s2, · · · , sn] be a non-decreasing sequence of non-negative integers with each

si having the form si = x ik+ yi(k− 1), where x i and yi are nonnegative integers and satisfy

0≤ x i , yi ≤
�

n− 1
k− 1

�

, S is called to be strict if for all si < s j , we have yi > y j .

2. Main results

Our main result is the following theorem.
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Theorem 2.1. Given two non-negative integers n and k with n≥ k > 1, a non-decreasing
strict sequence S = [s1, s2, · · · , sn] of non-negative integers with si = x ik + yi(k − 1), where

x i , yi are nonnegative integers and satisfies 0 ≤ x i , yi ≤
�

n− 1
k− 1

�

, is a score sequence of

some oriented k-hypergraph if and only if

j
∑

i=1

si ≥ j(k− 1)
�

n− 1

k− 1

�

+
k−1
∑

i=1

(i− k)
�

j

i

��

n− j

k− i

�

(2.1)

with equality for j = n.
In order to prove this theorem, we need some lemmas.
Lemma 2.1. If D is an oriented k-hypergraph of order n, then s(vi) = xk+ y(k−1), where

x and y are non-negative integers.
Proof. Let d∗(vi) be the number of non arcs in which vertex vi is contained. Then,

d+(vi) + d−(vi) + d∗(vi) =

�

n− 1
k− 1

�

,

or d−(vi) =

�

n− 1
k− 1

�

− d+(vi)− d∗(vi).

Therefore, s(vi) = (k− 1)

�

n− 1
k− 1

�

+ d+(vi)− (k− 1)d−(vi)

gives

s(vi) = (k− 1)

�

n− 1
k− 1

�

+ d+(vi)− (k− 1)

��

n− 1
k− 1

�

− d+(vi)− d∗(vi)

�

= kd+(vi) + (k− 1)d∗(vi)

As d+(vi) and d∗(vi) are non-negative integers, the proof follows.�
It follows from Lemma 2.1 that the score of a vertex vi besides satisfying 0 ≤ si ≤

k

�

n− 1
k− 1

�

should also satisfy si = xk + y(k − 1), where x and y are non-negative inte-

gers. A vertex vi if belonging to an arc and not the last element contributes k to the score of
vi , and if not belonging to an arc contributes k− 1 to the score of vi .

For k = 2, D is simply an oriented graph and the score of a vertex in that case becomes

s(vi) =

�

n− 1
2

�

+ d+(vi)− d−(vi),

which is same as defined by Avery.

Lemma 2.2. If [s1, s2, · · · , sn] is a score sequence of an oriented k-hypergraph of order n,

then
n
∑

i=1
si = n(k− 1)

�

n− 1
k− 1

�

.

Proof. In the following, d+i and d−i denote d(vi)+ and d(vi)− respectively. Let D be an
oriented k-hypergraph with score sequence [s1, s2, · · · , sn]. We have,
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n
∑

i=1

si =
n
∑

i=1

�

(k− 1)
�

n− 1

k− 1

�

+ d+i − (k− 1)d−i

�

= n(k− 1)
�

n− 1

k− 1

�

+
n
∑

i=1

d+i − (k− 1)
n
∑

i=1

d−i .

Let D contains p k-arcs. Then,
n
∑

i=1
d+i = (k− 1)p and

n
∑

i=1
d−i = p.

Therefore,

n
∑

i=1

si = n(k− 1)
�

n− 1

k− 1

�

+ (k− 1)p− (k− 1)p

= n(k− 1)
�

n− 1

k− 1

�

�
Lemma 2.3. If S = [s1, s2, · · · , sn] is a score sequence of an oriented k-hypergraph D with

si < s j and si = xk + y(k − 1), s j = αk + β(k − 1), where x , y , α and β are non-negative
integers. If y > β , then S+(s+i , s−j ) is a score sequence of an oriented k-hypergraph D′.

Proof. For simplicity, A(D) denotes the set of arcs in D; A∗(D) denotes the set of non arcs
in D.

Since d(v)∗ = y > β ≥ 0, we have A∗(D) 6= ;.
Case 1. There exists a non arc e∗ = 〈u1, u2, · · · , uk−1, vi〉 ∈ A∗(D) which does not contain

v j and such that e = (u′1, u′2, · · · , u′k−1, v j) ∈ A(D), where (u′1, u′2, · · · , u′k−1) is a permutation of
(u1, u2, · · · , uk−1).

If there exists an arc e1 that contains both vi and v j and that vi is the last entry. Then
by exchanging vi and v j in e1, adding the arc e′ = (u1, u2, · · · , uk−1, vi) to D, and deleting e
from D, we get an oriented k-hypergraph D′ with S+(s+i , s−j ) as its score sequence. So in the
following, we assume that for each arc containing both vi and v j , vi is not the last entry.

If there exists a pair of arcs f = (w1, w2, · · · , wk−1, vi), and f ′ = (w′1, w′2, · · · , v j , · · · , w′k−1),
where (w′1, w′2, · · · , w′k−1) is a permutation of (w1, w2, · · · , wk−1). Then by exchanging vi and
v j between f and f ′, adding the arc e′ = (u1, u2, · · · , uk−1, vi) to D, and deleting e from D, we
get an oriented k-hypergraph D′ with S+(s+i , s−j ) as its score sequence. So in the following, we
assume that no such pair of arcs exist. Furthermore, for each f ′ = (w′1, w′2, · · · , v j , · · · , w′k−1),
f = (w1, w2, · · · , vi , · · · , wk−1) must be an arc, where (w′1, w′2, · · · , w′k−1) is a permutation

of (w1, w2, · · · , wk−1), otherwise, by adding (w1, w2, · · · , vi , · · · , wk−1) to D and deleting f
′

from D, we get an oriented k-hypergraph D′ with S+(s+i , s−j ) as its score sequence. And
therefore, we have d+(v j) ≤ d+(vi). Meanwhile, since y > β , si < s j and by the proof of
Lemma 2.1, si = kd+(vi) + (k− 1)d∗(vi) < s j = kd+(v j) + (k− 1)d∗(v j), which implies that
k(d+(v j)− d+(vi)) > (k− 1)(d∗(vi)− d∗(v j)) > 0, thus we have (d+(v j)− d+(vi) > 0, which
contradicts the fact that d+(v j)≤ d+(vi).
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Case 2. For each non arc e∗ = 〈u1, u2, · · · , uk−1, vi〉, either f ∗ = 〈u1, u2, · · · , uk−1, v j〉
is a non arc, or {u1, u2, · · · , uk−1, v j} forms an arc, but v j is not the last entry. Note that
the later case will deduce that result is valid, so we assume that for each non arc e∗ =
〈u1, u2, · · · , uk−1, vi〉, f ∗ = 〈u1, u2, · · · , uk−1, v j〉 is also a non arc. This implies that d∗(vi) ≤
d∗(v j), which contradicts that y > β .�

We note when y ≤ β , Lemma 2.3 need not be true. To see this consider a 3-hypergraph
D = (V, A) with V = {1, 2, 3,4} and A= {(1,2, 3), (3,4, 1)} it is easy to check that [5,5,7,7] is
the score sequence of D. But the sequence [5,6,6,7], which is just S+(s+i , s−j ), where si = 5
and s j = 7, is not a score sequence of any 3-hypergraph.

Lemma 2.4. If S = [s1, s2, · · · , sn] with s1 ≤ s2 ≤ · · · ≤ sn is a non-negative integer

sequence satisfying (1), and if sn < k

�

n− 1
k− 1

�

, then there exists p (1≤ p ≤ n−1) such that

S(s+n , s−p ) is non-decreasing and satisfies (2.1).
Proof. Let p be the maximum integer such that

sp−1 < sp = sp+1 = · · ·= sn−1 with s0 = 0 if p = 1.

To see S(s+n , s−p ) satisfies (2.1), we only need to show for each j (p ≤ j ≤ n− 1),

j
∑

i=1

si > j(k− 1)
�

n− 1

k− 1

�

+
k−1
∑

i=1

(i− k)
�

j

i

��

n− j

k− i

�

. (2.2)

Since sn < k

�

n− 1
k− 1

�

, therefore

n−1
∑

i=1

si =
n
∑

i=1

si − sn

= n(k− 1)
�

n− 1

k− 1

�

− sn

> n(k− 1)
�

n− 1

k− 1

�

− k
�

n− 1

k− 1

�

= (n− 1)(k− 1)
�

n− 1

k− 1

�

−
�

n− 1

k− 1

�

.

As

�

n− 1
k− 1

�

≤
k−1
∑

i=1
(k− i)

�

n− 1
i

��

n− (n− 1)
k− i

�

,

so

−
�

n− 1

k− 1

�

≥−
k−1
∑

i=1

(k− i)
�

n− 1

i

��

1

k− i

�

=
k−1
∑

i=1

(i− k)
�

n− 1

i

��

1

k− i

�

.
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Therefore,
n−1
∑

i=1
si > (n− 1)(k− 1)

�

n− 1
k− 1

�

+
k−1
∑

i=1
(i− k)

�

n− 1
i

��

1
k− i

�

.

Thus for p = 1, (2.2) holds. Now, we assume p ≤ n− 2. Clearly, (2.2) holds for j = n− 1.

If there exists j0 (p ≤ j0 ≤ n− 2) such that
j0
∑

i=1
si = j0(k− 1)
�n−1

k−1

�

+
k−1
∑

i=1
(i− k)
� j0

i

��n− j0
k−i

�

,

choose j0 as large as possible.
Since
j0+1
∑

i=1
si > ( j0+ 1)(k− 1)

�

n− 1
k− 1

�

+
k−1
∑

i=1
(i− k)

�

j0+ 1
i

��

n− ( j0+ 1)
k− i

�

,

therefore

s j0 = s j0+1

=
j0+1
∑

i=1

si −
j0
∑

i=1

si

> ( j0+ 1)(k− 1)

�

n− 1
k− 1

�

+
k−1
∑

i=1

(i− k)

�

j0+ 1
i

��

n− j0− 1
k− i

�

− j0(k− 1)

�

n− 1
k− 1

�

= (k− 1)

�

n− 1
k− 1

�

+
k−1
∑

i=1

(i− k)

�

j0+ 1
i

��

n− j0− 1
k− i

�

Thus,

j0−1
∑

i=1

si =
j0
∑

i=1

si − s j0

< j0(k− 1)

�

n− 1
k− 1

�

−



(k− 1)

�

n− 1
k− 1

�

+
k−1
∑

i=1

(i− k)

�

j0+ 1
i

��

n− j0− 1
k− i

�





= ( j0− 1)(k− 1)

�

n− 1
k− 1

�

−
k−1
∑

i=1

(i− k)

�

j0+ 1
i

��

n− j0− 1
k− i

�

Now,

�

j0+ 1
i

�

= j0( j0+1)
( j0−i+1)( j0−i)

�

j0− 1
i

�

and

�

n− j0− 1
k− i

�

= (n− j0−k+i+1)(n− j0−k+i)
(n− j0+1)(n− j0)

�

n− ( j0− 1)
k− i

�

.

So,
j0−1
∑

i=1
si < ( j0− 1)(k− 1)

�

n− 1
k− 1

�

−
k−1
∑

i=1

(i−k) j0( j0+1)(n− j0−k+i+1)(n− j0−k+i)
( j0−i+1)( j0−i)(n− j0+1)(n− j0)

�

j0− 1
i

��

n− ( j0− 1)
k− i

�

,

or
j0−1
∑

i=1
si < ( j0− 1)(k− 1)

�

n− 1
k− 1

�

+
k−1
∑

i=1
(i− k)

�

j0− 1
i

��

n− ( j0− 1)
k− i

�

,
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a contradiction to the hypothesis on S. Hence, (2.2) holds.�

Proof of Theorem 2.1. Necessity. Let S = [s1, s2, · · · , sn] be the score sequence of an
oriented k-hypergraph D. Further, let V1 = [v1, v2, · · · , v j] and V2 = V − V1. Clearly,

�

�V1

�

� =
j,
�

�V2

�

�= n− j .
Now,

j
∑

i=1

si =
j
∑

i=1

(k− 1)

�

n− 1
k− 1

�

+ d+i (D)− (k− 1)d−i (D)

= j(k− 1)

�

n− 1
k− 1

�

+
j
∑

i=1

d+i (D)− (k− 1)
j
∑

i=1

d−i (D)

= j(k− 1)

�

n− 1
k− 1

�

+
j
∑

i=1

�

d+i (V1) + d+i (V1 ∗ V2)
�

− (k− 1)
j
∑

i=1

�

d−i (V1) + d−i (V1 ∗ V2)
�

If there are α arcs in V , then
j
∑

i=1
d+i (V1) = (k− 1)α and

j
∑

i=1
d−i (V1) = α,

so that
j
∑

i=1
d+i (V1)− (k− 1)

j
∑

i=1
d−i (V1) = (k− 1)α− (k− 1)α= 0.

Also,
j
∑

i=1
d−i (V1 ∗ V2)≤

k−1
∑

i=1

�

j
i

��

n− j
k− i

�

,

and
j
∑

i=1
d+i (V1 ∗ V2)≥

k−1
∑

i=1
(i− 1)

�

j
i

��

n− j
k− i

�

.

Therefore,

j
∑

i=1

si ≥ j(k− 1)

�

n− 1
k− 1

�

+
k−1
∑

i=1

(i− 1)

�

j
i

��

n− j
k− i

�

− (k− 1)
k−1
∑

i=1

�

j
i

��

n− j
k− i

�

= j(k− 1)

�

n− 1
k− 1

�

+
k−1
∑

i=1

(i− k)

�

j
i

��

n− j
k− i

�

Sufficiency. Induct on n. If n= k, there is only one arc (or one non arc) in which case the
scores are n, n, · · · , n, 0(n− 1, n− 1, · · · , n− 1), and the result is true.

Assume n> k. Now,

sn =
n
∑

i=1

si −
n−1
∑

i=1

si

≤ n(k− 1)

�

n− 1
k− 1

�

− (n− 1)(k− 1)

�

n− 1
k− 1

�

−
k−1
∑

i=1

(i− k)

�

n− 1
i

��

1
k− i

�

= k

�

n− 1
k− 1

�

.
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Case 1. If sn = k

�

n− 1
k− 1

�

.

Let s′i = si −
k(k−2)

n−1

�

n− 1
k− 1

�

, 1≤ i ≤ n− 1 . Clearly, s′i is of the form xk+ y(k− 1).

Then,

n−1
∑

i=1

s/i =
n−1
∑

i=1

�

si −
k(k− 2)

n− 1

�

n− 1
k− 1

��

= (n(k− 1)− k)

�

n− 1
k− 1

�

− k(k− 2)

�

n− 1
k− 1

�

,

since

n−1
∑

i=1

si =
n
∑

i=1

si − sn

= n(k− 1)

�

n− 1
k− 1

�

− k

�

n− 1
k− 1

�

= (n(k− 1)− k)

�

n− 1
k− 1

�

.

So,

n−1
∑

i=1

s/i = (n(k− 1)− k(k− 2))

�

n− 1
k− 1

�

= (n(k− 1)− k(k− 2))
�

n− 1

n− k

�

�

n− 2
k− 1

�

= (n− 1)(k− 1)

�

n− 2
k− 1

�

.

Also, for 1≤ j < n− 1,
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j
∑

i=1

s/i =
j
∑

i=1

�

si −
k(k− 2)

n− 1

�

n− 1
k− 1

��

≥ j(k− 1)

�

n− 1
k− 1

�

+
k−1
∑

i=1

(i− k)

�

j
i

��

n− j
k− i

�

−
jk(k− 2)

n− 1

�

n− 1
k− 1

�

=
�

j(k− 1)−
jk(k− 2)

n− 1

��

n− 1

n− k

�

�

n− 2
k− 1

�

+
k−1
∑

i=1

(i− k)

�

j
i

��

n− j− 1
k− i

�

≥
j(n− 1)(k− 1)− jk(k− 2)

n− k

�

n− 2
k− 1

�

+
k−1
∑

i=1

(i− k)

�

j
i

��

n− 1− j
k− i

�

=
j [(k− 1)(n− k) + 1]

n− k

�

n− 2
k− 1

�

+
k−1
∑

i=1

(i− k)

�

j
i

��

n− 1− j
k− i

�

≥
j(k− 1)(n− k)

n− k

�

n− 2
k− 1

�

+
k−1
∑

i=1

(i− k)

�

j
i

��

n− 1− j
k− i

�

.

Thus, the sequence [s′1, s′2, · · · , s′n−1] satisfies (2.1) and by induction hypothesis is a score
sequence of some oriented k-hypergraph D′. Now, construct the oriented k-hypergraph D as
follows.

Let V (D′) = {v1, v2, · · · , vn−1} with s(vi) = s′i . Adding a new vertex vn, and taking all
�

n− 1
k− 1

� �

1
1

�

arcs with vn not in the last entry in any of these arcs, we get an oriented

k-hypergraph D of order n with score sequence
�

s/1+
k(k−2)

n−1

�

n− 1
k− 1

�

, · · · , k(k−2)
n−1

�

n− 1
k− 1

�

, k

�

n− 1
k− 1

��

= [s1, s2, · · · , sn].

Case 2. If sn < k

�

n− 1
k− 1

�

. By (2.1), we get that sn ≥ (k − 1)

�

n− 1
k− 1

�

. Let xn =

sn− (k−1)

�

n− 1
k− 1

�

, and yn = k

�

n− 1
k− 1

�

− sn, then sn = kxn+(k−1)yn. Now applying

Lemma 2.4 repeatedly until we obtain a new non-decreasing sequence S′ = [s′1, s′2, · · · , s′n]

such that s′n = k

�

n− 1
k− 1

�

. It is obvious that Lemma 2.4 is applied yn times. We denote

by P1 the operation that makes S become some S1 = S(s+n , s−p1
) and P2 the operation that

makes S1 become some S2 = S1(s+n , s−p2
), and so on. Furthermore will denote by P−1

i the
corresponding reversal operation. Note that since si − 1 = (x i − 1)k + (yi + 1)(k − 1) and
sn+ 1= (xn+ 1)k+ (yn− 1)(k− 1), the resulting sequence Syn

= S′ is still strict.
So by case 1, S′ is a score sequence of some oriented k-hypergraph. Now, we make

the operations P−1
yn

, · · · , P−1
2 , P−1

1 , applying Lemma 2.3 on each operation, we finally get the

original non-decreasing sequence S = [s1, s2, · · · , sn]. Note that after each operation P−1
i , the
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corresponding integer sequence remains strict, so by Lemma 2.3, S is a score sequence of an
oriented k-hypergraph.

Remark. If k = 2 in Theorem 2.1, then the necessary and sufficient condition for the
sequence of non-negative integers [s1, s2, · · · , sn] in non-decreasing order becomes

j
∑

i=1

si ≥ j

�

n− 1
1

�

+
1
∑

i=1

(i− 2)

�

j
i

��

n− j
2− i

�

= j

�

n− 1
1

�

−
�

j
1

��

n− j
1

�

= j(n− 1)− j(n− j) = j2− j = j( j− 1)

with
n
∑

i=1
si = n(2− 1)

�

n− 1
1

�

= n(n− 1),

which is Avery’s theorem for oriented graphs.
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