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Abstract. Let R be a finite commutative ring with identity and Z(R) denote the set of all zero-divisors
of R. Note that R is uniquely expressible as a direct sum of local rings R; (1 <i < m) for some m > 1.
In this paper, we investigate the relationship between the prime factorizations |Z(R)| = p,*---p,*
and the summands R;. It is shown that for each i, |Z(R;)| = pjtf forsome 1 <j<nand 0 <t; <k;.
In particular, rings R with |Z(R)| = pk where 1 < k < 7, are characterized. Moreover, the structure
and classification up to isomorphism all commutative rings R with |Z(R)| = p,% ... p,*», where n € N,
p;s are distinct prime numbers, 1 < k; < 3 and nonlocal commutative rings R with |Z(R)| = p* where
k =4 or 5, are determined.
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1. Introduction

Throughout the paper R always denotes a commutative ring with identity, J(R) is the Ja-
cobson radical of R and Z(R) denotes the set of all zero-divisors of R. We denote F, for the
finite field of order q and for any finite subset Y of R, we denote |Y| for the cardinality of Y.

The zero-divisor graph of R, denoted by I'(R), is the graph whose vertices are the nonzero
zero-divisors of R with two distinct vertices a and b joined by an edge if and only if ab = 0.
One might ask which graphs on n vertices can be realized as the zero-divisor graph of a com-
mutative ring? This question has been partially answered. [1] determines, up to isomorphism,
all such rings for which I'(R) is a graphs on n = 1,2, 3, or 4 vertices. This list was extended
to n = 5 vertices in [10], and to n = 6, 7,...,14 vertices in [11]. The aim of the paper is
to develop this list to a wider class of numbers n. In fact, this observation motivates us the
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following fundamental question:

Question. If R is a finite commutative ring, can we find the relationship between the
prime factorizations |Z(R)| = p;*1 - - - p,*» and the summands R;, where R=R; XR, X ... XR,,
(m=>1) and R’s are local rings?

Then we will give an answer to this question. We show that the answer is “yes” and
a preliminary answer is given in Theorem 1 of Section 2; which shows that if R is a finite
commutative ring, then either R is a reduced ring or there are positive integers s, m, t,,...,t,,
prime numbers p;, p,, ..., P, and a non-negative integer t such that |[Z(R)| = p;"'p,®2...p,"m
and R= Ry X...XRy X Fy X...x Fy with [Z(R;)| = pit". Therefore, in classifying commutative
rings with p;*1...p, % zero-divisors it suffices to deal with local rings with p.‘i zero-divisors
where that 1 <i < n and 0 < t; < k;, and henceforth we focus on rings R with |Z(R)| = p*
where p is a prime number and k > 1. It is shown that a finite commutative ring R is local
if and only if |Z(R)| = p* and |R| = p" for some prime number p and n > k > 0 (Theorem
3). In Section 3, first we characterize commutative rings R with |Z(R)| = p* where 1 <k < 7.
Then the structure and classification up to isomorphism all commutative rings R with |Z(R)| =
p1¥...p,fn, where n € N, p;s are distinct prime numbers and 1 < k; < 3, are determined.
Finally, we determine the structure of nonlocal rings R with |Z(R)| = pX where k = 4 or 5.

2. On Rings with p* Zero-Divisors

Recall that an Artinian commutative ring R is called completely primary if R/J(R) is a field.
One can easily see that an Artinian commutative ring R is completely primary if and only if
Z(R) is an ideal of R, if and only if R is a local ring. Moreover, we have the following lemma
which is essentially Theorem 2 of [9].

Lemma 1. [9, Theorem 2] Let R be a finite completely primary ring. Then
() Z(R)=J(R);
(i) |Z(R)| = p™ V" and |R| = p™ for some prime number p, and some positive integers n, r;
(i) Z(R)" = (0);
(iv) char(R) = p* for some integer k with 1 < k < n;
(v) R/J(R) = F,, whereq=p".

Let R; (1 <i <s) be a finite commutative ring with m; elements and n; zero-divisors. Let
R=R; X...XR,. Then by [6, Theorem 2], |Z(R)| = m;m,...m;—(m; —n;)(my—n,)...(m,—
n,). Thus by using this fact, Lemma 1 and the fact that every finite commutative ring is
uniquely expressible as a direct sum of completely primary (local) rings (see for example [8,
p.95]), we have the following evident result.
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Lemma 2. Let R be a finite commutative ring. Then R = Ry X ... X R, where s € N and R;’s
are local rings with |R;| = pfi, |Z(R)| = piti for some prime numbers py,pa,...,ps and k; > 1,
t; = 0. Consequently,

S S S
t; ki—t; ki—t;
z®I =] [pi [~ —] i~ = 10).
i=1 i=1 i=1
Now we are in position to prove the following two theorems which are crucial in our
investigation.

Theorem 1. Let R be a finite commutative ring. Then

(i) if R is reduced, then there are finite fields Fy ,...,Fy, (t = 1) such that R = Fy X ... X
F,, with |Z(R)|=q19z---q: — (g1 —1)(q2 — 1)...(q; — 1).

(ii) if R is not reduced, then there are a positive integer s, a non-negative integer t, prime
numbers py, P, .- .,Ds and positive integers kq, ..., k, such that

S S S
i ki—t; ki—t;
z®\ =] [pilar---a[ [pf " - (@-D...@-D] e -] @
i=1 i=1 i=1
and R=Ry X ... X Ry X Fg X ... x F, where each Fy, is a finite field and each R; is a finite
local ring such that |Z(R;)| =pl.t" for some 1 <t; <k;.

Consequently, for each i =1,...,s, |Z(R;)| is a divisor of |Z(R)|.

Proof. The proof is clear by Lemma 1 and Lemma 2.

Theorem 2. Let R be a commutative ring such that |Z(R)| = p* for some prime number p and a
positive number k. Then either
(1) R is local,

(i) R is reduced, or

(ii) k=3 andR=R; X...XR; X Fy X...X F, wheres and t are positive integers, each Fg_ is
a field, and where each R; is a commutative finite local ring with |Z(R;)| = pY, |R;| = p*i
for some positive integers k; and t; with 1 <> _ t; <> k;—s <k —s— 1 such that

prERl =gy qp T — (g = D (g - DT, (PN -1 @)

Consequently, in the latter case, t; < k — 2 for each i = 1,...,s and q; = 1 (p) for some j.
Moreover, if t; = k — 2 for some i, then s =t =1, i.e,, R= Ry X Fy where |Z(R;)| = p¥=2 and so
p*=p+q-1
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Proof. Suppose R is not local. Then R = R; X ... XR,, where n > 2 and each R; is a
local ring. If for each i (1 < i < n) R, is not field, then |Z(R;)| = p'i and |R;| = pXi for some
1 <t; < k; < k. By the relation (1) of Theorem 1, we have

pk = pXinti[pZia ks ]_[(p T —1)]

and hence

ph st = pRiahi- ]_[(p -1,

This implies that 0 = 1(p) or 0 = —1(p), a contradiction. Thus R; is field for some 1 < j < n. If
each R; is field, then R is a reduced ring. Suppose R is non-reduced. Without loss of generality
we can assume that

R=R; X...XRyxXFy X...xXFg

where s, t > 1 and each R; is a commutative finite local ring with |Z(R;)| = p% and |R;| = p*
for some 1 <t; <k; <k. Since t > 1, it is easy to check that

S
= 1Z®)| > [ [ IR = pZimtks > pEia(tD) = pEie )t

Consequently we have 1 < 251:1 t; < ijl k; —s < k—s—1 and hence we obtain relation (2).
Now since k—Y.._, t; and D ._, (k; — t;) are positive, the relation (2) shows that q; = 1(p) for
some i. Also, sinces > 1, t; <k —2foreachi=1,...,s. If t; =k — 2 for some j € {1,...,s},
thens =1. ThusR=R; x Fy X ... X F, , where R, is a local ring with |Z(R,)| = p*2. Since
|Z(R)| = p* and t > 1, by Theorem 1, |R;| = p*~'. Also by the relation (2) we have

P> =pq1qz...q; — (p — (g1 — D(gz— 1)...(q, — 1).

Since g; =1 (p) for some i, we can assume that g; =1 (p) and so q; > p. Now if t > 2, then
|Z(R)| > |R{lq; > p*~'p = p¥, a contradiction. Thus t = 1 and p? = pq; — (p —1)(q; — 1), i.e.,
p*=p+q -1

Obviously for every finite local ring R we have |R| = p" for some prime number p and
n > 0. In general, the converse is not true (the nonlocal ring F, x F, has 4 elements). Here
we show that a finite ring R is local if and only if |Z(R)| = p™ and |R| = p" for some prime
number p and n > m > 0.

Theorem 3. Let R be a commutative ring. Then R is a finite local ring if and only if | Z(R)| = p*
and |R| = p" for some prime number p and n > k > 0.

Proof. For one direction, the proof is clear by Lemma 1. For the other direction, suppose
that |Z(R)| = p* and |R| = p" for some prime number p and n > k > 0. If R is not a local
ring, then by Theorem 2, either R=F, X ... x F, (when R is reduced) orR=R; X ... X R; X
Fq X ... X F, where s and t are positive integers and each R; is a commutative finite local
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ring that is not a field, and where each F, is a field. Since |R| = p", each g; is a divisor of p"
and since g; is a prime power, q; =0 (p) for each i (1 <i < t). If R is reduced, then we have
p*=qy...q,—(q1 —1)...(q, — 1) and if R is not reduced, then we have

PPl =gy qp T — (g = 1) (g — DIT_, (P41 = 1),

Thus in any case 0 = 1(p) or 0 = —1(p), which is impossible. Thus R is a local ring.

3. On Commutative Rings with p,*...p *(1 < k; < 7) Zero-Divisors

By Lemma 1, for each finite local ring R we have |Z(R)| = p* for some prime number p
and k > 0, but the converse is not true in general. For example, the nonlocal ring Zg X F, has
32 zero-divisors. In this section, we will characterize rings with p* zero-divisors where k is a
positive integer 1 < k < 7.

Theorem 4. Let R be a commutative ring with |Z(R)| = p* where p is a prime number and
1 <k < 6. Then either

(i) R is a local ring;

(i) R is a reduced ring and so R = Fg X...XFg, where each Fy, (1 £1i £ t) is a finite field
and p* = q1q5...q. — (1 = (g2 — 1)... (g, — 1);

(ii)) R=Ry X Fg, X ... X F,, where each F (1 <i <t) is a finite field and Ry is a local ring
with |Z(Ry)| =p™, |Ry| = p" such that 0 <m <n <k —1and p* = p"q1q,...q, — (p" —
p"™)q1 —1)(g2—1)...(q, = 1); or

(iv) R =R, X Ry X Fs where each R; is isomorphic to Z4 or Zy[x]/(x?).

Proof. Suppose |Z(R)| = p* and R is not a local ring. If R is reduced, then we are done.
Now let R is not a reduced ring. Then by Theorem 2, we can assume that R=R; X ... X R, X
Fg, X...XF, ,wheres, t > 1and each R; is a local ring with |Z(R;) =pli, |R;| = p for some
t;, k; > 1 such that

S S
1> <Y k—s<k-s-1<6-1-1=4.
i=1 i=1

It follows that s < 4. If s = 3 or 4, then since t > 1, p* = |Z(R)| > |R;||R,||R3| > p®, this is a
contradiction. Hence s < 2. If s = 1, then by Theorem 2, we are done. Thus we can assume
thats = 2,i.e., R&Ry xRy X Fy x...xF, , where R; and R, are local rings with |Z(R;)| = p".
Clearly |R;| > p%*! for i = 1, 2 and since t > 1, |Z(R)| > |R;||R,|. If t; > 3 for some i or
t; =ty = 2, then |Z(R)| > |R;||Ry| = pir™2%2 > p®, a contradiction. Thus without loss of
generality we can assume that either t; =2, t, =1ort; =t, = 1.
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e Casel: t; =2,t, =1ie.,|Z(R;)| = p?and |Z(R,)| = p. Then by Lemma 1, we conclude
that |R;| = p® or |R;| = p* and |R,| = p?. If |R;| = p*, then |Z(R)| > p®, a contradiction.
Thus |R;| = p® and |R,| = p? and so |Z(R)| > |R;||IR,| = p° i.e., k = 6. We claim that
t =1, for if not, since q; > p for some i (see Theorem 2), |Z(R)| = |R;||R,||Fy,| > p®, a
contradiction. Thus t = 1 and hence by using the relation (2) we have

p’=p’q —(p—D*q - D).
This implies that q;(2p — 1) = p® — p2+2p — 1 and so (2p — 1) is a divisor of p2(p — 1).
But since (2p — 1,p?) =1, 2p — 1 is a divisor of p — 1, a contradiction.

e Case 2: t; =t, = li.e., |[Z(R))| =|Z(Ry)| = p. Then |Z(R)| > |R,|IR,| > p*, i.e., k > 5.
If t > 3, then by the relation (2), p? is a divisor of (q; — 1)(gj— 1) forsome 1 <i,j <'t.
It follows that q;q; > p? and hence |Z(R)| > IR11IR2lq:q; > p*p? = p®, a contradiction.
Therefore t < 2. We claim that t = 1. If t = 2, then by the relation (2) we have

p*%=p%q1q, — (p — 1)*(q; — 1)(gz — 1). 3)

Since k > 5, p? is a divisor of (q; — 1)(q, — 1). If p? is a divisor of q; — 1, then q; > p?
and so |Z(R)| > p®, a contradiction. Thus p is a divisor of both g; —1 and g, — 1. Hence
q; —1=k;p and g, — 1 = k,p for some positive integers k; and k,. Then one obtains

from (3),
p*~* = (kip + 1)(kop + 1) — (p — 1)°k; ks,
and hence
P = (ky + kg + 21 kp)p + kyky — 1 =0.
If k =5, then p = %, a contradiction. Thus we can assume that k = 6 and
1 2 1%2—
hence

p? — (kg + ko + 2k ky)p + kiky — 1 = 0. 4)

Thus the equation (4) shows that the integer p is a solution of
Xz—(k1+k2+2k1k2)X+k1k2—1:O (5)

Now let u be another solution of (5). Clearly u # 1, pu = k;k,, —1 > 0 and p +
u = ky + ky + 2k k,. It follows that y is an integer> 2 and hence pu > p + u, i.e.,
kiky, —1 > ky + ko + 2k ks, a contradiction (since k;, ko > 1). Thus t = 1 and since
1Z(Ry)| = [Z(R2)| = p, we have

p*=p*q - (p—1)*(q; - 1)

and so q;(2p — 1) = p* — p> +2p — 1. Thus 2p — 1 is a divisor of p®> — 1, i.e., p2 — 1=
(2p—1)a for some positive integer a. Then the equation p>—2ap+a—1 = 0 implies that
p is a divisor of a — 1, i.e., a — 1 = pA for some non-negative integer A. It follows that p
and A are solutions of x> —2ax+a—1=0andsop+A=2a.IfA=1,thenp=a—1
and p 4+ 1 = 2a and hence a = 0, a contradiction. Also, if A > 1, then pA > p+ A and so
a < —1, a contradiction.
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Finally, if A =0, then p = 2, which yields q; =5, i.e., R=R; X R, X F5 where R; and R, are
local rings of order 4 with 2 zero-divisors. Now by [2, page 687], each R; is isomorphic to Z,
or Z,[x]/(x2).

Corollary 1. Let R be a commutative ring with |Z(R)| = p, where p is a prime number. Then R
is isomorphic to one of the rings Zyz2, Z, [x]/(x?) or Fg X ...XFy where p=qiqy...q; —(q1 —
D(gz—1)...(q: = D).

Proof If R is a local ring, then by Lemma 1, |[R| = p? and hence by [2, page 687], R is
isomorphic to Z,2 or Zp[x]/(xz). If R is not local, then by Theorem 4, R = F, X ... X Fy

where t > 2 and p =q1q3...q; —(q; —1)(g2 — 1)...(q; — 1).

In [5], it was shown that any commutative ring R with m zero-divisors has m? or fewer
elements. It was proved in [7] that if |[Z(R)| = m and |R| = m?, then m = p" for some
integer r > 1 and some prime p. These rings were categorized in [4] by the use of two
constructions. When the ring R is commutative with 1, then there are only two such rings (up
to isomorphism) for m = p” : F,r [x]/(x?) and Zy2[x]/(f (x)), where f(x) is an irreducible
polynomial of degree r over F,,. The rings from the second construction in [4] are shown by
Raghavendran [9] to all be isomorphic to the ring Z,2[x]/(f (x)) given above, which is called
the Galois Ring of order p?" and characteristic p2, denoted GR(p?", p?).

Let p be a prime number. We write X, for a set of coset representatives of (FI’Jk )™ in F; .

and 221 =3, U {0}. Since F;‘ is cyclic, |%,,| = (m,p — 1).

Corollary 2. Let R be a commutative ring with |Z(R)| = p2, where p is a prime number. Then
R is isomorphic to one of the rings Z,3, F, [x,y1/(x,¥)% Fp[x]/(xs), sz[x]/(px,x2 — €p)
where ¢ € Zg, sz[x]/(xz), the Galois ring GR(p*,p?) or Fy X ...x Fy where t > 2 and
P*=q1q2---qc — (@1 — (g2 — 1)... (g — 1)

Proof Suppose that R is a local ring with |Z(R)| = p2. Then by Lemma 1, |R| = p> or
p*. If |R| = p3, then by [2, p.687], R is isomorphic to one of the rings Lps, Fp[x,y]/(x,y)z,
F, [x]/(x®), Zy2 [x]/(px,x? — ep) where ¢ € Z]g. If |R| = p*, then by [9, Theorem 12], R is
isomorphic to the Galois ring GR(p*, p?) or Fpa[x]/ (x?). Now suppose that R is not a local
ring. Then by Theorem 2, R=F, X...X F, with P’=q1q5...9,— (1 —1)(g,—1)...(q, = 1).

If R is a finite ring then its additive group is a finite abelian group and is thus a direct
product of cyclic groups. Suppose these have generators ay,...,a, of orders my,...,m,. Then
the ring structure is determined by the n? products

n
al-aj = Zwijkak with Wijk S ka
k=1

and thus by the n® structure constants wij for 1 <i,j,k <n.

Thus we introduce a convenient notation, for giving the structure of a finite ring. A
presentation for a finite ring R consists of a set of generators a;,a,,...,a, of the additive
group of R together with relations. The relations are of two types:
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(i) m;a; =0 fori=1,...,n indicating the additive order of a;, and
(D) a;a; =D, wijka with w;j € Z,, for 1<1i,j <n.

If the ring R has the presentation above we write
n
R= <a1,...,an;miai =0, a;a; = Zwijkak, fori,j= 1,...,n>.
k=1

Corollary 3. Let R be a commutative ring with |Z(R)| = p3, where p is a prime number. Then R
is isomorphic to one of the rings Z,2 X Fq , Z, [x]/(x?) x F, where p>=p+q-1, Fy X...XFg
where p® = q1q5...q; — (q; — 1)(qz — 1)....(q, — 1), the Galois ring GR(p®, p?), Fps [x]/(x?),
F, [x]/(x™, Zpy2 [x]/(px,x>), Ly [x]/(x?), Ly [x]/(px,x®—ap) where a € s, Ly [x]/(x?*—
bp) where b € %y and p # 2, Zu[x]/(x? = 2), Z4[x]/(x? — 2x — 2), Zp2 [x,y1/(p,x,¥)?
F, [x,y,2]/(x,y,2)? Ly [x]/(px,x% — cp?) where c € 29, Z,[x]/(x? — 2x), Ly,

Ry:=(Lxy,X5,y;p1 =0, =y, x> = 0,x;x; = x;y = yx; = y*> = 0,i # j),
Ry:=(Lxy,Xx5,y;pl=0,x1> =y, x> = y,x;x; = x;y = yx; = y> =0,i # J),
Ry = (1,x1,X5,;p1 = 0,x1° = y,x,° = &y, xx; = x;y = yx; = y> = 0,i # j),
Ry = (1,X1,X2;p*1 = pxy = px = 0,x1> = p, x,% = 0,x1x5 = X0, = 0),
Ry := (1,X1,X;p*1 = pxy = px = 0,x1> = &P, X,° = 0,15 = Xpx1 = 0),
Rg := (1,X1,X2;p*1 = pxy = pxy = 0,x1> = p, %% = p, X1 X5 = x1 = 0),
Ry :=(1,x1,X;p*1 = pxy = pxy = 0,x7> = p, x3* = Ep, %1%, = 0),
where & is a non-square in F, and if p = 2 then instead of R, Rs and R, R is isomorphic to R,
or Ry where
R} :=(1,x1,x9;4.1 =2x; = 2x, =0, x12=0,x5%=0,x,Xy = X5X; = 2) Or
Ry :=(1,x1,X5,¥;2.1 =0,x1Xy = X5X; = ¥, X2 =x2 =x;y =yx; = y>=0).
Proof. If R is a local ring with |Z(R)| = p3, then by Lemma 1, either |R| = p* or |R| = p°.
If |R| = p®, then by [9, Theorem 12], R is isomorphic to Fp3 [x]/(x?) or the Galois ring
GR(p®,p?). If |R| = p*, then since |Z(R)| = p®, by using [2, p.687-690], one can easily see

that R is isomorphic to one of the local rings in above list. Now suppose that R is not local.
Then by Theorem 2, R is isomorphic to one of the rings Z,: X F , Z, [x]/(x?) x F, where

p>=p+q—1lor Fy X ... X F, where P2 =q1qy...9, — (¢ — 1)(gy — 1)...(g, — 1). This
completes the proof.

Now we are in position to determine the structure of commutative rings R with |Z(R)| =

ki _k k A .
p1'Py°-..pn", wheren > 1,1 < k; <3 and p;’s are distinct prime numbers.

Theorem 5. Let R be a commutative ring with |Z(R)| = plflp];2 .. .p,li”, wheren>1,1<k; <3

and p;s are distinct prime numbers. Then there exist 0 <s < %, k; and t > 0 such that

R=Ry X...XRy X Fy X...xXFg
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where Fy s are finite fields and each R; is local ring with |Z(R;)| = p]t.j forsomep; (1<j<n)
and 1 < t; < k;. Consequently, each R; is isomorphic to one of the local rings described in
Corollaries 1, 2 or 3.

Proof. We put
R=RyX...XR; X Fy X...xFg,

where Fg ,...,F, are finite fields and each R; is a commutative finite local ring that is not
a field. If s = 0, then there is nothing to prove. Thus we can assume that s > 1 and so by
Theorem 1, for each i, |Z(R;)| = p* for some prime number p and k > 1 such that p¥ is a
divisor of [Z(R)| and also 0 <s < X!, k;. Thus |Z(R;)| =p}t.j where 1 <t; <kj,1<j<nand
1<i<s. Thusforeachl <i <s, t; = 1,2 or 3 and so each R; is isomorphic to one of the
local rings described in Corollaries 1, 2 or 3

Next, we determine the structure of commutative nonlocal rings R with |Z(R)| = p* or p°
where p is a prime number.

Proposition 1. Let R be a commutative nonlocal ring with |Z(R)| = p* where p is a prime
number. Then R= Fg X...XFy with p* =q1q,...9,—(q;—1)(qs—1)...(q,—1), R=R, X Fg, X

...XFy where Ry = Zy2 or Z, [x]/(x®) with p®> = pq1q5...q,—(p—1)(q;—1)(q3—1)...(q,—1)
or R = R, x F, where and p? =p+q— 1 and R, is isomorphic to one of the local rings of order
p3 described in Corollary 2.

Proof. By Theorem 4, either R is reduced or R = R; X Fy, X ... X F, , where R; is a local
ring with |Z(R;)| = p or p? and t > 1. Now we proceed by cases.

e Case 1: Risreduced. ThenR=F, X...x F, with
p*=q1qz..-q — (g1 — (g2~ 1)... (g, — 1.
e Case 2: R is not reduced and |Z(R;)| = p. Then by Corollary 1, R, is isomorphic to Z2

or Zy[x1/(x?) and p* = pq1q3...q; — (p — 1)(q1 — 1)(g2 — 1)...(q: — 1).

e Case 3: R is not reduced and |Z(R;)| = p?. Then by Lemma 1, either |R;| = p3 or
IR;| = p*. Since t > 1, p* = |Z(R)| > |R;| and hence |R,| = p3. Thus by Corollary 2, R, is
isomorphic to one of the rings F, [x, y]/(x, y)?, F, [x]/(x), Zys or Zy2[x]/(px, x2—¢p)
where 8623 with p2=p+q—1.

Proposition 2. Let R be a commutative nonlocal ring with |Z(R)| = p> where p is a prime
number. Then

(i) R=EFy X...xFg with p°> =q1q5...q, — (g1 — 1)(gy — 1)...(q, — 1),

(i) R =Ry X Fy X ... x F, where Ry = Z,> or Zp[x]/(xz) with p* = pq1qy...q, — (p —
D(g1 = 1)(g2—1)... (g~ 1),
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(ii) R=Ry X Fy X ... x F, where Ry is isomorphic to one of the rings Zy3, F, [x,y1/(x,¥)%
Fy[x1/(x®), or Z2[x]/(px,x* — ep) where & € %25 and p* = pq1q3...q, — (p — 1)(q; —
D(g2—1)...(q,— 1),

(iv) R=R; X F; where Ry = sz[x]/(xz) or GR(p*,p?) with p®> =p?+q—1, or

(v) R=Ry X Fy and p% = p +q — 1 where R, is isomorphic to one of the local rings of order
4 . .
p* described in Corollary 3.

Proof. By Theorem 4, either R is reduced or R =Ry X Fy, X ... X F, , where R, is a local
ring with |Z(R;)| = p, p? or p® and t > 1. Now we proceed by cases.

e Case 1: R is reduced. Then R = Fy X...XFy, with
P’=q1q5.--q, — (@1 — (g2 —1)...(q, — 1)

e Case 2: R is not reduced and |Z(R,)| = p. Then by Corollary 1, R; is isomorphic to Z2
or Zy[x]/(x*) and p* = pq1q,...q, — (p — 1)(g1 — 1)(g2 — 1)... (g, — 1).

e Case 3: R is not reduced and |Z(R;)| = p%. Then by Lemma 1, |R;| = p> or p*. If
IR;| = p3, then by Corollary 2, R, is isomorphic to one of the ring Zps, Fplx, y1/(x, ¥)?,
Fo[x1/(x?), or Z2[x]/(px, x* — ep) where & € %3 and p* = pq1q,-..q. — (p — 1)(q; —
1)(qo—1)...(g, — 1). If |R;| = p*, then t = 1, for if not, then by Theorem 2, g; > p for
some i and hence |Z(R)| > |R;|q; > p>, a contradiction. Thus t = 1 and so R = R, x F,
with p® = p? + g — 1. Moreover, since |Z(R;)| = p? and |R,| = p*, by [9, Theorem 12],
R, is isomorphic to F,: [x]/(x?) or GR(p*, p?).

e Case 4: R is not reduced and |Z(R;)| = p®. Then by Lemma 1, |R;| = p* or p®. If
IR;| = p®, then |Z(R)| > p®, a contradiction (we note that t > 1). Thus |R;| = p* and
so by Theorem 2, t = 1, i.e.,, R = Ry X F; with p? = p+q— 1. Now since |[R;| = p*
and |Z(R,)| = p3, R, is isomorphic to one of the local rings of order p* described in
Corollary 3.

The next theorem characterizes commutative rings with p’ zero-divisors.

Theorem 6. Let R be a commutative ring with |Z(R)| = p’ where p is a prime number. Then
either

(i) R is a local ring with |R| = p® or p'#;

(ii) R is a reduced ring and so R = Fg X ... X Fg, where each Fy, (1 <i < t) is a finite field
and p” = q1q5...q¢ — (g1 — 1)(g2 = 1)...(q, — 1);

(iii) R=R; % Fg X...XFg, where each Fy, (1 <£i < t) is a finite field and R, is a local ring
with |Z(R,)| =p™, |Ry| =p" such that 0 <m <n <6 and

P’ =p"q1qs-.-q; —(p" —p™Nq1 — 1)(qz — 1)...(q, — 1);
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(iv) R = Ry X Ry X Fy, X ... X Fy , where each F, (1 < i < t) is a finite field, each R; is
isomorphic to Zy2 or Z, [x]/(x?) and

P’ =p*q1q2...¢: — (p— 1)*(q1 — 1)(g2 — 1)...(q, — 1); or

(v) R= Ry X Ry x Fs where R; is isomorphic to one of the rings Z, or Zy[x]/(x?) and Ry is
isomorphic to one of the rings Zg, Zs[x,y]1/(x,¥)? Zy[x]1/(x3), or Z4[x]/(2x,x? — 2¢)
where € € Zg.

Proof Suppose |Z(R)| = p” and R is not a local ring. If R is reduced, then we are done.
Now suppose R is not a reduced ring. Then by Theorem 2, we can assume that R=R; X ... X
Ry X Fy % ...x Fy,wheres, t > 1 and eachR; is a local ring with |Z(R;)| = p*, |R;] = pki for
some t;, k; > 1 such that

S S
1> <Y ki-s<7-5-1<7-1-1=5
i=1 i=1

It follows that s < 5. We claim that s = 1 or 2, for if not either s > 4 or s = 3. If s > 4, then
|Z(R)| > p® (because |R;| > p? for all i), a contradiction. Now let s = 3. If |Z(R;)| = p'i with
t; > 2 for some i, then |Z(R)| > p’, a contradiction. Thus |Z(R;)| = p for i = 1,2,3. Now by
the relation (1) of Theorem 1, we have

p’=p%q1q5-..q. — (P> —p)*(q1 — (g2 — 1)...(q, — 1).

Thus p* = p3q1q,...q, — (p — 1)%(q; — 1)(gy — 1)...(q, — 1) and so p is a divisor of (q; — 1)
for some i (so q; > p). Now if t > 2, then |Z(R)| > |R;||R,||R3lq; > p’, this is a contradic-
tion. Thus t = 1 and so the relation p* = p3q; — (p — 1)3(q; — 1) implies that p® is a divisor
of (g; —1). Hence q; > p* and so |Z(R)| > |Z(R;)||R,||R3lq; > p”, a contradiction. Thus s < 2.

Suppose s =1, i.e., R=Ry X Fy, X ... X Fy . Then by Theorem 2, either R, is a local ring
with |Z(R,)| = p" where t; =1,2,3 or 4 such that

p’ =IRylqy X ... x q¢ — (IR1| = p")q1 = 1) % ... (¢, = 1)

or R=R; X F, where |R| =p% |Z(R)|=p°and p>?—p—q; +1=0.

Now suppose s = 2. The proof now proceeds by cases.

e Case 1: t; = 3 or t, = 3. Without loss of generality we can assume that t; > 3.
Then |R;| = p*1, and |R,| = p*> where k; > 4 and k, > 2. If k; > 5 or k, > 3, then
|Z(R)| > |R4|IRy| > p’, a contradiction. Now let k; = 4 and k, = 2. By Theorem 2,
q; > p for some 1 <i <t.If t > 2, then |Z(R)| > |R;||R,|q; > p’, a contradiction. Thus
t =1 and so p” = p®q; — (p* — p®)(p? — p)(q; — 1). It follows that p? is a divisor of
q; — 1 and so q; > p2. Hence |Z(R)| > |Z(RDIIR,|[Fg, | > p’, a contradiction.
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e Case 2: t; = t, = 2 i.e, |Z(Ry)| = |Z(R,)| = p®. Then by Lemma 1, |R;| = p¥ and
IR,| = p*2 where 3 < ky,k, < 4. If k; = 4 or k, = 4, then [Z(R)| > |R;|IR,| > p/,
a contradiction. Now let ky = k; = 3. By Theorem 2, q; > p for some 1 < i < t.
If t > 2, then |Z(R)| > |Ry||R2lq; = p’, a contradiction. Thus t = 1 and so p” =
p%q; — (p® — p?)?(q; — 1). It follows that p? is a divisor of g; — 1 and so q; > p?. Hence
|Z(R)| > |Z(R)IIR,|[Fg, | > p’, a contradiction.

e Case 3: t; =2and t, =1 or t; =1 and t, = 2. Without loss of generality we can
assume that t; = 2 and t, = 1. By Lemma 1, either |R;| = p® or |R;| = p* and |R,| = p2.
By the proof in Case 1, |R;| # p*. Thus |R;| = p® and |R,| = p? and hence by the relation
(2) of Theorem 2 we have

p*=p’q1qs---q: — (p — 1)*(q1 — 1)(gz — 1)...(q; — 1). (6)

It follows that p? is a divisor of (q; — 1)(qy — 1)...(q, — 1). Without loss of generality
we may assume that p? is a divisor of (q; — 1) or p is a divisor of (g; — 1) and (g, — 1).
If t > 2, then |Z(R)| > |Rq|IRy||Fq, ||Fg,| = p’, a contradiction. Thus t < 2 and so the
proof now proceeds by subcases.

— Subcase 1: t =11ie., R=Ry X Ry X Fy . Then by (6), we have

p*=p*q — (p— 1)*(q, - 1). (7)

This implies that p? is a divisor of (q; — 1). Thus q; — 1 = p?k for some positive
integer k and so by using (7) we obtain p? —2pk+k —1 = 0. This equation implies
that p is a divisor of k — 1, i.e., k —1 = pA for some non-negative integer A. It
follows that p and A are solutions of x2 — 2kx +k —1=0and so p + A = 2k. If
A=1,then p =k—1 and p + 1 = 2k and hence k = 0, a contradiction. Also, if
A > 1, then pA > p+ A and so k < —1, a contradiction. Finally, if A = 0, then
p = 2 which yields q; =5, i.e., R= Ry X Ry X F5 where R; and R, are local rings
with |[R;| = 8 and |R,| = 4. Since |Z(R,)| = 4, by [2, p.687], R; is isomorphic to
one of the rings Zg, Zy[x,y1/(x,¥)?, Zy[x]1/(x®), or Z4[x]/(2x, x? — 2¢) where
XS Zg. Also, R, is isomorphic to Z, or Zy[x]/(x?).

— Subcase 2: t =21i.e, RER; X Ry X Fq, X Fg,. Then by (6), we have

p*=p’q1qo — (p — 1)*(q; — (g — 1).

Thus p? is a divisor of (q; — 1)(q, — 1). If p? is a divisor of g; — 1 (or g, — 1), then
q1 > p? (or g; > p*) and so |Z(R)| > |R4|IR,||F, | > p” where i = 1 or 2, this is a
contradiction. Thus p is a divisor of both q; —1 and g, — 1. Hence q; — 1 = k;p
and q, — 1 = k,p for some positive integers k; and k,. Then one obtains from (6),

p* = (kip + 1)(kop + 1) — (p — 1)?k; ks,

and hence
p2 _(kl +k2+2k1k2)p+k1k2 —-1=0. (8)
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Now the equation (8) shows that the integer p is a solution of
Xz—(kl+k2+2k1k2)X+k1k2—1:O. (9)

Now let u be another solution of (9). Clearly yu # 1, pu = kjk, —1 > 0 and
p+u=ky+ky+ 2kik,. It follows that u is an integer> 2 and hence pu > p + u,
i.e., kiky —1 > ky + ky + 2k ko, a contradiction (since k, ko > 1).

e Case 4: t; =t; =1ie, |Z(R)| =|Z(Ry)|=p and R=R; X Ry X Fy, X ... X Fy with

p°> =p?q1q5...9, — (p — 1)(q; — 1)(g5 — 1)...(g, — 1). On the other hand by by [2,
p-687], Ry is isomorphic to Z,2 or Z, [x]/(x?).

Finally, we conclude the article with the next remark which is a good justification for

the classification up to isomorphism commutative rings with p;*1 ... p, % zero-divisors, where
1<k;<5.
Remark 1. We remark that by Propositions 1 and 2, for classifying up to isomorphism commu-
tative rings with p,¥1...p,*n zero-divisors, where 1 < k; < 5, it suffices to find local rings with
IR| = pb, |Z(R)| = p* and |R| = p®, |Z(R)| = p°. In fact, if R is a local ring with |Z(R)| = p*, then
by Lemma 1, |R| = p°, p® or p8. The local rings of order p° is determined in [3]. Also, if |R| = p®,
then by [9, Theorem 12], R is isomorphic to the Galois ring GR(p®, p?) or Fpa [x]/(x?). On the
other hand, if R is a local ring with |Z(R)| = p®, then by Lemma 1, |R| = p® or p'°. If |R| = p'°,
then by [9, Theorem 12], R is isomorphic to the Galois ring GR(p*°, p?) or Fps [x]/(x?).
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