# On the Structure of Commutative Rings with $p_{1}{ }^{k_{1} \cdots p_{n}}{ }^{k_{n}}$ ( $1 \leq k_{i} \leq 7$ ) Zero-Divisors 

M. Behboodi ${ }^{1,2 *}$ and R. Beyranvand ${ }^{1}$<br>${ }^{1}$ Department of Mathematical Science, Isfahan University of Technology, Isfahan, Iran<br>${ }^{2}$ School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran


#### Abstract

Let $R$ be a finite commutative ring with identity and $Z(R)$ denote the set of all zero-divisors of $R$. Note that $R$ is uniquely expressible as a direct sum of local rings $R_{i}(1 \leq i \leq m)$ for some $m \geq 1$. In this paper, we investigate the relationship between the prime factorizations $|Z(R)|=p_{1}{ }_{1}{ }_{1} \cdots p_{n}{ }^{k_{n}}$ and the summands $R_{i}$. It is shown that for each $i,\left|Z\left(R_{i}\right)\right|=p_{j}{ }^{t_{j}}$ for some $1 \leq j \leq n$ and $0 \leq t_{j} \leq k_{j}$. In particular, rings $R$ with $|Z(R)|=p^{k}$ where $1 \leq k \leq 7$, are characterized. Moreover, the structure and classification up to isomorphism all commutative rings $R$ with $|Z(R)|=p_{1}{ }^{k_{1}} \ldots p_{n}{ }^{k_{n}}$, where $n \in \mathbb{N}$, $p_{i}^{\prime} s$ are distinct prime numbers, $1 \leq k_{i} \leq 3$ and nonlocal commutative rings $R$ with $|Z(R)|=p^{k}$ where $k=4$ or 5 , are determined.


2000 Mathematics Subject Classifications: 16B99; 13A99; 68R10
Key Words and Phrases: Finite ring, Zero-divisor, Local rings

## 1. Introduction

Throughout the paper $R$ always denotes a commutative ring with identity, $J(R)$ is the Jacobson radical of $R$ and $Z(R)$ denotes the set of all zero-divisors of $R$. We denote $F_{q}$ for the finite field of order $q$ and for any finite subset $Y$ of $R$, we denote $|Y|$ for the cardinality of $Y$.

The zero-divisor graph of $R$, denoted by $\Gamma(R)$, is the graph whose vertices are the nonzero zero-divisors of $R$ with two distinct vertices $a$ and $b$ joined by an edge if and only if $a b=0$. One might ask which graphs on $n$ vertices can be realized as the zero-divisor graph of a commutative ring? This question has been partially answered. [1] determines, up to isomorphism, all such rings for which $\Gamma(R)$ is a graphs on $n=1,2,3$, or 4 vertices. This list was extended to $n=5$ vertices in [10], and to $n=6,7, \ldots, 14$ vertices in [11]. The aim of the paper is to develop this list to a wider class of numbers $n$. In fact, this observation motivates us the

[^0]following fundamental question:
Question. If $R$ is a finite commutative ring, can we find the relationship between the prime factorizations $|Z(R)|=p_{1}{ }^{k_{1}} \cdots p_{n}{ }^{k_{n}}$ and the summands $R_{i}$, where $R=R_{1} \times R_{2} \times \ldots \times R_{m}$ ( $m \geq 1$ ) and $R_{i}^{\prime} s$ are local rings?

Then we will give an answer to this question. We show that the answer is "yes" and a preliminary answer is given in Theorem 1 of Section 2 ; which shows that if $R$ is a finite commutative ring, then either $R$ is a reduced ring or there are positive integers $s, m, t_{1}, \ldots, t_{s}$, prime numbers $p_{1}, p_{2}, \ldots, p_{s}$ and a non-negative integer $t$ such that $|Z(R)|=p_{1}{ }^{t_{1}} p_{2}{ }^{t_{2}} \ldots p_{s}{ }^{t_{s}} m$ and $R \cong R_{1} \times \ldots \times R_{s} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$ with $\left|Z\left(R_{i}\right)\right|=p_{i}^{t_{i}}$. Therefore, in classifying commutative rings with $p_{1}{ }^{k_{1}} \ldots p_{n}{ }^{k_{n}}$ zero-divisors it suffices to deal with local rings with $p_{i}{ }^{t_{i}}$ zero-divisors where that $1 \leq i \leq n$ and $0 \leq t_{i} \leq k_{i}$, and henceforth we focus on rings $R$ with $|Z(R)|=p^{k}$ where $p$ is a prime number and $k \geq 1$. It is shown that a finite commutative ring $R$ is local if and only if $|Z(R)|=p^{k}$ and $|R|=p^{n}$ for some prime number $p$ and $n>k \geq 0$ (Theorem 3). In Section 3, first we characterize commutative rings $R$ with $|Z(R)|=p^{k}$ where $1 \leq k \leq 7$. Then the structure and classification up to isomorphism all commutative rings $R$ with $|Z(R)|=$ $p_{1}{ }^{k_{1}} \ldots p_{n}{ }^{k_{n}}$, where $n \in \mathbb{N}, p_{i}^{\prime} s$ are distinct prime numbers and $1 \leq k_{i} \leq 3$, are determined. Finally, we determine the structure of nonlocal rings $R$ with $|Z(R)|=p^{k}$ where $k=4$ or 5 .

## 2. On Rings with $p^{k}$ Zero-Divisors

Recall that an Artinian commutative ring $R$ is called completely primary if $R / J(R)$ is a field. One can easily see that an Artinian commutative ring $R$ is completely primary if and only if $Z(R)$ is an ideal of $R$, if and only if $R$ is a local ring. Moreover, we have the following lemma which is essentially Theorem 2 of [9].

Lemma 1. [9, Theorem 2] Let $R$ be a finite completely primary ring. Then
(i) $Z(R)=J(R)$;
(ii) $|Z(R)|=p^{(n-1) r}$ and $|R|=p^{n r}$ for some prime number $p$, and some positive integers $n$, $r$;
(iii) $Z(R)^{n}=(0)$;
(iv) $\operatorname{char}(R)=p^{k}$ for some integer $k$ with $1 \leq k \leq n$;
(v) $R / J(R) \cong F_{q}$, where $q=p^{r}$.

Let $R_{i}(1 \leq i \leq s)$ be a finite commutative ring with $m_{i}$ elements and $n_{i}$ zero-divisors. Let $R=R_{1} \times \ldots \times R_{s}$. Then by [6, Theorem 2], $|Z(R)|=m_{1} m_{2} \ldots m_{s}-\left(m_{1}-n_{1}\right)\left(m_{2}-n_{2}\right) \ldots\left(m_{s}-\right.$ $n_{s}$ ). Thus by using this fact, Lemma 1 and the fact that every finite commutative ring is uniquely expressible as a direct sum of completely primary (local) rings (see for example [8, p.95]), we have the following evident result.

Lemma 2. Let $R$ be a finite commutative ring. Then $R \cong R_{1} \times \ldots \times R_{s}$ where $s \in \mathbb{N}$ and $R_{i}$ 's are local rings with $\left|R_{i}\right|=p_{i}^{k_{i}},\left|Z\left(R_{i}\right)\right|=p_{i}^{t_{i}}$ for some prime numbers $p_{1}, p_{2}, \ldots, p_{s}$ and $k_{i} \geq 1$, $t_{i} \geq 0$. Consequently,

$$
|Z(R)|=\prod_{i=1}^{s} p_{i}^{t_{i}}\left(\prod_{i=1}^{s} p_{i}^{k_{i}-t_{i}}-\prod_{i=1}^{s}\left(p_{i}^{k_{i}-t_{i}}-1\right)\right)
$$

Now we are in position to prove the following two theorems which are crucial in our investigation.

Theorem 1. Let $R$ be a finite commutative ring. Then
(i) if $R$ is reduced, then there are finite fields $F_{q_{1}}, \ldots, F_{q_{t}}(t \geq 1)$ such that $R \cong F_{q_{1}} \times \ldots \times$ $F_{q_{t}}$ with $|Z(R)|=q_{1} q_{2} \ldots q_{t}-\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$.
(ii) if $R$ is not reduced, then there are a positive integer $s$, a non-negative integer $t$, prime numbers $p_{1}, p_{2}, \ldots, p_{s}$ and positive integers $k_{1}, \ldots, k_{s}$ such that

$$
\begin{equation*}
|Z(R)|=\prod_{i=1}^{s} p_{i}^{t_{i}}\left[q_{1} \ldots q_{t} \prod_{i=1}^{s} p_{i}^{k_{i}-t_{i}}-\left(q_{1}-1\right) \ldots\left(q_{t}-1\right) \prod_{i=1}^{s}\left(p_{i}^{k_{i}-t_{i}}-1\right)\right] \tag{1}
\end{equation*}
$$

and $R \cong R_{1} \times \ldots \times R_{s} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$ where each $F_{q_{i}}$ is a finite field and each $R_{i}$ is a finite local ring such that $\left|Z\left(R_{i}\right)\right|=p_{i}^{t_{i}}$ for some $1 \leq t_{i} \leq k_{i}$.

Consequently, for each $i=1, \ldots, s,\left|Z\left(R_{i}\right)\right|$ is a divisor of $|Z(R)|$.
Proof. The proof is clear by Lemma 1 and Lemma 2.
Theorem 2. Let $R$ be a commutative ring such that $|Z(R)|=p^{k}$ for some prime number $p$ and $a$ positive number $k$. Then either
(i) $R$ is local,
(ii) $R$ is reduced, or
(iii) $k \geq 3$ and $R \cong R_{1} \times \ldots \times R_{s} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$ where $s$ and $t$ are positive integers, each $F_{q_{i}}$ is a field, and where each $R_{i}$ is a commutative finite local ring with $\left|Z\left(R_{i}\right)\right|=p^{t_{i}},\left|R_{i}\right|=p^{k_{i}}$ for some positive integers $k_{i}$ and $t_{i}$ with $1 \leq \sum_{i=1}^{s} t_{i} \leq \sum_{i=1}^{s} k_{i}-s \leq k-s-1$ such that

$$
\begin{equation*}
p^{k-\Sigma_{i=1}^{s} t_{i}}=q_{1} \ldots q_{t} p^{\Sigma_{i=1}^{s}\left(k_{i}-t_{i}\right)}-\left(q_{1}-1\right) \ldots\left(q_{t}-1\right) \Pi_{i=1}^{s}\left(p^{k_{i}-t_{i}}-1\right) . \tag{2}
\end{equation*}
$$

Consequently, in the latter case, $t_{i} \leq k-2$ for each $i=1, \ldots, s$ and $q_{j} \equiv 1$ (p) for some $j$. Moreover, if $t_{i}=k-2$ for some $i$, then $s=t=1$, i.e., $R \cong R_{1} \times F_{q}$ where $\left|Z\left(R_{1}\right)\right|=p^{k-2}$ and so $p^{2}=p+q-1$.

Proof. Suppose $R$ is not local. Then $R \cong R_{1} \times \ldots \times R_{n}$, where $n \geq 2$ and each $R_{i}$ is a local ring. If for each $i(1 \leq i \leq n) R_{i}$ is not field, then $\left|Z\left(R_{i}\right)\right|=p^{t_{i}}$ and $\left|R_{i}\right|=p^{k_{i}}$ for some $1 \leq t_{i}<k_{i} \leq k$. By the relation (1) of Theorem 1, we have

$$
p^{k}=p^{\sum_{i=1}^{s} t_{i}}\left[p^{\sum_{i=1}^{s}\left(k_{i}-t_{i}\right)}-\prod_{i=1}^{s}\left(p^{k_{i}-t_{i}}-1\right)\right]
$$

and hence

$$
p^{k-\sum_{i=1}^{s} t_{i}}=p^{\sum_{i=1}^{s}\left(k_{i}-t_{i}\right)}-\prod_{i=1}^{s}\left(p^{k_{i}-t_{i}}-1\right) .
$$

This implies that $0 \equiv 1(p)$ or $0 \equiv-1(p)$, a contradiction. Thus $R_{j}$ is field for some $1 \leq j \leq n$. If each $R_{i}$ is field, then $R$ is a reduced ring. Suppose $R$ is non-reduced. Without loss of generality we can assume that

$$
R \cong R_{1} \times \ldots \times R_{s} \times F_{q_{1}} \times \ldots \times F_{q_{t}}
$$

where $s, t \geq 1$ and each $R_{i}$ is a commutative finite local ring with $\left|Z\left(R_{i}\right)\right|=p^{t_{i}}$ and $\left|R_{i}\right|=p^{k_{i}}$ for some $1 \leq t_{i}<k_{i} \leq k$. Since $t \geq 1$, it is easy to check that

$$
p^{k}=|Z(R)|>\prod_{i=1}^{s}\left|R_{i}\right|=p^{\sum_{i=1}^{s} k_{i}} \geq p^{\sum_{i=1}^{s}\left(t_{i}+1\right)}=p^{\left(\sum_{i=1}^{s} t_{i}\right)+s} .
$$

Consequently we have $1 \leq \sum_{i=1}^{s} t_{i} \leq \sum_{i=1}^{s} k_{i}-s \leq k-s-1$ and hence we obtain relation (2). Now since $k-\sum_{i=1}^{s} t_{i}$ and $\sum_{i=1}^{s}\left(k_{i}-t_{i}\right)$ are positive, the relation (2) shows that $q_{i} \equiv 1(p)$ for some $i$. Also, since $s \geq 1, t_{i} \leq k-2$ for each $i=1, \ldots, s$. If $t_{j}=k-2$ for some $j \in\{1, \ldots, s\}$, then $s=1$. Thus $R \cong R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$, where $R_{1}$ is a local ring with $\left|Z\left(R_{1}\right)\right|=p^{k-2}$. Since $|Z(R)|=p^{k}$ and $t \geq 1$, by Theorem $1,\left|R_{1}\right|=p^{k-1}$. Also by the relation (2) we have

$$
p^{2}=p q_{1} q_{2} \ldots q_{t}-(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)
$$

Since $q_{i} \equiv 1(p)$ for some $i$, we can assume that $q_{1} \equiv 1(p)$ and so $q_{1}>p$. Now if $t \geq 2$, then $|Z(R)| \geq\left|R_{1}\right| q_{1}>p^{k-1} p=p^{k}$, a contradiction. Thus $t=1$ and $p^{2}=p q_{1}-(p-1)\left(q_{1}-1\right)$, i.e., $p^{2}=p+q_{1}-1$.

Obviously for every finite local ring $R$ we have $|R|=p^{n}$ for some prime number $p$ and $n \geq 0$. In general, the converse is not true (the nonlocal ring $F_{2} \times F_{2}$ has 4 elements). Here we show that a finite ring $R$ is local if and only if $|Z(R)|=p^{m}$ and $|R|=p^{n}$ for some prime number $p$ and $n>m \geq 0$.

Theorem 3. Let $R$ be a commutative ring. Then $R$ is a finite local ring if and only if $|Z(R)|=p^{k}$ and $|R|=p^{n}$ for some prime number $p$ and $n>k \geq 0$.

Proof. For one direction, the proof is clear by Lemma 1. For the other direction, suppose that $|Z(R)|=p^{k}$ and $|R|=p^{n}$ for some prime number $p$ and $n>k \geq 0$. If $R$ is not a local ring, then by Theorem 2 , either $R \cong F_{q_{1}} \times \ldots \times F_{q_{t}}$ (when $R$ is reduced) or $R \cong R_{1} \times \ldots \times R_{s} \times$ $F_{q_{1}} \times \ldots \times F_{q_{t}}$ where $s$ and $t$ are positive integers and each $R_{i}$ is a commutative finite local
ring that is not a field, and where each $F_{q_{i}}$ is a field. Since $|R|=p^{n}$, each $q_{i}$ is a divisor of $p^{n}$ and since $q_{i}$ is a prime power, $q_{i} \equiv 0(p)$ for each $i(1 \leq i \leq t)$. If $R$ is reduced, then we have $p^{k}=q_{1} \ldots q_{t}-\left(q_{1}-1\right) \ldots\left(q_{t}-1\right)$ and if $R$ is not reduced, then we have

$$
p^{k-\sum_{i=1}^{s} t_{i}}=q_{1} \ldots q_{t} p^{\Sigma_{i=1}^{s}\left(k_{i}-t_{i}\right)}-\left(q_{1}-1\right) \ldots\left(q_{t}-1\right) \Pi_{i=1}^{s}\left(p^{k_{i}-t_{i}}-1\right) .
$$

Thus in any case $0 \equiv 1(p)$ or $0 \equiv-1(p)$, which is impossible. Thus $R$ is a local ring.

## 3. On Commutative Rings with $p_{1}{ }^{k_{1}} \ldots p_{n}{ }^{k_{n}}\left(1 \leq k_{i} \leq 7\right)$ Zero-Divisors

By Lemma 1, for each finite local ring $R$ we have $|Z(R)|=p^{k}$ for some prime number $p$ and $k \geq 0$, but the converse is not true in general. For example, the nonlocal ring $\mathbb{Z}_{8} \times F_{7}$ has 32 zero-divisors. In this section, we will characterize rings with $p^{k}$ zero-divisors where $k$ is a positive integer $1 \leq k \leq 7$.

Theorem 4. Let $R$ be a commutative ring with $|Z(R)|=p^{k}$ where $p$ is a prime number and $1 \leq k \leq 6$. Then either
(i) $R$ is a local ring;
(ii) $R$ is a reduced ring and so $R \cong F_{q_{1}} \times \ldots \times F_{q_{t}}$, where each $F_{q_{i}}(1 \leq i \leq t)$ is a finite field and $p^{k}=q_{1} q_{2} \ldots q_{t}-\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$;
(iii) $R \cong R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$, where each $F_{q_{i}}(1 \leq i \leq t)$ is a finite field and $R_{1}$ is a local ring with $\left|Z\left(R_{1}\right)\right|=p^{m},\left|R_{1}\right|=p^{n}$ such that $0<m<n \leq k-1$ and $p^{k}=p^{n} q_{1} q_{2} \ldots q_{t}-\left(p^{n}-\right.$ $\left.p^{m}\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$; or
(iv) $R \cong R_{1} \times R_{2} \times F_{5}$ where each $R_{i}$ is isomorphic to $\mathbb{Z}_{4}$ or $\mathbb{Z}_{2}[x] /\left(x^{2}\right)$.

Proof. Suppose $|Z(R)|=p^{k}$ and $R$ is not a local ring. If $R$ is reduced, then we are done. Now let $R$ is not a reduced ring. Then by Theorem 2, we can assume that $R \cong R_{1} \times \ldots \times R_{s} \times$ $F_{q_{1}} \times \ldots \times F_{q_{t}}$, where $s, t \geq 1$ and each $R_{i}$ is a local ring with $\left|Z\left(R_{i}\right)\right|=p^{t_{i}},\left|R_{i}\right|=p^{k_{i}}$ for some $t_{i}, k_{i} \geq 1$ such that

$$
1 \leq \sum_{i=1}^{s} t_{i} \leq \sum_{i=1}^{s} k_{i}-s \leq k-s-1 \leq 6-1-1=4 .
$$

It follows that $s \leq 4$. If $s=3$ or 4 , then since $t \geq 1, p^{k}=|Z(R)|>\left|R_{1}\right|\left|R_{2}\right|\left|R_{3}\right| \geq p^{6}$, this is a contradiction. Hence $s \leq 2$. If $s=1$, then by Theorem 2, we are done. Thus we can assume that $s=2$, i.e., $R \cong R_{1} \times R_{2} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$, where $R_{1}$ and $R_{2}$ are local rings with $\left|Z\left(R_{i}\right)\right|=p^{t_{i}}$. Clearly $\left|R_{i}\right| \geq p^{t_{i}+1}$ for $i=1,2$ and since $t \geq 1,|Z(R)|>\left|R_{1}\right|\left|R_{2}\right|$. If $t_{i} \geq 3$ for some $i$ or $t_{1}=t_{2}=2$, then $|Z(R)|>\left|R_{1}\right|\left|R_{2}\right|=p^{t_{1}+t_{2}+2} \geq p^{6}$, a contradiction. Thus without loss of generality we can assume that either $t_{1}=2, t_{2}=1$ or $t_{1}=t_{2}=1$.

- Case 1: $t_{1}=2$, $t_{2}=1$ i.e., $\left|Z\left(R_{1}\right)\right|=p^{2}$ and $\left|Z\left(R_{2}\right)\right|=p$. Then by Lemma 1 , we conclude that $\left|R_{1}\right|=p^{3}$ or $\left|R_{1}\right|=p^{4}$ and $\left|R_{2}\right|=p^{2}$. If $\left|R_{1}\right|=p^{4}$, then $|Z(R)|>p^{6}$, a contradiction. Thus $\left|R_{1}\right|=p^{3}$ and $\left|R_{2}\right|=p^{2}$ and so $|Z(R)|>\left|R_{1}\right|\left|R_{2}\right| \geq p^{5}$ i.e., $k=6$. We claim that $t=1$, for if not, since $q_{i}>p$ for some $i$ (see Theorem 2), $|Z(R)| \geq\left|R_{1}\right|\left|R_{2}\right|\left|F_{q_{i}}\right|>p^{6}$, a contradiction. Thus $t=1$ and hence by using the relation (2) we have

$$
p^{3}=p^{2} q_{1}-(p-1)^{2}\left(q_{1}-1\right)
$$

This implies that $q_{1}(2 p-1)=p^{3}-p^{2}+2 p-1$ and so $(2 p-1)$ is a divisor of $p^{2}(p-1)$. But since $\left(2 p-1, p^{2}\right)=1,2 p-1$ is a divisor of $p-1$, a contradiction.

- Case 2: $t_{1}=t_{2}=1$ i.e., $\left|Z\left(R_{1}\right)\right|=\left|Z\left(R_{2}\right)\right|=p$. Then $|Z(R)|>\left|R_{1}\right|\left|R_{2}\right| \geq p^{4}$, i.e., $k \geq 5$. If $t \geq 3$, then by the relation (2), $p^{2}$ is a divisor of $\left(q_{i}-1\right)\left(q_{j}-1\right)$ for some $1 \leq i, j \leq t$. It follows that $q_{i} q_{j}>p^{2}$ and hence $|Z(R)|>\left|R_{1}\right|\left|R_{2}\right| q_{i} q_{j}>p^{4} p^{2}=p^{6}$, a contradiction. Therefore $t \leq 2$. We claim that $t=1$. If $t=2$, then by the relation (2) we have

$$
\begin{equation*}
p^{k-2}=p^{2} q_{1} q_{2}-(p-1)^{2}\left(q_{1}-1\right)\left(q_{2}-1\right) \tag{3}
\end{equation*}
$$

Since $k \geq 5, p^{2}$ is a divisor of $\left(q_{1}-1\right)\left(q_{2}-1\right)$. If $p^{2}$ is a divisor of $q_{i}-1$, then $q_{i}>p^{2}$ and so $|Z(R)|>p^{6}$, a contradiction. Thus $p$ is a divisor of both $q_{1}-1$ and $q_{2}-1$. Hence $q_{1}-1=k_{1} p$ and $q_{2}-1=k_{2} p$ for some positive integers $k_{1}$ and $k_{2}$. Then one obtains from (3),

$$
p^{k-4}=\left(k_{1} p+1\right)\left(k_{2} p+1\right)-(p-1)^{2} k_{1} k_{2}
$$

and hence

$$
p^{k-4}-\left(k_{1}+k_{2}+2 k_{1} k_{2}\right) p+k_{1} k_{2}-1=0
$$

If $k=5$, then $p=\frac{k_{1} k_{2}-1}{k_{1}+k_{2}+2 k_{1} k_{2}-1}$, a contradiction. Thus we can assume that $k=6$ and hence

$$
\begin{equation*}
p^{2}-\left(k_{1}+k_{2}+2 k_{1} k_{2}\right) p+k_{1} k_{2}-1=0 \tag{4}
\end{equation*}
$$

Thus the equation (4) shows that the integer $p$ is a solution of

$$
\begin{equation*}
X^{2}-\left(k_{1}+k_{2}+2 k_{1} k_{2}\right) X+k_{1} k_{2}-1=0 . \tag{5}
\end{equation*}
$$

Now let $\mu$ be another solution of (5). Clearly $\mu \neq 1, p \mu=k_{1} k_{2}-1>0$ and $p+$ $\mu=k_{1}+k_{2}+2 k_{1} k_{2}$. It follows that $\mu$ is an integer $\geq 2$ and hence $p \mu \geq p+\mu$, i.e., $k_{1} k_{2}-1>k_{1}+k_{2}+2 k_{1} k_{2}$, a contradiction (since $k_{1}, k_{2} \geq 1$ ). Thus $t=1$ and since $\left|Z\left(R_{1}\right)\right|=\left|Z\left(R_{2}\right)\right|=p$, we have

$$
p^{4}=p^{2} q_{1}-(p-1)^{2}\left(q_{1}-1\right)
$$

and so $q_{1}(2 p-1)=p^{4}-p^{2}+2 p-1$. Thus $2 p-1$ is a divisor of $p^{2}-1$, i.e., $p^{2}-1=$ $(2 p-1) a$ for some positive integer $a$. Then the equation $p^{2}-2 a p+a-1=0$ implies that $p$ is a divisor of $a-1$, i.e., $a-1=p \lambda$ for some non-negative integer $\lambda$. It follows that $p$ and $\lambda$ are solutions of $x^{2}-2 a x+a-1=0$ and so $p+\lambda=2 a$. If $\lambda=1$, then $p=a-1$ and $p+1=2 a$ and hence $a=0$, a contradiction. Also, if $\lambda>1$, then $p \lambda \geq p+\lambda$ and so $a \leq-1$, a contradiction.

Finally, if $\lambda=0$, then $p=2$, which yields $q_{1}=5$, i.e., $R \cong R_{1} \times R_{2} \times F_{5}$ where $R_{1}$ and $R_{2}$ are local rings of order 4 with 2 zero-divisors. Now by [2, page 687], each $R_{i}$ is isomorphic to $\mathbb{Z}_{4}$ or $\mathbb{Z}_{2}[x] /\left(x^{2}\right)$.

Corollary 1. Let $R$ be a commutative ring with $|Z(R)|=p$, where $p$ is a prime number. Then $R$ is isomorphic to one of the rings $\mathbb{Z}_{p^{2}}, \mathbb{Z}_{p}[x] /\left(x^{2}\right)$ or $F_{q_{1}} \times \ldots \times F_{q_{t}}$ where $p=q_{1} q_{2} \ldots q_{t}-\left(q_{1}-\right.$ 1) $\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$.

Proof. If $R$ is a local ring, then by Lemma $1,|R|=p^{2}$ and hence by [2, page 687], $R$ is isomorphic to $\mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p}[x] /\left(x^{2}\right)$. If $R$ is not local, then by Theorem $4, R \cong F_{q_{1}} \times \ldots \times F_{q_{t}}$ where $t \geq 2$ and $p=q_{1} q_{2} \ldots q_{t}-\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$.

In [5], it was shown that any commutative ring $R$ with $m$ zero-divisors has $m^{2}$ or fewer elements. It was proved in [7] that if $|Z(R)|=m$ and $|R|=m^{2}$, then $m=p^{r}$ for some integer $r \geq 1$ and some prime $p$. These rings were categorized in [4] by the use of two constructions. When the ring $R$ is commutative with 1 , then there are only two such rings (up to isomorphism) for $m=p^{r}: F_{p^{r}}[x] /\left(x^{2}\right)$ and $\mathbb{Z}_{p^{2}}[x] /(f(x))$, where $f(x)$ is an irreducible polynomial of degree $r$ over $F_{p}$. The rings from the second construction in [4] are shown by Raghavendran [9] to all be isomorphic to the ring $\mathbb{Z}_{p^{2}}[x] /(f(x))$ given above, which is called the Galois Ring of order $p^{2 r}$ and characteristic $p^{2}$, denoted $G R\left(p^{2 r}, p^{2}\right)$.

Let $p$ be a prime number. We write $\Sigma_{m}$ for a set of coset representatives of $\left(F_{p}^{*}\right)^{m}$ in $F_{p}^{*}$, and $\Sigma_{m}^{0}=\Sigma_{m} \cup\{0\}$. Since $F_{p}^{*}$ is cyclic, $\left|\Sigma_{m}\right|=(m, p-1)$.
Corollary 2. Let $R$ be a commutative ring with $|Z(R)|=p^{2}$, where $p$ is a prime number. Then $R$ is isomorphic to one of the rings $\mathbb{Z}_{p^{3}}, F_{p}[x, y] /(x, y)^{2}, F_{p}[x] /\left(x^{3}\right), \mathbb{Z}_{p^{2}}[x] /\left(p x, x^{2}-\varepsilon p\right)$ where $\varepsilon \in \Sigma_{2}^{0}, F_{p^{2}}[x] /\left(x^{2}\right)$, the Galois ring $G R\left(p^{4}, p^{2}\right)$ or $F_{q_{1}} \times \ldots \times F_{q_{t}}$ where $t \geq 2$ and $p^{2}=q_{1} q_{2} \ldots q_{t}-\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$.

Proof. Suppose that $R$ is a local ring with $|Z(R)|=p^{2}$. Then by Lemma $1,|R|=p^{3}$ or $p^{4}$. If $|R|=p^{3}$, then by [2, p.687], $R$ is isomorphic to one of the rings $\mathbb{Z}_{p^{3}}, F_{p}[x, y] /(x, y)^{2}$, $F_{p}[x] /\left(x^{3}\right), \mathbb{Z}_{p^{2}}[x] /\left(p x, x^{2}-\varepsilon p\right)$ where $\varepsilon \in \Sigma_{2}^{0}$. If $|R|=p^{4}$, then by [9, Theorem 12], $R$ is isomorphic to the Galois ring $\operatorname{GR}\left(p^{4}, p^{2}\right)$ or $F_{p^{2}}[x] /\left(x^{2}\right)$. Now suppose that $R$ is not a local ring. Then by Theorem $2, R \cong F_{q_{1}} \times \ldots \times F_{q_{t}}$ with $p^{2}=q_{1} q_{2} \ldots q_{t}-\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$.

If $R$ is a finite ring then its additive group is a finite abelian group and is thus a direct product of cyclic groups. Suppose these have generators $a_{1}, \ldots, a_{n}$ of orders $m_{1}, \ldots, m_{n}$. Then the ring structure is determined by the $n^{2}$ products

$$
a_{i} a_{j}=\sum_{k=1}^{n} w_{i j k} a_{k} \text { with } w_{i j k} \in \mathbb{Z}_{m_{k}}
$$

and thus by the $n^{3}$ structure constants $w_{i j k}$ for $1 \leq i, j, k \leq n$.
Thus we introduce a convenient notation, for giving the structure of a finite ring. A presentation for a finite ring $R$ consists of a set of generators $a_{1}, a_{2}, \ldots, a_{n}$ of the additive group of $R$ together with relations. The relations are of two types:
(i) $m_{i} a_{i}=0$ for $i=1, \ldots, n$ indicating the additive order of $a_{i}$, and
(ii) $a_{i} a_{j}=\sum_{k=1}^{n} w_{i j k} a_{k}$ with $w_{i j k} \in \mathbb{Z}_{m_{k}}$ for $1 \leq i, j \leq n$.

If the ring $R$ has the presentation above we write

$$
R=\left\langle a_{1}, \ldots, a_{n} ; m_{i} a_{i}=0, a_{i} a_{j}=\sum_{k=1}^{n} w_{i j k} a_{k}, \text { for } i, j=1, \ldots, n\right\rangle .
$$

Corollary 3. Let $R$ be a commutative ring with $|Z(R)|=p^{3}$, where $p$ is a prime number. Then $R$ is isomorphic to one of the rings $\mathbb{Z}_{p^{2}} \times F_{q}, \mathbb{Z}_{p}[x] /\left(x^{2}\right) \times F_{q}$ where $p^{2}=p+q-1, F_{q_{1}} \times \ldots \times F_{q_{t}}$ where $p^{3}=q_{1} q_{2} \ldots q_{t}-\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$, the Galois ring $G R\left(p^{6}, p^{2}\right), F_{p^{3}}[x] /\left(x^{2}\right)$, $F_{p}[x] /\left(x^{4}\right), \mathbb{Z}_{p^{2}}[x] /\left(p x, x^{3}\right), \mathbb{Z}_{p^{2}}[x] /\left(x^{2}\right), \mathbb{Z}_{p^{2}}[x] /\left(p x, x^{3}-a p\right)$ where $a \in \Sigma_{3}, \mathbb{Z}_{p^{2}}[x] /\left(x^{2}-\right.$ $b p$ ) where $b \in \Sigma_{2}$ and $p \neq 2, \mathbb{Z}_{4}[x] /\left(x^{2}-2\right), \mathbb{Z}_{4}[x] /\left(x^{2}-2 x-2\right), \mathbb{Z}_{p^{2}}[x, y] /(p, x, y)^{2}$, $F_{p}[x, y, z] /(x, y, z)^{2}, \mathbb{Z}_{p^{3}}[x] /\left(p x, x^{2}-c p^{2}\right)$ where $c \in \Sigma_{2}^{0}, \mathbb{Z}_{4}[x] /\left(x^{2}-2 x\right), \mathbb{Z}_{p^{4}}$,

$$
\begin{gathered}
R_{1}:=\left\langle 1, x_{1}, x_{2}, y ; p 1=0, x_{1}^{2}=y, x_{2}^{2}=0, x_{i} x_{j}=x_{i} y=y x_{i}=y^{2}=0, i \neq j\right\rangle, \\
R_{2}:=\left\langle 1, x_{1}, x_{2}, y ; p 1=0, x_{1}^{2}=y, x_{2}^{2}=y, x_{i} x_{j}=x_{i} y=y x_{i}=y^{2}=0, i \neq j\right\rangle, \\
R_{3}:=\left\langle 1, x_{1}, x_{2}, y ; p 1=0, x_{1}^{2}=y, x_{2}^{2}=\xi y, x_{i} x_{j}=x_{i} y=y x_{i}=y^{2}=0, i \neq j\right\rangle, \\
R_{4}:=\left\langle 1, x_{1}, x_{2} ; p^{2} 1=p x_{1}=p x_{2}=0, x_{1}^{2}=p, x_{2}{ }^{2}=0, x_{1} x_{2}=x_{2} x_{1}=0\right\rangle, \\
R_{5}:=\left\langle 1, x_{1}, x_{2} ; p^{2} 1=p x_{1}=p x_{2}=0, x_{1}^{2}=\xi p, x_{2}^{2}=0, x_{1} x_{2}=x_{2} x_{1}=0\right\rangle, \\
R_{6}:=\left\langle 1, x_{1}, x_{2} ; p^{2} 1=p x_{1}=p x_{2}=0, x_{1}^{2}=p, x_{2}^{2}=p, x_{1} x_{2}=x_{2} x_{1}=0\right\rangle, \\
R_{7}:=\left\langle 1, x_{1}, x_{2} ; p^{2} 1=p x_{1}=p x_{2}=0, x_{1}^{2}=p, x_{2}^{2}=\xi p, x_{1} x_{2}=0\right\rangle,
\end{gathered}
$$

where $\xi$ is a non-square in $F_{p}$ and if $p=2$ then instead of $R_{3}, R_{5}$ and $R_{7}, R$ is isomorphic to $R_{3}^{\prime}$ or $R_{5}^{\prime}$ where

$$
\begin{gathered}
R_{3}^{\prime}:=\left\langle 1, x_{1}, x_{2} ; 4.1=2 x_{1}=2 x_{2}=0, x_{1}^{2}=0, x_{2}^{2}=0, x_{1} x_{2}=x_{2} x_{1}=2\right\rangle \text { or } \\
R_{5}^{\prime}:=\left\langle 1, x_{1}, x_{2}, y ; 2.1=0, x_{1} x_{2}=x_{2} x_{1}=y, x_{1}^{2}=x_{2}^{2}=x_{i} y=y x_{i}=y^{2}=0\right\rangle .
\end{gathered}
$$

Proof. If $R$ is a local ring with $|Z(R)|=p^{3}$, then by Lemma 1 , either $|R|=p^{4}$ or $|R|=p^{6}$. If $|R|=p^{6}$, then by [9, Theorem 12], $R$ is isomorphic to $F_{p^{3}}[x] /\left(x^{2}\right)$ or the Galois ring $G R\left(p^{6}, p^{2}\right)$. If $|R|=p^{4}$, then since $|Z(R)|=p^{3}$, by using [2, p.687-690], one can easily see that $R$ is isomorphic to one of the local rings in above list. Now suppose that $R$ is not local. Then by Theorem $2, R$ is isomorphic to one of the rings $\mathbb{Z}_{p^{2}} \times F_{q}, \mathbb{Z}_{p}[x] /\left(x^{2}\right) \times F_{q}$ where $p^{2}=p+q-1$ or $F_{q_{1}} \times \ldots \times F_{q_{t}}$ where $p^{3}=q_{1} q_{2} \ldots q_{t}-\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$. This completes the proof.

Now we are in position to determine the structure of commutative rings $R$ with $|Z(R)|=$ $p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{n}^{k_{n}}$, where $n \geq 1,1 \leq k_{i} \leq 3$ and $p_{i}$ 's are distinct prime numbers.
Theorem 5. Let $R$ be a commutative ring with $|Z(R)|=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{n}^{k_{n}}$, where $n \geq 1,1 \leq k_{i} \leq 3$ and $p_{i}$ 's are distinct prime numbers. Then there exist $0 \leq s \leq \sum_{i=1}^{n} k_{i}$ and $t \geq 0$ such that

$$
R \cong R_{1} \times \ldots \times R_{s} \times F_{q_{1}} \times \ldots \times F_{q_{t}}
$$

where $F_{q_{i}}$ 's are finite fields and each $R_{i}$ is local ring with $\left|Z\left(R_{i}\right)\right|=p_{j}^{t_{j}}$ for some $p_{j}(1 \leq j \leq n)$ and $1 \leq t_{j} \leq k_{j}$. Consequently, each $R_{i}$ is isomorphic to one of the local rings described in Corollaries 1, 2 or 3.

Proof. We put

$$
R \cong R_{1} \times \ldots \times R_{s} \times F_{q_{1}} \times \ldots \times F_{q_{t}}
$$

where $F_{q_{1}}, \ldots, F_{q_{t}}$ are finite fields and each $R_{i}$ is a commutative finite local ring that is not a field. If $s=0$, then there is nothing to prove. Thus we can assume that $s \geq 1$ and so by Theorem 1, for each $i,\left|Z\left(R_{i}\right)\right|=p^{k}$ for some prime number $p$ and $k \geq 1$ such that $p^{k}$ is a divisor of $|Z(R)|$ and also $0 \leq s \leq \sum_{i=1}^{n} k_{i}$. Thus $\left|Z\left(R_{i}\right)\right|=p_{j}^{t_{j}}$ where $1 \leq t_{j} \leq k_{j}, 1 \leq j \leq n$ and $1 \leq i \leq s$. Thus for each $1 \leq i \leq s, t_{i}=1,2$ or 3 and so each $R_{i}$ is isomorphic to one of the local rings described in Corollaries 1, 2 or 3

Next, we determine the structure of commutative nonlocal rings $R$ with $|Z(R)|=p^{4}$ or $p^{5}$ where $p$ is a prime number.

Proposition 1. Let $R$ be a commutative nonlocal ring with $|Z(R)|=p^{4}$ where $p$ is a prime number. Then $R \cong F_{q_{1}} \times \ldots \times F_{q_{t}}$ with $p^{4}=q_{1} q_{2} \ldots q_{t}-\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right), R \cong R_{1} \times F_{q_{1}} \times$ $\ldots \times F_{q_{t}}$ where $R_{1} \cong \mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p}[x] /\left(x^{2}\right)$ with $p^{3}=p q_{1} q_{2} \ldots q_{t}-(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$ or $R \cong R_{1} \times F_{q}$ where and $p^{2}=p+q-1$ and $R_{1}$ is isomorphic to one of the local rings of order $p^{3}$ described in Corollary 2.

Proof. By Theorem 4, either $R$ is reduced or $R \cong R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$, where $R_{1}$ is a local ring with $\left|Z\left(R_{1}\right)\right|=p$ or $p^{2}$ and $t \geq 1$. Now we proceed by cases.

- Case 1: $R$ is reduced. Then $R \cong F_{q_{1}} \times \ldots \times F_{q_{t}}$ with

$$
p^{4}=q_{1} q_{2} \ldots q_{t}-\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)
$$

- Case 2: $R$ is not reduced and $\left|Z\left(R_{1}\right)\right|=p$. Then by Corollary $1, R_{1}$ is isomorphic to $\mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p}[x] /\left(x^{2}\right)$ and $p^{3}=p q_{1} q_{2} \ldots q_{t}-(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$.
- Case 3: $R$ is not reduced and $\left|Z\left(R_{1}\right)\right|=p^{2}$. Then by Lemma 1 , either $\left|R_{1}\right|=p^{3}$ or $\left|R_{1}\right|=p^{4}$. Since $t \geq 1, p^{4}=|Z(R)|>\left|R_{1}\right|$ and hence $\left|R_{1}\right|=p^{3}$. Thus by Corollary $2, R_{1}$ is isomorphic to one of the rings $F_{p}[x, y] /(x, y)^{2}, F_{p}[x] /\left(x^{3}\right), \mathbb{Z}_{p^{3}}$ or $\mathbb{Z}_{p^{2}}[x] /\left(p x, x^{2}-\varepsilon p\right)$ where $\varepsilon \in \Sigma_{2}^{0}$ with $p^{2}=p+q-1$.

Proposition 2. Let $R$ be a commutative nonlocal ring with $|Z(R)|=p^{5}$ where $p$ is a prime number. Then
(i) $R \cong F_{q_{1}} \times \ldots \times F_{q_{t}}$ with $p^{5}=q_{1} q_{2} \ldots q_{t}-\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$,
(ii) $R \cong R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$ where $R_{1} \cong \mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p}[x] /\left(x^{2}\right)$ with $p^{4}=p q_{1} q_{2} \ldots q_{t}-(p-$ 1) $\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$,
(iii) $R \cong R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$ where $R_{1}$ is isomorphic to one of the rings $\mathbb{Z}_{p^{3}}, F_{p}[x, y] /(x, y)^{2}$, $F_{p}[x] /\left(x^{3}\right)$, or $\mathbb{Z}_{p^{2}}[x] /\left(p x, x^{2}-\varepsilon p\right)$ where $\varepsilon \in \Sigma_{2}^{0}$ and $p^{3}=p q_{1} q_{2} \ldots q_{t}-(p-1)\left(q_{1}-\right.$ 1) $\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$,
(iv) $R \cong R_{1} \times F_{q}$ where $R_{1} \cong F_{p^{2}}[x] /\left(x^{2}\right)$ or $G R\left(p^{4}, p^{2}\right)$ with $p^{3}=p^{2}+q-1$, or
(v) $R \cong R_{1} \times F_{q}$ and $p^{2}=p+q-1$ where $R_{1}$ is isomorphic to one of the local rings of order $p^{4}$ described in Corollary 3.
Proof. By Theorem 4, either $R$ is reduced or $R \cong R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$, where $R_{1}$ is a local ring with $\left|Z\left(R_{1}\right)\right|=p, p^{2}$ or $p^{3}$ and $t \geq 1$. Now we proceed by cases.

- Case $1: R$ is reduced. Then $R \cong F_{q_{1}} \times \ldots \times F_{q_{t}}$ with

$$
p^{5}=q_{1} q_{2} \ldots q_{t}-\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)
$$

- Case 2: $R$ is not reduced and $\left|Z\left(R_{1}\right)\right|=p$. Then by Corollary $1, R_{1}$ is isomorphic to $\mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p}[x] /\left(x^{2}\right)$ and $p^{4}=p q_{1} q_{2} \ldots q_{t}-(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$.
- Case 3: $R$ is not reduced and $\left|Z\left(R_{1}\right)\right|=p^{2}$. Then by Lemma $1,\left|R_{1}\right|=p^{3}$ or $p^{4}$. If $\left|R_{1}\right|=p^{3}$, then by Corollary $2, R_{1}$ is isomorphic to one of the ring $\mathbb{Z}_{p^{3}}, F_{p}[x, y] /(x, y)^{2}$, $F_{p}[x] /\left(x^{3}\right)$, or $\mathbb{Z}_{p^{2}}[x] /\left(p x, x^{2}-\varepsilon p\right)$ where $\varepsilon \in \Sigma_{2}^{0}$ and $p^{3}=p q_{1} q_{2} \ldots q_{t}-(p-1)\left(q_{1}-\right.$ 1) $\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$. If $\left|R_{1}\right|=p^{4}$, then $t=1$, for if not, then by Theorem $2, q_{i}>p$ for some $i$ and hence $|Z(R)|>\left|R_{1}\right| q_{i}>p^{5}$, a contradiction. Thus $t=1$ and so $R \cong R_{1} \times F_{q}$ with $p^{3}=p^{2}+q-1$. Moreover, since $\left|Z\left(R_{1}\right)\right|=p^{2}$ and $\left|R_{1}\right|=p^{4}$, by [9, Theorem 12], $R_{1}$ is isomorphic to $F_{p^{2}}[x] /\left(x^{2}\right)$ or $G R\left(p^{4}, p^{2}\right)$.
- Case 4: $R$ is not reduced and $\left|Z\left(R_{1}\right)\right|=p^{3}$. Then by Lemma $1,\left|R_{1}\right|=p^{4}$ or $p^{6}$. If $\left|R_{1}\right|=p^{6}$, then $|Z(R)| \geq p^{6}$, a contradiction (we note that $t \geq 1$ ). Thus $\left|R_{1}\right|=p^{4}$ and so by Theorem 2, $t=1$, i.e., $R \cong R_{1} \times F_{q}$ with $p^{2}=p+q-1$. Now since $\left|R_{1}\right|=p^{4}$ and $\left|Z\left(R_{1}\right)\right|=p^{3}, R_{1}$ is isomorphic to one of the local rings of order $p^{4}$ described in Corollary 3.

The next theorem characterizes commutative rings with $p^{7}$ zero-divisors.
Theorem 6. Let $R$ be a commutative ring with $|Z(R)|=p^{7}$ where $p$ is a prime number. Then either
(i) $R$ is a local ring with $|R|=p^{8}$ or $p^{14}$;
(ii) $R$ is a reduced ring and so $R \cong F_{q_{1}} \times \ldots \times F_{q_{t}}$, where each $F_{q_{i}}(1 \leq i \leq t)$ is a finite field and $p^{7}=q_{1} q_{2} \ldots q_{t}-\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$;
(iii) $R \cong R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$, where each $F_{q_{i}}(1 \leq i \leq t)$ is a finite field and $R_{1}$ is a local ring with $\left|Z\left(R_{1}\right)\right|=p^{m},\left|R_{1}\right|=p^{n}$ such that $0<m<n \leq 6$ and

$$
p^{7}=p^{n} q_{1} q_{2} \ldots q_{t}-\left(p^{n}-p^{m}\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)
$$

(iv) $R \cong R_{1} \times R_{2} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$, where each $F_{q_{i}}(1 \leq i \leq t)$ is a finite field, each $R_{i}$ is isomorphic to $\mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p}[x] /\left(x^{2}\right)$ and

$$
p^{5}=p^{2} q_{1} q_{2} \ldots q_{t}-(p-1)^{2}\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right) ; \text { or }
$$

(v) $R \cong R_{1} \times R_{2} \times F_{5}$ where $R_{1}$ is isomorphic to one of the rings $\mathbb{Z}_{4}$ or $\mathbb{Z}_{2}[x] /\left(x^{2}\right)$ and $R_{2}$ is isomorphic to one of the rings $\mathbb{Z}_{8}, \mathbb{Z}_{2}[x, y] /(x, y)^{2}, \mathbb{Z}_{2}[x] /\left(x^{3}\right)$, or $\mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2 \varepsilon\right)$ where $\varepsilon \in \Sigma_{2}^{0}$.

Proof. Suppose $|Z(R)|=p^{7}$ and $R$ is not a local ring. If $R$ is reduced, then we are done. Now suppose $R$ is not a reduced ring. Then by Theorem 2 , we can assume that $R \cong R_{1} \times \ldots \times$ $R_{s} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$, where $s, t \geq 1$ and each $R_{i}$ is a local ring with $\left|Z\left(R_{i}\right)\right|=p^{t_{i}},\left|R_{i}\right|=p^{k_{i}}$ for some $t_{i}, k_{i} \geq 1$ such that

$$
1 \leq \sum_{i=1}^{s} t_{i} \leq \sum_{i=1}^{s} k_{i}-s \leq 7-s-1 \leq 7-1-1=5
$$

It follows that $s \leq 5$. We claim that $s=1$ or 2 , for if not either $s \geq 4$ or $s=3$. If $s \geq 4$, then $|Z(R)|>p^{8}$ (because $\left|R_{i}\right| \geq p^{2}$ for all $i$ ), a contradiction. Now let $s=3$. If $\left|Z\left(R_{i}\right)\right|=p^{t_{i}}$ with $t_{i} \geq 2$ for some $i$, then $|Z(R)|>p^{7}$, a contradiction. Thus $\left|Z\left(R_{i}\right)\right|=p$ for $i=1,2,3$. Now by the relation (1) of Theorem 1, we have

$$
p^{7}=p^{6} q_{1} q_{2} \ldots q_{t}-\left(p^{2}-p\right)^{3}\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)
$$

Thus $p^{4}=p^{3} q_{1} q_{2} \ldots q_{t}-(p-1)^{3}\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$ and so $p$ is a divisor of $\left(q_{i}-1\right)$ for some $i$ (so $q_{i}>p$ ). Now if $t \geq 2$, then $|Z(R)| \geq\left|R_{1}\right|\left|R_{2}\right|\left|R_{3}\right| q_{i}>p^{7}$, this is a contradiction. Thus $t=1$ and so the relation $p^{4}=p^{3} q_{1}-(p-1)^{3}\left(q_{1}-1\right)$ implies that $p^{3}$ is a divisor of $\left(q_{1}-1\right)$. Hence $q_{1}>p^{3}$ and so $|Z(R)| \geq\left|Z\left(R_{1}\right)\right|\left|R_{2}\right|\left|R_{3}\right| q_{1}>p^{7}$, a contradiction. Thus $s \leq 2$.

Suppose $s=1$, i.e., $R \cong R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$. Then by Theorem 2, either $R_{1}$ is a local ring with $\left|Z\left(R_{1}\right)\right|=p^{t_{1}}$ where $t_{1}=1,2,3$ or 4 such that

$$
p^{7}=\left|R_{1}\right| q_{1} \times \ldots \times q_{t}-\left(\left|R_{1}\right|-p^{k}\right)\left(q_{1}-1\right) \times \ldots\left(q_{t}-1\right)
$$

or $R \cong R_{1} \times F_{q_{1}}$ where $\left|R_{1}\right|=p^{6},\left|Z\left(R_{1}\right)\right|=p^{5}$ and $p^{2}-p-q_{1}+1=0$.
Now suppose $s=2$. The proof now proceeds by cases.

- Case 1: $t_{1} \geq 3$ or $t_{2} \geq 3$. Without loss of generality we can assume that $t_{1} \geq 3$. Then $\left|R_{1}\right|=p^{k_{1}}$, and $\left|R_{2}\right|=p^{k_{2}}$ where $k_{1} \geq 4$ and $k_{2} \geq 2$. If $k_{1} \geq 5$ or $k_{2} \geq 3$, then $|Z(R)|>\left|R_{1}\right|\left|R_{2}\right| \geq p^{7}$, a contradiction. Now let $k_{1}=4$ and $k_{2}=2$. By Theorem 2, $q_{i}>p$ for some $1 \leq i \leq t$. If $t \geq 2$, then $|Z(R)|>\left|R_{1}\right|\left|R_{2}\right| q_{i} \geq p^{7}$, a contradiction. Thus $t=1$ and so $p^{7}=p^{6} q_{1}-\left(p^{4}-p^{3}\right)\left(p^{2}-p\right)\left(q_{1}-1\right)$. It follows that $p^{2}$ is a divisor of $q_{1}-1$ and so $q_{1}>p^{2}$. Hence $|Z(R)|>\left|Z\left(R_{1}\right)\right|\left|R_{2}\right|\left|F_{q_{1}}\right|>p^{7}$, a contradiction.
- Case 2: $t_{1}=t_{2}=2$ i.e., $\left|Z\left(R_{1}\right)\right|=\left|Z\left(R_{2}\right)\right|=p^{2}$. Then by Lemma $1,\left|R_{1}\right|=p^{k_{1}}$ and $\left|R_{2}\right|=p^{k_{2}}$ where $3 \leq k_{1}, k_{2} \leq 4$. If $k_{1}=4$ or $k_{2}=4$, then $|Z(R)|>\left|R_{1}\right|\left|R_{2}\right| \geq p^{7}$, a contradiction. Now let $k_{1}=k_{2}=3$. By Theorem $2, q_{i}>p$ for some $1 \leq i \leq t$. If $t \geq 2$, then $|Z(R)|>\left|R_{1}\right|\left|R_{2}\right| q_{i} \geq p^{7}$, a contradiction. Thus $t=1$ and so $p^{7}=$ $p^{6} q_{1}-\left(p^{3}-p^{2}\right)^{2}\left(q_{1}-1\right)$. It follows that $p^{2}$ is a divisor of $q_{1}-1$ and so $q_{1}>p^{2}$. Hence $|Z(R)|>\left|Z\left(R_{1}\right)\right|\left|R_{2}\right|\left|F_{q_{1}}\right|>p^{7}$, a contradiction.
- Case 3: $t_{1}=2$ and $t_{2}=1$ or $t_{1}=1$ and $t_{2}=2$. Without loss of generality we can assume that $t_{1}=2$ and $t_{2}=1$. By Lemma 1 , either $\left|R_{1}\right|=p^{3}$ or $\left|R_{1}\right|=p^{4}$ and $\left|R_{2}\right|=p^{2}$. By the proof in Case $1,\left|R_{1}\right| \neq p^{4}$. Thus $\left|R_{1}\right|=p^{3}$ and $\left|R_{2}\right|=p^{2}$ and hence by the relation (2) of Theorem 2 we have

$$
\begin{equation*}
p^{4}=p^{2} q_{1} q_{2} \ldots q_{t}-(p-1)^{2}\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right) \tag{6}
\end{equation*}
$$

It follows that $p^{2}$ is a divisor of $\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$. Without loss of generality we may assume that $p^{2}$ is a divisor of $\left(q_{1}-1\right)$ or $p$ is a divisor of $\left(q_{1}-1\right)$ and $\left(q_{2}-1\right)$. If $t>2$, then $|Z(R)|>\left|R_{1}\right|\left|R_{2}\right|\left|F_{q_{1}}\right|\left|F_{q_{2}}\right| \geq p^{7}$, a contradiction. Thus $t \leq 2$ and so the proof now proceeds by subcases.

- Subcase 1: $t=1$ i.e., $R \cong R_{1} \times R_{2} \times F_{q_{1}}$. Then by (6), we have

$$
\begin{equation*}
p^{4}=p^{2} q_{1}-(p-1)^{2}\left(q_{1}-1\right) \tag{7}
\end{equation*}
$$

This implies that $p^{2}$ is a divisor of $\left(q_{1}-1\right)$. Thus $q_{1}-1=p^{2} k$ for some positive integer $k$ and so by using (7) we obtain $p^{2}-2 p k+k-1=0$. This equation implies that $p$ is a divisor of $k-1$, i.e., $k-1=p \lambda$ for some non-negative integer $\lambda$. It follows that $p$ and $\lambda$ are solutions of $x^{2}-2 k x+k-1=0$ and so $p+\lambda=2 k$. If $\lambda=1$, then $p=k-1$ and $p+1=2 k$ and hence $k=0$, a contradiction. Also, if $\lambda>1$, then $p \lambda \geq p+\lambda$ and so $k \leq-1$, a contradiction. Finally, if $\lambda=0$, then $p=2$ which yields $q_{1}=5$, i.e., $R \cong R_{1} \times R_{2} \times F_{5}$ where $R_{1}$ and $R_{2}$ are local rings with $\left|R_{1}\right|=8$ and $\left|R_{2}\right|=4$. Since $\left|Z\left(R_{1}\right)\right|=4$, by [2, p.687], $R_{1}$ is isomorphic to one of the rings $\mathbb{Z}_{8}, \mathbb{Z}_{2}[x, y] /(x, y)^{2}, \mathbb{Z}_{2}[x] /\left(x^{3}\right)$, or $\mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2 \varepsilon\right)$ where $\varepsilon \in \Sigma_{2}^{0}$. Also, $R_{2}$ is isomorphic to $\mathbb{Z}_{4}$ or $\mathbb{Z}_{2}[x] /\left(x^{2}\right)$.

- Subcase 2: $t=2$ i.e., $R \cong R_{1} \times R_{2} \times F_{q_{1}} \times F_{q_{2}}$. Then by (6), we have

$$
p^{4}=p^{2} q_{1} q_{2}-(p-1)^{2}\left(q_{1}-1\right)\left(q_{2}-1\right) .
$$

Thus $p^{2}$ is a divisor of $\left(q_{1}-1\right)\left(q_{2}-1\right)$. If $p^{2}$ is a divisor of $q_{1}-1$ (or $q_{2}-1$ ), then $q_{1}>p^{2}$ (or $q_{2}>p^{2}$ ) and so $|Z(R)|>\left|R_{1}\right|\left|R_{2}\right|\left|F_{q_{i}}\right|>p^{7}$ where $i=1$ or 2 , this is a contradiction. Thus $p$ is a divisor of both $q_{1}-1$ and $q_{2}-1$. Hence $q_{1}-1=k_{1} p$ and $q_{2}-1=k_{2} p$ for some positive integers $k_{1}$ and $k_{2}$. Then one obtains from (6),

$$
p^{2}=\left(k_{1} p+1\right)\left(k_{2} p+1\right)-(p-1)^{2} k_{1} k_{2}
$$

and hence

$$
\begin{equation*}
p^{2}-\left(k_{1}+k_{2}+2 k_{1} k_{2}\right) p+k_{1} k_{2}-1=0 . \tag{8}
\end{equation*}
$$

Now the equation (8) shows that the integer $p$ is a solution of

$$
\begin{equation*}
X^{2}-\left(k_{1}+k_{2}+2 k_{1} k_{2}\right) X+k_{1} k_{2}-1=0 . \tag{9}
\end{equation*}
$$

Now let $\mu$ be another solution of (9). Clearly $\mu \neq 1, p \mu=k_{1} k_{2}-1>0$ and $p+\mu=k_{1}+k_{2}+2 k_{1} k_{2}$. It follows that $\mu$ is an integer $\geq 2$ and hence $p \mu \geq p+\mu$, i.e., $k_{1} k_{2}-1>k_{1}+k_{2}+2 k_{1} k_{2}$, a contradiction (since $k_{1}, k_{2} \geq 1$ ).

- Case 4: $t_{1}=t_{2}=1$ i.e., $\left|Z\left(R_{1}\right)\right|=\left|Z\left(R_{2}\right)\right|=p$ and $R \cong R_{1} \times R_{2} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$ with $p^{5}=p^{2} q_{1} q_{2} \ldots q_{t}-(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$. On the other hand by by [2, p.687], $R_{1}$ is isomorphic to $\mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p}[x] /\left(x^{2}\right)$.

Finally, we conclude the article with the next remark which is a good justification for the classification up to isomorphism commutative rings with $p_{1}{ }^{k_{1}} \ldots p_{n}{ }^{{ }^{k}}$ zero-divisors, where $1 \leq k_{i} \leq 5$.

Remark 1. We remark that by Propositions 1 and 2, for classifying up to isomorphism commutative rings with $p_{1}{ }^{k_{1}} \ldots p_{n}{ }^{k_{n}}$ zero-divisors, where $1 \leq k_{i} \leq 5$, it suffices to find local rings with $|R|=p^{6},|Z(R)|=p^{4}$ and $|R|=p^{6},|Z(R)|=p^{5}$. In fact, if $R$ is a local ring with $|Z(R)|=p^{4}$, then by Lemma $1,|R|=p^{5}, p^{6}$ or $p^{8}$. The local rings of order $p^{5}$ is determined in [3]. Also, if $|R|=p^{8}$, then by [9, Theorem 12], $R$ is isomorphic to the Galois ring $G R\left(p^{8}, p^{2}\right)$ or $F_{p^{4}}[x] /\left(x^{2}\right)$. On the other hand, if $R$ is a local ring with $|Z(R)|=p^{5}$, then by Lemma $1,|R|=p^{6}$ or $p^{10}$. If $|R|=p^{10}$, then by [9, Theorem 12], $R$ is isomorphic to the Galois ring $G R\left(p^{10}, p^{2}\right)$ or $F_{p^{5}}[x] /\left(x^{2}\right)$.

ACKNOWLEDGEMENTS This work was partially supported by IUT (CEAMA). The research of the first author was in part supported by a grant from IPM (No. 87160026).

## References

[1] D.F. Anderson, A. Farzier, A. Lauve, and P.S. Livingston, The zero-divisor graph of a commutative ring, II, Lecture notes in pure and appl. Math. 202 (2001), 61-72, Marcel Dekker, New York.
[2] B. Corbas and G.D. Williams, Rings of order $p^{5}$ Part I. Nonlocal rings, J. Algebra, 231 (2000), 677-690.
[3] B. Corbas and G.D. Williams, Rings of order $p^{5}$ Part II. Local rings, J. Algebra, 231 (2000), 691-704.
[4] B. Corbas, Rings with few zero-divisors, Math. Ann. 181 (1) (1969), 1Ű7.
[5] N. Ganesan, Properties of rings with a finite number of zero-divisors, Math. Ann. 157 (1964), 215Ű218.
[6] R. Gilmer, Zero-divisors in commutative rings. The American Mathematical Monthly, 93 (5) (1986), 382-387.
[7] K. Koh, On properties of rings with a finite number of zero-divisors, Math. Ann. 171 (1967), 79-80.
[8] B.R. McDonald, Finite rings with identity (Marcell Dekker, New York, 1974).
[9] R. Raghavendran, Finite associative rings, Compositio Math. 21 (1969), 195-229.
[10] S.P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31 (2003), 4425-4443.
[11] S.P. Redmond, On zero-divisor graphs of small finite commutative rings. Discrete Math. 307 (2007), 1155-1166.


[^0]:    *Corresponding author.

    Email addresses: mbehbood@cc.iut.ac.ir (M. Behboodi), r_beyranvand@math.iut.ac.ir (R. Beyranvand)

