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Abstract. In this paper, two quite new theorems on degree of approximation of conjugate of functions

f ∈ Lipα class and f ∈W
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1. Introduction

A good amount of work to determine the degree of approximation of functions belong-

ing to the classes Lipα, Lip (α, r), Lip (ξ (t) , r) and W
�

Lr ,ξ (t)
�

using Cesàro, Nörlund and

generalized Nörlund single summability methods has been done by several researchers like

Alexits [1], Sahney and Goel [12], Qureshi and Neha [8], Qureshi [9, 10], Chandra [2], Khan

[4], Leindler [6] and Rhoades [11] . But nothing seems to have been done so far to obtain

degree of approximation using different class of functions by product summability method.

Therefore, in present work, two theorems on degree of approximation of the conjugate of

functions f ∈ Lipα and f ∈ W
�

Lr ,ξ (t)
�

, (r ≥ 1) using (E, 1) (C , 1) summability means of

conjugate Fourier series have been proved.

Let
∑∞

n=0 un be a given infinite series with sequence of its nth partial sum
�

sn

	

.
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If (E, 1) transform is defined as the nth partial sum of (E, 1) summability and it can be

denoted by E1
n , which is given by

E1
n =

1

2n

n
∑

k=0

�

n

k

�

sk→ s as n→∞ (1)

then the infinite series
∑∞

n=0 un is summable (E, 1) to a definite number s (Hardy [3]).

If

tn =
s0 + s1 + s2 + . . .+ sn

n+ 1

=
1

n+ 1

n
∑

k=0

sn→ s as n→∞ (2)

then the infinite series
∑∞

n=0 un is summable to the definite number s by (C , 1) method.

The (E, 1) transform of (C , 1) transform defines (E, 1)(C , 1) product transform and we

denote it by (EC)1n.

Thus if

(EC)1n =
1

2n

n
∑

k=0

�

n

k

�

C1
k → s as n→∞ (3)

then the infinite series
∑∞

n=0 un is said to be summable by (E, 1) (C , 1) method or summable

(E, 1) (C , 1) to a definite number s.

Let f (x) be a 2π-periodic function and Lebesgue integrable. The Fourier series of f (x) is

given by

f (x)∼
a0

2
+

∞
∑

n=1

�

an cos nx + bn sin nx
�

(4)

with nth partial sum sn

�

f ; x
�

.

The conjugate series of Fourier series (4) is given by

∞
∑

n=1

�

an cos nx − bn sin nx
�

, (5)

and we shall call it as conjugate Fourier series. A function f ∈ Lipα if

f (x + t)− f (x) = O
�

|t|α
�

for 0< α≤ 1. (6)
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f ∈ Lip (α, r ) for 0≤ x ≤ 2π, if [definition 5.38 of McFadden, 7]

 

∫ 2π

0

�

� f (x + t)− f (x)
�

�

r
d x

! 1

r

= O
�

|t|α
�

, 0 < α≤ 1, r ≥ 1. (7)

Given a positive increasing function ξ (t) and an integer r ≥ 1, f ∈ Lip (ξ (t) , r) if

 
∫ 2π

0

�

� f (x + t)− f (x)
�

�

r
d x

! 1

r

= O (ξ (t)) (8)

and that f ∈W
�

Lr ,ξ (t)
�

if

 
∫ 2π

0

�

�

�

f (x + t)− f (x)
	

sinβ x
�

�

r
d x

! 1

r

= O (ξ (t)) ,β ≥ 0. (9)

where ξ(t) is a positive increasing function of t.

If β = 0 then W
�

Lr ,ξ (t)
�

reduces to the class Lip (ξ (t) , r) and if ξ(t) = tα then

Lip(ξ(t), r) class coincides with the class Lip(α, r) and if r → ∞ then Lip(α, r) class re-

duces to the class Lipα.

L∞-norm of a function f : R→ R is defined by



 f




∞ = sup
¦�

� f (x)
�

� : x ∈ R
©

(10)

Lr -norm is defined by



 f




r
=

 
∫ 2π

0

�

� f (x)
�

�

r
d x

! 1

r

, r ≥ 1. (11)

The degree of approximation of a function f : R→ R by a trigonometric polynomial tn of

degree n under sup norm ‖·‖∞ is defined as [Zygmund, 13]



tn − f




∞ = sup
¦�

�tn (x)− f (x)
�

� : x ∈ R
©

(12)

and En

�

f
�

of a function f ∈ Lr is given by

En

�

f
�

= min
tn



tn − f




r
(13)

We use the following notations throughout this paper:

ψ (t) = f (x + t) + f (x − t)

K̄n (t) =
1

π 2n+1

n
∑

k=0

(
�

n

k

�

1

(1+ k)

k
∑

ν=0

cos
�

ν + 1

2

�

t

sin t

2

)

τ =
�

1

t

�

, where τ denotes the greatest integer not greater than 1

t
.
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2. Main Theorems

We prove the following theorems:

Theorem 1. If a function f , conjugate to a 2π-periodic function f , belongs to Lipα class, then

its degree of approximation by (E, 1) (C , 1) means of conjugate Fourier series is given by

sup
0<x<2π

�

�

�(EC)1n (x)− f

�

�

� =





(EC)1n − f







∞
= O

�

1

(n+ 1)α

�

, 0< α < 1 (14)

where (EC)1n denotes the (E, 1) (C , 1) transform as defined in (3).

Theorem 2. If f , conjugate to a 2π-periodic function f , belongs to W
�

Lr ,ξ(t)
�

class, then its

degree of approximation by (E, 1) (C , 1) means of conjugate Fourier series is given by





(EC)1n − f







r
= O

�

(n+ 1)β+
1

r ξ

�

1

n+ 1

��

(15)

provided ξ (t) satisfies the following conditions:

�

ξ (t)

t

�

be a decreasing sequence, (16)







∫ 1

n+1

0

 

t
�

�ψ (t)
�

�

ξ (t)

!r

sinβ r t d t







1

r

= o

�

1

n+ 1

�

(17)

and






∫ π

1

n+1

 

t−δ
�

�ψ (t)
�

�

ξ (t)

!r

d t







1

r

= O
¦

(n+ 1)δ
©

(18)

where δ is an arbitrary number such that s (1−δ)−1> 0, 1

r
+ 1

s
= 1, conditions (17) and (18)

hold uniformly in x and (EC)1n, as defined in (3), is (E, 1) (C , 1) means of the series (5) and

f (x) = −
1

2π

∫ 2π

0

ψ (t) cot

�

t

2

�

d t (19)

3. Lemmas

For the proof of our theorems, following lemmas are required:

Lemma 1.
�

�Gn (t)
�

� = O

�

1

t

�

, for 0≤ t ≤
1

n+ 1
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Proof. For 0≤ t ≤ 1

n+1
, sin

�

t

2

�

≥ t

π
and |cos nt| ≤ 1

�

�Gn (t)
�

� ≤
1

π 2n+1

�

�

�

�

�

n
∑

k=0

(
�

n

k

�

1

(1+ k)

k
∑

ν=0

cos
�

ν + 1

2

�

t

sin t

2

)�

�

�

�

�

≤
1

π 2n+1

n
∑

k=0







�

n

k

�

1

(1+ k)

k
∑

ν=0

�

�

�cos
�

ν + 1

2

�

t

�

�

�

�

�

�sin
t

2

�

�

�







=
1

t 2n+1

n
∑

k=0

(
�

n

k

�
�

1

1+ k

� k
∑

ν=0

1

)

=
1

t 2n+1

n
∑

k=0

¨�

n

k

�«

=
1

t 2n+1
2n

= O

�

1

t

�

since

n
∑

k=0

�

n

k

�

= 2n

Lemma 2. For 0≤ a ≤ b ≤∞, 0≤ t ≤ π and any n, we have

�

�Gn (t)
�

�= O

�

1

t

�

Proof. For 0≤ 1

n+1
≤ t ≤ π, sin

�

t

2

�

≥ t

π
.

�

�Gn (t)
�

� ≤
1

π 2n+1

�

�

�

�

�

n
∑

k=0

(
�

n

k

�

1

(1+ k)

k
∑

ν=0

cos
�

ν + 1

2

�

t

sin t

2

)�

�

�

�

�

≤
1

2n+1 t

�

�

�

�

�

n
∑

k=0





�

n

k

�

1

(1+ k)
Re

(

k
∑

ν=0

ei
�

ν+ 1

2

�

t

)



�

�

�

�

�

≤
1

2n+1 t

�

�

�

�

�

n
∑

k=0





�

n

k

�

1

(1+ k)
Re

(

k
∑

ν=0

eiν t

)



�

�

�

�

�

�

�

�e
i t

2

�

�

�

≤
1

2n+1 t

�

�

�

�

�

n
∑

k=0





�

n

k

�

1

(1+ k)
Re

(

k
∑

ν=0

eiν t

)



�

�

�

�

�

≤
1

2n+1 t

�

�

�

�

�

τ−1
∑

k=0





�

n

k

�

1

(1+ k)
Re

(

k
∑

ν=0

eiν t

)



�

�

�

�

�

+
1

2n+1 t

�

�

�

�

�

n
∑

k=τ





�

n

k

�

1

(1+ k)
Re

(

k
∑

ν=0

eiν t

)



�

�

�

�

�

(20)
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Now considering the first term of (20),

1

2n+1 t

�

�

�

�

�

τ−1
∑

k=0





�

n

k

�

1

(1+ k)
Re

(

k
∑

ν=0

eiν t

)



�

�

�

�

�

≤
1

2n+1 t

�

�

�

�

�

τ−1
∑

k=0





�

n

k

�

1

(1+ k)

(

k
∑

ν=0

1

)



�

�

�

�

�

�

�eiν t
�

�

≤
1

2n+1 t

�

�

�

�

�

τ−1
∑

k=0

��

n

k

��

�

�

�

�

�

(21)

Now considering the second term of (20) and using Abel’s lemma

1

2n+1 t

�

�

�

�

�

n
∑

k=τ





�

n

k

�

1

(1+ k)
Re

(

k
∑

ν=0

eiν t

)



�

�

�

�

�

≤
1

2n+1 t

n
∑

k=τ

�

n

k

�

1

(1+ k)

max

0≤ m≤ k

�

�

�

�

�

m
∑

ν=0

eiν t

�

�

�

�

�

≤
1

2n+1 t

n
∑

k=τ

�

n

k

�

1

(1+ k)
(1+ k)

=
1

2n+1 t

n
∑

k=τ

�

n

k

�

(22)

Combining (20), (21) and (22), we get

�

�Gn (t)
�

� ≤
1

2n+1 t

τ−1
∑

k=0

�

n

k

�

+
1

2n+1 t

n
∑

k=τ

�

n

k

�

= O

�

1

t

�

4. Proof of Theorems

4.1. Proof of Theorem 1

Let sn

�

f ; x
�

denote the partial sum of series (5). Then following Lal [5], we have

sn (x)− f (x) =
1

2π

∫ π

0

ψ (t)
cos
�

n+ 1

2

�

t

sin
�

t

2

� d t

Using (5) the (C , 1) transform C1
n of sn

�

f ; x
�

is given by

C1
n − f (x) =

1

2π (n+ 1)

∫ π

0

ψ (t)

n
∑

k=0

cos
�

k+ 1

2

�

t

sin t

2

d t (23)
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Now denoting (E, 1) (C , 1) transform of sn by (EC)1n, we write

(EC)1n − f (x) =
1

2n+1 π

n
∑

k=0





�

n

k

�∫ π

0

ψ (t)

sin t

2

�

1

k+ 1

�

(

k
∑

ν=0

cos

�

ν +
1

2

�

t

)

d t





=

∫ π

0

ψ (t) Gn (t) d t

=







∫ 1

n+1

0

+

∫ π

1

n+1





ψ (t) Gn (t) d t

= I1.1 + I1.2 (say) (24)

Now using Lemma 1, we have

�

�I1.1

�

� ≤

∫ 1

n+1

0

�

�ψ (t)
�

�

�

�Gn (t)
�

�d t

=

∫ 1

n+1

0

|tα|

t
d t

=

∫ 1

n+1

0

tα−1d t

=

�

tα

α

�
1

n+1

0

= O

�

1

(n+ 1)α

�

(25)

Using Lemma 2, we have

�

�I1.2

�

� =

∫ π

1

n+1

�

�ψ (t)
�

�

�

�Gn (t)
�

� d t

=

∫ π

1

n+1

|tα|

|t|
d t

=

∫ π

1

n+1

tα−1d t

=

�

tα

α

�π

1

n+1

= O

�

1

(n+ 1)α

�

(26)
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Combining (24), (25) and (26), we get




(EC)1n− f







∞
=

§�

�

�(EC)1n − f

�

�

� : x ∈ [0,2π]

ª

= O

�

1

(n+ 1)α

�

This completes the proof of Theorem 1.

4.2. Proof of Theorem 2

Following the proof of Theorem 1,

(EC)1n− f (x) =







∫ 1

n+1

0

+

∫ π

1

n+1





ψ (t) Gn (t) d t

= I2.1 + I2.2 (say) (27)

Applying Hölder’s inequality and the fact that ψ (t) ∈W
�

Lr ,ξ (t)
�

, condition (17), Lemma 1

and second mean value theorem for integrals, we have

�

�I2.1

�

� ≤







∫ 1

n+1

0

(

t
�

�ψ (t)
�

� sinβ t

ξ (t)

)r

d t







1

r






∫ 1

n+1

0

(

ξ (t)
�

�Gn (t)
�

�

t sinβ t

)s

d t







1

s

= O

�

1

n+ 1

�







∫ 1

n+1

0

�

ξ (t)

t2+β

�s

d t







1

s

= O

��

1

n+ 1

�

ξ

�

1

n+ 1

��







∫ 1

n+1

∈

d t

t(2+β)s







1

s

for some 0<∈<
1

n+ 1

= O







�

1

n+ 1

�

ξ

�

1

n+ 1

�

(

t−(2+β)s+1

−
�

2+ β
�

s+ 1

) 1

n+1

∈







1

s

= O

��

1

n+ 1

�

ξ

�

1

n+ 1

�

(n+ 1)2+β−
1

s

�

= O

�

(n+ 1)β+1− 1

s ξ

�

1

n+ 1

��

= O

�

(n+ 1)β+
1

r ξ

�

1

n+ 1

��

since
1

r
+

1

s
= 1,1≤ r ≤∞. (28)

Now using Hölder’s inequality, |sin t| < 1, sin t ≥
�

2t

π

�

, conditions (16) and (18), Lemma 2

and second mean value theorem for integrals, we have

�

�I2.2

�

�≤







∫ π

1

n+1

(

t−δ
�

�ψ (t)
�

� sinβ t

ξ (t)

)r

d t







1

r






∫ π

1

n+1

(

ξ (t)
�

�Gn (t)
�

�

t−δ sinβ t

)s

d t







1

s
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= O
¦

(n+ 1)δ
©







∫ π

1

n+1

�

ξ (t)

t1−δ+β

�s

d t







1

s

= O
¦

(n+ 1)δ
©











∫ n+1

1

π







ξ
�

1

y

�

yδ−1−β







s

d y

y2











1

s

= O

�

(n+ 1)δ ξ

�

1

n+ 1

��





∫ n+1

1

π

d y

ys(δ−1−β)+2





1

s

= O

�

(n+ 1)δ ξ

�

1

n+ 1

��





(n+ 1)s(1+β−δ)−1 −πs(δ−1−β)+1

s
�

1+ β − δ
�

− 1





1

s

= O

�

(n+ 1)δ ξ

�

1

n+ 1

��

h

(n+ 1)(1+β−δ)−
1

s

i

= O

�

(n+ 1)β+1− 1

s ξ

�

1

n+ 1

��

= O

�

(n+ 1)β+
1

r ξ

�

1

n+ 1

��

since
1

r
+

1

s
= 1 (29)

Now combining (27) to (29), we get

�

�

�(EC)1n− f

�

�

� = O

�

(n+ 1)β+
1

r ξ

�

1

n+ 1

��





(EC)1n − f







r
=

(
∫ 2π

0

�

�

�(EC)1n− f

�

�

�

r

d x

) 1

r

=

(

∫ 2π

0

�

(n+ 1)β+
1

r ξ

�

1

n+ 1

��r

d x

) 1

r

= O

�

(n+ 1)β+
1

r ξ

�

1

n+ 1

��







(
∫ 2π

0

d x

) 1

r







=

�

(n+ 1)β+
1

r ξ

�

1

n+ 1

��

This completes the proof of the Theorem 2.

5. Applications

Following corollaries can be derived from our main theorem:
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Corollary 1. If β = 0 and ξ (t) = tα, then the degree of approximation of a function f , conjugate

to 2π-periodic function f ∈ Lip (α, r) , 1

r
≤ α ≤ 1, is given by





(EC)1n − f







r
= O

(

1

(n+ 1)α−
1

r

)

Corollary 2. If r → ∞ in Corollary 1, then Lip (α, r) reduces to Lipα for 0 < α < 1, and we

have




(EC)1n− f







r
= O

�

1

(n+ 1)α

�

Remark 1. An independent proof of Corollary 1 can be obtained along the same lines of our

Theorem 2.
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