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Abstract. This article establishes Mangasarian-type second and higher-order dual formulations
for a multi-objective mathematical program with complementarity constraints (MMPCC) by uti-
lizing µ-stationary conditions. Subsequently, we present several duality theorems for the second
and higher-order duals of (MMPCC) under υ-bonvexity assumptions. These results are further
illustrated with appropriate examples.
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1. Introduction

In the past thirty years, researchers have made a lot of progress in solving multi-objective
problems, especially in understanding the conditions that ensure good solutions and in
developing related duality theories. These problems are important in areas like psychology,
economics, and operations research. What makes them challenging is the need to optimize
more than one objective at the same time. Often, improving one goal can worsen another,
creating a conflict between the objectives. Because of these challenges, a lot of work has
been done to build better theories and tools to deal with such problems (see [1–3] for more
information).

Another area that has received attention is mathematical programming with complemen-
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tarity constraints (MPCC). These problems show up in real-world applications like engi-
neering systems and economic models [4]. An MPCC is a kind of optimization problem
that has both equality and inequality constraints, and its structure resembles the condi-
tions needed for solving constrained optimization problems. However, MPCCs are tricky
because they usually don’t satisfy the common assumptions needed to apply standard
solution techniques, like the Mangasarian-Fromovitz constraint qualification [5]. Despite
these challenges, MPCCs are widely used in practice-for instance, in natural gas network
modeling [6], electricity market operations [7], and optimal control tasks [8].

From a theoretical and computational standpoint, MPCCs are hard to solve. The special
structure of complementarity constraints means that the usual optimality conditions, like
the Karush-Kuhn-Tucker (KKT) conditions, often don’t apply directly refer to [9, 10].
Because of this, researchers have proposed new types of conditions tailored to MPCCs
e.g., [11–13].

Scheel and Scholtes [14] pointed out that progress in theory and numerical methods for
MPCCs go hand in hand. Techniques like using stationarity conditions or penalty func-
tions have helped in solving these problems. For example, Scholtes [15] studied how a
sequence of approximations behaves when using a nonlinear programming approach to
regularize complementarity constraints. Ahmad et al. [16] introduced a generalized class
of higher-order (F, α, ρ, d)-type I functions and developed a Mond–Weir type higher-order
dual model for nondifferentiable multiobjective programming problems, establishing sev-
eral higher-order duality relations. Further, Ahmad et al. [17] proposed a unified higher-
order dual formulation for nondifferentiable minimax programming problems, where weak,
strong, and strict converse duality theorems were derived using the framework of general-
ized higher-order (F, α, ρ, d)-type I functions.

Later, Fletcher and Leyffer [18] handled MPCCs by converting them into nonlinear pro-
gramming (NLP) problems that can be solved with existing tools. Anitescu [19] proposed
sufficient conditions under which solutions still exist even when standard assumptions
break down. They also showed that using an elastic mode approach can lead to a valid
solution under certain penalty settings.

In classical multi-objective optimization, several dual and efficiency frameworks, such as
the Wolfe-type and Mond-Weir-type models, have been widely used to characterize op-
timality under convexity assumptions [20, 21]. These approaches, however, are generally
limited to problems without complementarity structures and rely on first or second-order
differentiability. Later developments, including the second-order Mangasarian dual model,
incorporated quadratic curvature information to tighten the dual bounds. Building on
these, the present study introduces Mangasarian-type second and higher-order dual for-
mulations for multi-objective mathematical programs with complementarity constraints
(MMPCC), integrating µ-stationarity and υ-bonvexity assumptions to capture both cur-
vature and complementarity effects in a unified framework. This provides a stronger
characterization of Pareto-optimal solutions and generalizes existing models.
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This paper aims to build on this work by developing Mangasarian-type second and higher-
order dual models for a multi-objective problem with complementarity constraints (MM-
PCC), using µ-stationary conditions. As far as we know, this approach has not yet been
studied in the literature.

The structure of the paper is as follows: Section 2 gives the basic definitions. Sections 3
and 4 introduce the second and higher-order dual models for MMPCC and provide duality
results. Section 5 explores special cases, and Section 6 concludes the paper.

2. Preliminaries

For c, λ ∈ Rn, we define the following ordering relations for vectors in Rn:

c ≧ λ⇐⇒ cp ≧ λp, ∀p ∈ 1, 2, ..., n;

c ≥ λ⇐⇒ cp ≧ λp, ∀p ∈ 1, 2, ..., n, but c ̸= λ;

c > λ⇐⇒ cp > λp, ∀p ∈ 1, 2, ..., n.

The negation of c ≥ λ is denoted by c ≱ λ. The index sets are ξ = {1, 2, ...., f0},
W = {1, 2, ...., g}, D = {1, 2, ...., h} and M = {1, 2, ....,m0}, for each t ∈ ξ, ξt = ξ − {t}.
Let ∇Ψ(ε) and ∇2Ψ(ε) be the gradient and n × n symmetric Hessian matrix of Ψ at ε.
For a given mapping ψ : Rn → Rm, ∇ψ(ε) stands for the transposed Jacobian of ψ at ε.
For a multi-variable function H, let ∇H and ∇H2 represent the gradient and the Hessian
matrix of H with respect to the first argument, respectively. Let ηT be the transpose of
the vector η, and η ≧ 0 implies that the vector η is component-wise nonnegative. Given
a symmetric matrix E, the matrix E is positive semi-definite (positive definite) if E ⪰ 0
(≻ 0). Let Im(E) denote the image of the matrix E. Let Rn+ be a non-negative orthant of
an n-dimensional Euclidean space Rn.
Let us study the below given multi-objective mathematical program involving complemen-
tarity constraints:

(MMPCC) min
ε∈Rn

Ψ(ε) = (Ψ1(ε),Ψ2(ε), ...,Ψf0(ε))

subject to

φ(ε) ≦ 0,

Φ(ε) = 0,

0 ≦ Π(ε) ⊥ Θ(ε) ≧ 0,

where Ψt : R
n → R, t = 1, 2, ..., f0, φ : Rn → Rg, Φ : Rn → Rh and Π,Θ : Rn → Rm0 are

twice differentiable functions, and Π(ε) ⊥ Θ(ε) implies that the vectors Π(ε) and Θ(ε) are
perpendicular namely, Π(ε)TΘ(ε) = 0.
Let us study the below given nonlinear multi-objective programming problem:

(MP) min
ε∈Rn

Ψ(ε) = (Ψ1(ε),Ψ2(ε), ...,Ψf0(ε))

subject to
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φ(ε) ≦ 0.

where Ψt, t = 1, 2, ..., f0, and φ are differentiable functions from Rn → R and Rm0 ,
respectively. From the sub-problems of two algorithms in [22, 23], Mangasarian [24], we
consider the below mentioned second-order dual problem for (MP) :

(MD) max
ε,ς,δ∈Rn

(
Ψ1(ε) + δTφ(ε)−

1

2
ςT [∇2Ψ1(ε) +∇2φ(ε)]ς, . . . . ,

Ψf0(ε) + δTφ(ε)−
1

2
ςT [∇2Ψf0(ε) +∇2φ(ε)]ς

)

subject to

f0∑
t=1

Λt[∇Ψt(ε) +∇2Ψt(ε)ς] + [∇δTφ(ε) +∇2δTφ(ε)ς] = 0,

Λt > 0,

f0∑
t=1

Λt = 1, δ ≧ 0.

On the lines of Mangasarian [24], we present the below given higher-order dual problem
for (MP):

(HD1) max
ε,ς,δ∈Rn

(
Ψ1(ε) + ξ1(ε, ς) + δTφ(ε) + δT ξφ(ε, ς), . . . ,

Ψf0(ε) + ξf0(ε, ς) + δTφ(ε) + δT ξφ(ε, ς)

)
subject to

f0∑
t=1

Λt∇ςξt(ε, ς) +∇ςδ
T ξφ(ε, ς) = 0,

Λt > 0,

f0∑
t=1

Λt = 1, δ ≧ 0.

by employing approximations Ψt(ε)+ξt(ε, ς) to Ψt, t = 1, 2, ..., f0, and φ(ε)+ξφ(ε, ς) to φ,
respectively, where ξt : Rn × Rn → R, t = 1, 2, ..., f0, ξφ = (ξφ1 , ..., ξφg)

T : Rn × Rn → Rg
are differentiable functions and ∇ςξt(ε, ς) denotes the gradient of ξt(ε, ς) with respect to
ς, and various duality theorems are proved by using some assumptions. Throughout this
article, we represent the feasible set of (MMPCC) by Y.

Definition 1. An element ε0 ∈ Y is termed as an efficient (Pareto optimal, noninferior,
nondominated) solution of (MMPCC), if there exists no other ε ∈ Y such that

Ψt(ε) ≦ Ψt(ε0), for all t ∈ ξ,

Ψℓ(ε) < Ψℓ(ε0), for atleast one ℓ ∈ ξt.
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For a given feasible solution ε0 ∈ Y, we define the subsequent index sets:

Jφ(ε
0) ={ȷ : φȷ(ε0) = 0},

P(ε0) ={ȷ : Πȷ(ε0) = 0 < Θȷ(ε
0)},

Q(ε0) ={ȷ : Πȷ(ε0) = 0 = Θȷ(ε
0)},

U(ε0) ={ȷ : Πȷ(ε0) > 0 = Θȷ(ε
0)}.

It is obvious that P(ε0),Q(ε0),U(ε0) is a partition of 1, 2, ...,m0. The Lagrangian function
of (MMPCC) is defined in the following way:

Ω0(ε,Λ, δ, σ, ψa, ψb) =

f0∑
t=1

ΛtΨt(ε) + δTφ(ε) + σTΦ(ε)− ψa
TΠ(ε)− ψb

TΘ(ε), (1)

∇Ω0(ε,Λ, δ, σ, ψa, ψb) =

f0∑
t=1

Λt∇Ψt(ε) +∇δTφ(ε) +∇σTΦ(ε)−∇ψaTΠ(ε)−∇ψbTΘ(ε),

∇2Ω0(ε,Λ, δ, σ, ψa, ψb) =

f0∑
t=1

Λt∇2Ψt(ε) +∇2δTφ(ε) +∇2σTΦ(ε)−∇2ψa
TΠ(ε)

−∇2ψb
TΘ(ε).

On the lines of Zhang and Lin [25], we recall the µ-stationary criteria for (MMPCC) and
definitions of υ-bonvex and higher-order type I functions.

Definition 2. Let ε∗ ∈ Y be a µ-stationary point of (MMPCC). If there exists a multiplier
vector (Λ, δ, σ, ψa, ψb) ∈ R(f0) × Rg × Rh × Rm0 × Rm0 satisfying

f0∑
t=1

Λt∇Ψt(ε
∗) +∇δTφ(ε∗) +∇σTΦ(ε∗)−∇ψaTΠ(ε∗)−∇ψbTΘ(ε∗) = 0,

δ ≧ 0, φ(ε∗)T δ = 0,

(ψa)ȷ = 0, ȷ ∈ U(ε∗),

(ψb)ȷ = 0, ȷ ∈ P(ε∗),

(ψa)ȷ = 0, (ψb)ȷ = 0, ȷ ∈ Q(ε∗).

Definition 3. ([26]) A real valued twice-differentiable function Ψt : Y → R on an open
set Y ⊆ Rn is said to be υ-bonvex at ϖ ∈ Y, if there exists υ(ε,ϖ) : Y ×Y → Rn such
that for all ς ∈ Rn,

Ψt(ε)−Ψt(ϖ) ≥ [υ(ε,ϖ)]T [∇Ψt(ϖ) +∇2Ψt(ϖ)ς]−
1

2
ςT∇2Ψt(ϖ)ς, ∀ε ∈ Y
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If the strict inequality holds for all ε ̸= ϖ in the above definition, the function is said to
be strictly υ-bonvex.
The following result gives a judgment about υ-bonvex functions.

Proposition 1. ([26]) A function Ψ is υ-bonvex at ϖ if and only if ∇2Ψ(ϖ) ⪰ 0 and either

∇Ψ(ϖ) /∈ Im∇2Ψ(ϖ), or ∇Ψ(ϖ) ∈ Im∇2Ψ(ϖ) and Ψ(ε) ≥ Ψ(ϖ)−
1

2

〈
Ξ,∇2Ψ(ϖ)Ξ

〉
for

every ε ∈ Y, where ∇2Ψ(ϖ)Ξ = ∇Ψ(ϖ).

Replacing ε ∈ Y by ε ∈ Y \ϖ and ≥ by >, respectively, in the above result, one gets the
characterization of strictly υ-bonvex functions.
We next give a strictly convex quadratic function that is strictly υ-bonvex and will be
used later.

Corollary 1. ([25]) Suppose that Ψ : Rn → R with Ψ(ε) =
1

2
⟨ε,Eε⟩ + ⟨b, ε⟩ + ω, where

E ≻ 0, b ∈ Rn and ω ∈ R. Then Ψ is υ-bonvex at each ε ∈ Rn and strictly υ-bonvex at
every ε ∈ Rn \ {−E−1b}.

Definition 4. ([21]) Let Ψ(ε) be a differentiable function on an open set Y ⊆ Rn. The
function Ψ is said to be higher-order type I at ε∗ ∈ Y if there exists υ(ε,ϖ) : Y×Y → Rn
such that for all ς ∈ Rn and ε ∈ Y,

Ψ(ε)−Ψ(ε∗) ≥ [υ(ε, ε∗)]T∇ςξ(ε
∗, ς) + ξ(ε∗, ς)− ςT∇ςξ(ε

∗, ς),

where Ψ(ε)+ξ(ε, ς) is an approximation of Ψ(ε). If the strict inequality holds for all ε ̸= ϖ
in the above definition, the function is said to be strictly higher-order type I.

3. Mangasarian-type second-order duality

The present section deals with the Mangasarian-type second-order dual problem for (MM-
PCC) and proves theorems of duality based on υ-bonvexity assumptions. The Mangasarian-
type second-order dual problem is a powerful approach in mathematical programming,
particularly in multi-objective and complementarity-constrained optimization. It is useful
in scenarios where convexity and second-order conditions play a crucial role in stability
and optimality.

Example 1. (Application of the Mangasarian-Type Second-Order Dual Problem:) A
multinational retail company operates a supply chain network involving multiple ware-
houses and retail stores. The objective is to minimize operational costs while maximizing
service level across different regions. However, the supply chain system follows market
equilibrium constraints, where supply and demand must balance at optimal prices.
Mathematical Formulation:

(MMPCC-1) min
ε∈Rn

Ψ(ε) = (Ψ1(ε),Ψ2(ε))

subject to
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φ(ε) ≦ 0,

Φ(ε) = 0,

0 ≦ Π(ε) ⊥ Θ(ε) ≧ 0,

where Ψ1(ε) represent the total cost of operations (transportation, inventory, and produc-
tion costs) and Ψ2(ε) is the service level index (e.g., customer demand fulfillment). The
constraints include:
• Capacity constraints: φ(ε) ≦ 0 (e.g., warehouse limits, transportation limits).
• Market equilibrium constraints: Φ(ε) = 0 (e.g., supply-demand matching).
• Complementarity constraints: 0 ≦ Π(ε) ⊥ Θ(ε) ≧ 0 (e.g., pricing effects on supply-
demand interactions).
Mangasarian-Type Second-Order Dual Formulation

(MSD)-1 max
(ϖ,ς,δ,σ,ψa,ψb)

(
Ψ1(ϖ) + δTφ(ϖ) + σTΦ(ϖ)− ψa

TΠ(ϖ)− ψb
TΘ(ϖ),

Ψ2(ϖ) + δTφ(ϖ) + σTΦ(ϖ)− ψa
TΠ(ϖ)− ψb

TΘ(ϖ)

)

−
1

2
ςT

(
∇2Ψ1(ϖ) +∇2δTφ(ϖ) +∇2σTΦ(ϖ)−∇2ψa

TΠ(ϖ)−∇2ψb
TΘ(ϖ),

∇2Ψ2(ϖ) +∇2δTφ(ϖ) +∇2σTΦ(ϖ)−∇2ψa
TΠ(ϖ)−∇2ψb

TΘ(ϖ)

)
ς,

where ϖ, ς ∈ Rn, and δ ∈ Rm0, σ ∈ Rh, ψa ∈ Rm0 , and ψb ∈ Rm0. This dual problem helps
identify optimal supply chain strategies while ensuring that product prices and inventory
levels are balanced to avoid excess stock or shortages, with complementarity constraints.
Additionally, it considers second-order curvature effects, capturing sensitivity to small
changes in inventory, transport, and pricing.

We give the subsequent first-order Wolfe-type dual problem for (MMPCC) along the lines
of Guo et al. [20].

(MFD) max
(ε,δ,σ,ψa,ψb)

(
Ψ1(ε) + δTφ(ε) + σTΦ(ε)− ψa

TΠ(ε)− ψb
TΘ(ε),

, . . . ,Ψf0(ε) + δTφ(ε) + σTΦ(ε)− ψa
TΠ(ε)− ψb

TΘ(ε)

)
subject to

f0∑
t=1

Λt∇Ψt(ε) +∇δTφ(ε) +∇σTΦ(ε)−∇ψaTΠ(ε)−∇ψbTΘ(ε) = 0,

Λ > 0,

f0∑
t=1

Λt = 1, δ ≧ 0, ψa ≧ 0, ψb ≧ 0.
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The second-order dual problem of (MMPCC) on the lines of Guo et al. [20] and Man-
gasarian [24] is defined as follows:

(MSD) max
(ϖ,ς,δ,σ,ψa,ψb)

(
Ψ1(ϖ) + δTφ(ϖ) + σTΦ(ϖ)− ψa

TΠ(ϖ)− ψb
TΘ(ϖ),

, . . . ,Ψf0(ϖ) + δTφ(ϖ) + σTΦ(ϖ)− ψa
TΠ(ϖ)− ψb

TΘ(ϖ)

)

−
1

2
ςT

(
∇2Ψ1(ϖ) +∇2δTφ(ϖ) +∇2σTΦ(ϖ)−∇2ψa

TΠ(ϖ)−∇2ψb
TΘ(ϖ)

, . . . ,∇2Ψf0(ϖ) +∇2δTφ(ϖ) +∇2σTΦ(ϖ)−∇2ψa
TΠ(ϖ)−∇2ψb

TΘ(ϖ)

)
ς

subject to

f0∑
t=1

Λt

(
∇Ψt(ϖ) +∇2Ψt(ϖ)ς

)
+∇δTφ(ϖ) +∇2δTφ(ϖ)ς +∇σTΦ(ϖ) +∇2σTΦ(ϖ)ς

−∇ψaTΠ(ϖ)−∇2ψa
TΠ(ϖ)ς −∇ψbTΘ(ϖ)−∇2ψb

TΘ(ϖ)ς = 0, (2)

Λ > 0,

f0∑
t=1

Λt = 1, δ ≧ 0, ψa ≧ 0, ψb ≧ 0,

where ϖ, ς ∈ Rn, t ∈ ξ and δ ∈ Rm0 . We represent the feasible region of (MSD) by FMSD.
Let FMSD(ϖ) = {ϖ : (ϖ, ς,Λ, δ, σ, ψa, ψb) ∈ FMSD}. Observe that the above duality
problem is associated to the µ-stationary criteria of (MMPCC). The basic notion in the
proof of weak duality result is similar to Theorem 1 in Guo et al. [20]

Theorem 1. (Weak duality) Let ε and (ϖ, ς,Λ, δ, σ, ψa, ψb) be feasible solutions for (MM-
PCC) and (MSD), respectively. Suppose that functions Ψt, t ∈ ξ, φȷ, ȷ ∈ W, Φν , −Φν , ν ∈
D, −Πγ and −Θγ , γ ∈ M are υ-bonvex functions at ϖ. Then, the following cannot hold:

Ψt(ε) ≦ Ψt(ϖ) + δTφ(ϖ) + σTΦ(ϖ)− ψa
TΠ(ϖ)− ψb

TΘ(ϖ)

−
1

2
ςT

(
∇2Ψt(ϖ)+∇2δTφ(ϖ)+∇2σTΦ(ϖ)−∇2ψa

TΠ(ϖ)−∇2ψb
TΘ(ϖ)

)
ς, for all t ∈ ξ,

(3)
and

Ψℓ(ε) < Ψℓ(ϖ) + δTφ(ϖ) + σTΦ(ϖ)− ψa
TΠ(ϖ)− ψb

TΘ(ϖ)

−
1

2
ςT

(
∇2Ψt(ϖ) +∇2δTφ(ϖ) +∇2σTΦ(ϖ)−∇2ψa

TΠ(ϖ)−∇2ψb
TΘ(ϖ)

)
ς, (4)

for atleast one ℓ ∈ ξt.
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Proof. Suppose to the contrary that (3) and (4) hold, that is,

Ψt(ε) ≦ Ψt(ϖ) + δTφ(ϖ) + σTΦ(ϖ)− ψa
TΠ(ϖ)− ψb

TΘ(ϖ)

−
1

2
ςT

(
∇2Ψt(ϖ)+∇2δTφ(ϖ)+∇2σTΦ(ϖ)−∇2ψa

TΠ(ϖ)−∇2ψb
TΘ(ϖ)

)
ς, for all t ∈ ξ,

and
Ψℓ(ε) < Ψℓ(ϖ)) + δTφ(ϖ) + σTΦ(ϖ)− ψa

TΠ(ϖ)− ψb
TΘ(ϖ)

−
1

2
ςT

(
∇2Ψt(ϖ)+∇2δTφ(ϖ)+∇2σTΦ(ϖ)−∇2ψa

TΠ(ϖ)−∇2ψb
TΘ(ϖ)

)
ς, for atleast one ℓ ∈ ξt.

Because Λ > 0 and
∑f0

t=1 Λt = 1, the above inequalities yield

f0∑
t=1

ΛtΨt(ε) <

f0∑
t=1

(
ΛtΨt(ϖ)−

1

2
ςT∇2Ψt(ϖ)ς

)
+ δTφ(ϖ)−

1

2
ςT∇2δTφ(ϖ)ς + σTΦ(ϖ)−

1

2
ςT∇2σTΦ(ϖ))ς − ψa

TΠ(ϖ) +
1

2
ςT∇2ψa

TΠ(ϖ)ς − ψb
TΘ(ϖ)−

1

2
ςT∇2ψb

TΘ(ϖ)ς. (5)

We introduce the index sets in the following manner:

Γ+ = {ν : σν ≥ 0}, Γ− = {ν : σν ≤ 0},
ϑ+ = {γ : (ψa)γ > 0, (ψb)γ > 0}, ϑ0 = {γ : (ψa)γ = 0, (ψb)γ = 0},
ϑ+Θ = {γ : (ψa)γ = 0, (ψb)γ > 0}, ϑ+Π = {γ : (ψa)γ > 0, (ψb)γ = 0}.

Since Ψ, φȷ, Φν , −Φν , −Πγ and −Θγ are υ-bonvex functions at ϖ, for any ε ∈ Y and
ϖ ∈ FMSD(ϖ), we have

Ψt(ε)−Ψt(ϖ) ≧ [υ(ε,ϖ)]T [∇Ψt(ϖ) +∇2Ψt(ϖ)ς]−
1

2
ςT∇2Ψt(ϖ)ς, (6)

φȷ(ε)− φȷ(ϖ) ≧ [υ(ε,ϖ)]T [∇φȷ(ϖ) +∇2φȷ(ϖ)ς]−
1

2
ςT∇2φȷ(ϖ)ς, ∀ȷ ∈ {1, 2, ..., g}, (7)

Φν(ε)− Φν(ϖ) ≧ [υ(ε,ϖ)]T [∇Φν(ϖ) +∇2Φν(ϖ)ς]−
1

2
ςT∇2Φν(ϖ)ς, ∀ν ∈ Γ+, (8)

−Φν(ε) + Φν(ϖ) ≧ [υ(ε,ϖ)]T [−∇Φν(ϖ)−∇2Φν(ϖ)ς] +
1

2
ςT∇2Φν(ϖ)ς, ∀ν ∈ Γ−, (9)

−Πγ(ε) + Πγ(ϖ) ≧ [υ(ε,ϖ)]T [−∇Πγ(ϖ)−∇2Πγ(ϖ)ς] +
1

2
ςT∇2Πγ(ϖ)ς, ∀γ ∈ ϑ+ ∪ ϑ+Π,

(10)

−Θγ(ε) + Θγ(ϖ) ≧ [υ(ε,ϖ)]T [−∇Θγ(ϖ)−∇2Θγ(ϖ)ς] +
1

2
ςT∇2Θγ(ϖ)ς, ∀γ ∈ ϑ+ ∪ ϑ+Θ.

(11)
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Multiplying inequalities (6)–(11) by Λt > 0, t ∈ ξ, δȷ(ȷ ∈ {1, 2, ..., g}), σν(ν ∈ Γ+),
−σν(ν ∈ Γ−), (ψa)γ(γ ∈ ϑ+∪ϑ+Π), and (ψb)γ(γ ∈ ϑ+∪ϑ+Θ), respectively, and adding, then
we obtain, the subsequent inequality

f0∑
t=1

Λt

(
Ψt(ε)−Ψt(ϖ) +

1

2
ςT∇2Ψt(ϖ)ς

)
+ δTφ(ε)− δTφ(ϖ) +

1

2
ςT∇2δTφ(ϖ)ς

σTΦ(ε)−σTΦ(ϖ)+
1

2
ςT∇2σTΦ(ϖ)ς−ψaTΠ(ε)+ψaTΠ(ϖ)−

1

2
ςT∇2ψa

TΠ(ϖ)ς−ψbTΘ(ϖ)

+ψb
TΘ(ϖ)−

1

2
ςT∇2ψb

TΘ(ϖ)ς ≧ [υ(ε,ϖ)]T
[ f0∑
t=1

Λt

(
∇Ψt(ϖ) +∇2Ψt(ϖ)ς

)
+∇δTφ(ϖ)

+∇2δTφ(ϖ)ς +∇σTΦ(ϖ) +∇2σTΦ(ϖ)ς −∇ψaTΠ(ϖ)−∇2ψa
TΠ(ϖ)ς

−∇ψbTΘ(ϖ)−∇2ψb
TΘ(ϖ)ς

]
. (12)

Since ε and (ϖ, ς, δ, σ, ψa, ψb) are feasible solutions for (MMPCC) and (MSD), respectively,
we imply that φ(ε) ≦ 0, Φ(ε) = 0, Π(ε) ≧ 0, Θ(ε) ≧ 0, δ ≧ 0, ψa ≧ 0, ψb ≧ 0, whence

δTφ(ε) + σTΦ(ε)− ψa
TΠ(ε)− ψb

TΘ(ε) ≦ 0. (13)

The inequality (12), in view of (5) and (13), gives

f0∑
t=1

Λt

(
∇Ψt(ϖ) +∇2Ψt(ϖ)ς

)
+∇δTφ(ϖ) +∇2δTφ(ϖ)ς +∇σTΦ(ϖ)+

∇2σTΦ(ϖ)ς −∇ψaTΠ(ϖ)−∇2ψa
TΠ(ϖ)ς −∇ψbTΘ(ϖ)−∇2ψb

TΘ(ϖ)ς < 0,

which is a contradiction to (2). Thus, the proof of the theorem is validated.

Now, we provide an algorithm for the Mangasarian-type second-order weak duality theo-
rem in the following way.

Algorithm 1: Algorithm of Mangasarian-type second-order weak duality

Input:

• Objective function of the primal problem:

min
ε∈Rn

Ψ(ε) = (Ψ1(ε),Ψ2(ε), ...,Ψs(ε))

• Set of constraints of the primal problem:

φ(ε) ≦ 0,
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Φ(ε) = 0,

0 ≦ Π(ε) ⊥ Θ(ε) ≧ 0.

• Feasible point for primal problem:

Y = {ε ∈ Rn : φ(ε) ≦ 0,Φ(ε) = 0, 0 ≦ Π(ε) ⊥ Θ(ε) ≧ 0}.

• Set of self data of the primal problem:

Ψt : R
n → R, t = 1, 2, ..., f0, φ : Rn → Rg,Φ : Rn → Rh and Π,Θ : Rn → Rm0

are twice differentiable functions, and Π(ε) ⊥ Θ(ε) implies that the vectors Π(ε) and Θ(ε)
are perpendicular namely, Π(ε)TΘ(ε) = 0.
• Objective function of the Mangasarian-type second-order dual problem:

max
(ϖ,ς,δ,σ,ψa,ψb)

(
Ψ1(ϖ) + δTφ(ϖ) + σTΦ(ϖ)− ψa

TΠ(ϖ)− ψb
TΘ(ϖ),

, . . . ,Ψf0(ϖ) + δTφ(ϖ) + σTΦ(ϖ)− ψa
TΠ(ϖ)− ψb

TΘ(ϖ)

)

−
1

2
ςT

(
∇2Ψ1(ϖ) +∇2δTφ(ϖ) +∇2σTΦ(ϖ)−∇2ψa

TΠ(ϖ)−∇2ψb
TΘ(ϖ)

, . . . ,∇2Ψf0(ϖ) +∇2δTφ(ϖ) +∇2σTΦ(ϖ)−∇2ψa
TΠ(ϖ)−∇2ψb

TΘ(ϖ)

)
ς.

• Set of constraints of the Mangasarian-type second-order dual problem:

f0∑
t=1

Λt

(
∇Ψt(ϖ) +∇2Ψt(ϖ)ς

)
+∇δTφ(ϖ) +∇2δTφ(ϖ)ς +∇σTΦ(ϖ) +∇2σTΦ(ϖ)ς

−∇ψaTΠ(ϖ)−∇2ψa
TΠ(ϖ)ς −∇ψbTΘ(ϖ)−∇2ψb

TΘ(ϖ)ς = 0,

Λ > 0,

f0∑
t=1

Λt = 1, δ ≧ 0, ψa ≧ 0, ψb ≧ 0,

where ϖ, ς ∈ Rn, t ∈ ξ and δ ∈ Rm0 .
• Feasible point for Mangasarian-type second-order dual problem:

FMSD(ϖ) = {ϖ : (ϖ, ς,Λ, δ, σ, ψa, ψb) ∈ FMSD}.

• Set of self data of the Mangasarian-type second-order dual problem:
Ψt, t ∈ ξ, φȷ, ȷ ∈ W, Φν , −Φν , ν ∈ D, −Πγ and −Θγ , γ ∈ M are υ-bonvex functions at ϖ.
• Primal objective function:

Ψ1(ε),Ψ2(ε), . . . ,Ψs(ε).
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• Mangasarian-type second-order dual objective function:

Ψ1(ϖ) + δTφ(ϖ) + σTΦ(ϖ)− ψa
TΠ(ϖ)− ψb

TΘ(ϖ)

, . . . ,Ψf0(ϖ) + δTφ(ϖ) + σTΦ(ϖ)− ψa
TΠ(ϖ)− ψb

TΘ(ϖ).

• Mangasarian-type second-order weak duality condition:

Ψt(ε) ≦ Ψt(ϖ) + δTφ(ϖ) + σTΦ(ϖ)− ψa
TΠ(ϖ)− ψb

TΘ(ϖ)

−
1

2
ςT

(
∇2Ψt(ϖ)+∇2δTφ(ϖ)+∇2σTΦ(ϖ)−∇2ψa

TΠ(ϖ)−∇2ψb
TΘ(ϖ)

)
ς, for all t ∈ ξ

and
Ψℓ(ε) < Ψℓ(ϖ) + δTφ(ϖ) + σTΦ(ϖ)− ψa

TΠ(ϖ)− ψb
TΘ(ϖ)

−
1

2
ςT

(
∇2Ψt(ϖ) +∇2δTφ(ϖ) +∇2σTΦ(ϖ)−∇2ψa

TΠ(ϖ)−∇2ψb
TΘ(ϖ)

)
ς,

for atleast one ℓ ∈ ξt cannot hold.
Output:
Mangasarian-type second-order weak duality holds if the Mangasarian-type second-order
weak duality condition holds: Mangasarian-type second-order weak duality does not hold
if the Mangasarian-type second-order weak duality condition does not holds:
Begin

• Selection Stage: Select feasible points ε and (ϖ, ς,Λ, δ, σ, ψa, ψb)

of the problems (MMPC) and (MSD) ;

if Ψt, t ∈ ξ, φ0
U, φȷ, ȷ ∈ W,−Φν , ν ∈ D,−Πγ ,−Θγ , γ ∈ M, are υ−

bonvex at ϖ;

then Proceed to Screening Stage;

else Stop;

end if

• Screening Stage: detecting twice differentiable functions on Rn

if the self data is satisfied;

then Proceed to Conclusive Stage;

else Stop;

end if

• Conclusive Stage: if Ψt(ε) ≦ Ψt(ϖ) + δTφ(ϖ) + σTΦ(ϖ)− ψa
TΠ(ϖ)− ψb

TΘ(ϖ)
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−
1

2
ςT

(
∇2Ψt(ϖ) +∇2δTφ(ϖ) +∇2σTΦ(ϖ)−∇2ψa

TΠ(ϖ)−

∇2ψb
TΘ(ϖ)

)
ς, for all t ∈ ξ and

Ψℓ(ε) < Ψℓ(ϖ) + δTφ(ϖ) + σTΦ(ϖ)− ψa
TΠ(ϖ)− ψb

TΘ(ϖ)

−
1

2
ςT

(
∇2Ψt(ϖ) +∇2δTφ(ϖ) +∇2σTΦ(ϖ)

−∇2ψa
TΠ(ϖ)−∇2ψb

TΘ(ϖ)

)
ς, for atleast one ℓ ∈ ξt cannot hold ;

then Mangasarian-type second-order weak duality holds;

else Stop;

end if

End

If a point ε satisfies the Linear Independence Constraint Qualification (LICQ), then the
Kuhn–Tucker conditions are necessary for ε to be an efficient solution of problem (MM-
PCC) [14]. In the following, we derive the Strong Duality Theorem for the proposed model
by utilizing these Kuhn–Tucker conditions, which characterize the necessary optimality
criteria for an efficient solution of problem (MMPCC).

Theorem 2. (Strong duality) Let ε be an efficient solution of (MMPCC) which satisfies
the Kuhn-Tucker conditions with the multiplier (Λ, δ, σ, ψa, ψb) and (ψa, ψb) ≥ 0. Suppose
that functions Ψt(t = 1, ..., f0), φȷ(ȷ = 1, ..., g), Φν , −Φν(ν = 1, ..., h), −Πγ and −Θγ(γ =
1, ...,m0) are υ-bonvex functions at ϖ ∈ FMSD(ϖ). Then (ε, ς = 0,Λ, δ, σ, ψa, ψb) is a
globally efficient solution of (MSD) and the objective values of (MMPCC) and (MSD)
are equal.

Proof. By the assumption, we get the following system:

f0∑
t=1

Λt∇Ψt(ε) +∇δTφ(ε) +∇σTΦ(ε)−∇ψaTΠ(ε)−∇ψbTΘ(ε) = 0, (14)

δTφ(ε) = 0, ψa
TΠ(ε) = 0, ψb

TΘ(ε) = 0, (15)

Λ > 0,

f0∑
t=1

Λt = 1, δ ≧ 0, ψa ≧ 0, ψb ≧ 0. (16)

From (14) and (16), it follows that (ε, ς = 0,Λ, δ, σ, ψa, ψb) is a feasible solution of (MSD).
By using equation (15) together with ς = 0 and Φν(ε) = 0, ν ∈ {1, 2, ..., d} we obtain that
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the objective values of (MPCC) and (MSD) are equal. Thus (ε, ς = 0,Λ, δ, σ, ψa, ψb) is a
globally efficient solution of (MSD) by Theorem 1.

Theorem 3. (Strict converse duality) Let ε∗ and (ϖ∗, ς∗,Λ∗, δ∗, σ∗, ψa
∗, ψb

∗) be feasible
solutions for (MMPCC) and (MSD), respectively, such that

f0∑
t=1

Λ∗
tΨt(ε

∗) ≦
f0∑
t=1

(
Λ∗
tΨt(ϖ

∗)−
1

2
ς∗T∇2Ψt(ϖ

∗)ς∗
)
+ δ∗Tφ(ϖ∗)−

1

2
ς∗T∇2δ∗Tφ(ϖ∗)ς∗

+σ∗TΦ(ϖ∗)−
1

2
ς∗T∇2σ∗TΦ(ϖ∗)ς∗ − ψ∗

a
TΠ(ϖ∗) +

1

2
ς∗T∇2ψ∗

a
TΠ(ϖ∗)ς∗ − ψ∗

b
TΘ(ϖ∗)

−
1

2
ς∗T∇2ψ∗

b
TΘ(ϖ∗)ς∗. (17)

Suppose that Ψt, t ∈ ξ is strictly bonvex function at ϖ∗, φȷ, ȷ ∈ W, Φν , −Φν , ν ∈ D, −Πγ
and −Θγ , γ ∈ M are υ-bonvex functions at ϖ∗, then ε∗ = ϖ∗.

Proof. We assume that ε∗ ̸= ϖ∗ and exhibit a contradiction. The strict υ-bonvexity of
Ψt, t ∈ ξ at ϖ∗ and υ-bonvexity of φȷ, ȷ ∈ W, Φν , −Φν , ν ∈ D, −Πγ and −Θγ , γ ∈ M at
ϖ∗ from Weak duality Theorem 1, imply

Ψt(ε
∗)−Ψt(ϖ

∗) > [υ(ε∗, ϖ∗)]T [∇Ψt(ϖ
∗) +∇2Ψt(ϖ

∗)ς∗]−
1

2
ς∗T∇2Ψt(ϖ

∗)ς∗, (18)

φȷ(ε
∗)−φȷ(ϖ∗) ≧ [υ(ε∗, ϖ∗)]T [∇φȷ(ϖ∗)+∇2φȷ(ϖ

∗)ς∗]−
1

2
ς∗T∇2φȷ(ϖ

∗)ς∗, ∀ȷ ∈ {1, 2, ..., g},
(19)

Φν(ε
∗)− Φν(ϖ

∗) ≧ [υ(ε∗, ϖ∗)]T [∇Φν(ϖ
∗) +∇2Φν(ϖ

∗)ς∗]−
1

2
ς∗T∇2Φν(ϖ

∗)ς∗, ∀ν ∈ Γ+,

(20)

−Φν(ε
∗)+Φν(ϖ

∗) ≧ [υ(ε∗, ϖ∗)]T [−∇Φν(ϖ
∗)−∇2Φν(ϖ

∗)ς∗]+
1

2
ς∗T∇2Φν(ϖ

∗)ς∗, ∀ν ∈ Γ−,

(21)

−Πγ(ε
∗) + Πγ(ϖ

∗) ≧ [υ(ε∗, ϖ∗)]T [−∇Πγ(ϖ
∗)−∇2Πγ(ϖ

∗)ς∗] +
1

2
ς∗T∇2Πγ(ϖ

∗)ς∗,

∀ν ∈ ϑ+ ∪ ϑ+Π, (22)

−Θγ(ε
∗) + Θγ(ϖ

∗) ≧ [υ(ε∗, ϖ∗)]T [−∇Θγ(ϖ
∗)−∇2Θγ(ϖ

∗)ς∗] +
1

2
ς∗T∇2Θγ(ϖ

∗)ς∗,

∀ν ∈ ϑ+ ∪ ϑ+Θ. (23)

Multiplying inequalities (18)–(23) by Λ∗
t > 0, t ∈ ξ, δ∗ȷ (ȷ ∈ {1, 2, ..., g}), σ∗ν(ν ∈ Γ+),

-σ∗ν(ν ∈ Γ−), (ψa)
∗
γ(γ ∈ ϑ+ ∪ ϑ+Π), and (ψb)

∗
γ(γ ∈ ϑ+ ∪ ϑ+Θ), respectively, and adding, we

then get the following inequality

f0∑
t=1

Λ∗
tΨt(ε

∗)−
f0∑
t=1

Λ∗
t

(
Ψt(ϖ

∗)−
1

2
ς∗T∇2Ψt(ϖ

∗)ς∗
)
+ (δ∗)Tφ(ε∗)− (δ∗)Tφ(ϖ∗)+
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1

2
ς∗T∇2(δ∗)Tφ(ϖ∗)ς∗ + (σ∗)TΦ(ε∗)− (σ∗)TΦ(ϖ∗) +

1

2
ς∗T∇2(σ∗T )Φ(ϖ∗)ς∗

−(ψa
∗)TΠ(ε∗) + (ψa

∗)TΠ(ϖ∗)−
1

2
ς∗T∇2(ψa

∗)TΠ(ϖ∗)ς∗ − (ψb
∗)TΘ(ε∗) + (ψb

∗)TΘ(ϖ∗)

−
1

2
ς∗T∇2(ψb

∗)TΘ(ϖ∗)ς∗ > [υ(ε∗, ϖ∗)]T
[ f0∑
t=1

Λ∗
t

(
∇Ψt(ϖ

∗) +∇2Ψt(ϖ
∗)ς∗

)
+

∇(δ∗)Tφ(ϖ∗) +∇2(δ∗)Tφ(ϖ∗)ς∗ +∇(σ∗)TΦ(ϖ∗) +∇2(σ∗)TΦ(ϖ∗)ς∗−

∇(ψa
∗)TΠ(ϖ∗)−∇2(ψa

∗)TΠ(ϖ∗)ς∗ −∇(ψb
∗)TΘ(ϖ∗)−∇2(ψb

∗)TΘ(ϖ∗)ς∗
]

(24)

Since ε∗ and (ϖ∗, ς∗,Λ∗, δ∗, σ∗, ψa
∗, ψb

∗) are feasible solutions for (MMPCC) and (MSD),
respectively, we imply that φ(ε∗) ≦ 0, Φ(ε∗) = 0, Π(ε∗) ≧ 0, Θ(ε∗) ≧ 0, δ∗ ≧ 0, ψa

∗ ≧ 0,
ψb

∗ ≧ 0, hence

(δ∗)Tφ(ε∗) + (σ∗)TΦ(ε∗)− (ψa
∗)TΠ(ε∗)− (ψb

∗)TΘ(ε∗) ≦ 0. (25)

The inequality (24) on using (2) and (25), gives

f0∑
t=1

Λ∗
tΨt(ε

∗) >

f0∑
t=1

(
Λ∗
tΨt(ϖ

∗)−
1

2
ς∗T∇2Ψt(ϖ

∗)ς∗
)
+ (δ∗)Tφ(ϖ∗)

−
1

2
ς∗T∇2(δ∗)Tφ(ϖ∗)ς∗ + (σ∗)TΦ(ϖ∗)−

1

2
ς∗T∇2(σ∗)TΦ(ϖ∗)ς∗ − (ψ∗

a)
TΠ(ϖ∗)

+
1

2
ς∗T∇2(ψ∗

a)
TΠ(ϖ∗)ς∗ − (ψ∗

b )
TΘ(ϖ∗)−

1

2
ς∗T∇2(ψ∗

b )
TΘ(ϖ∗)ς∗, (26)

which is a contradiction to (17). Hence, ε∗ = ϖ∗.

The Theorems 1-3 are justified with an illustration mentioned below.

Example 2. Consider the problem:

(P1) min
ε∈Rn

(Ψ1(ε),Ψ2(ε)) =

[
(ε1 − 1)2 + (ε2 + 1)2, (ε1 − 3)2 + (ε2 + 3)2

]
subject to

Φ(ε) = ε1 + ε2 − 1 = 0,

Π(ε) = −(ε1 − 1)2 + ε2 ≥ 0,

Θ(ε) = −(ε1 + ε2)
2 + 4(ε1 + ε2) ≥ 0,

Π(ε)TΘ(ε) = 0.

Clearly, (1, 0) is an efficient solution of (P1). One can easily verify that (ε̄1, ε̄2, Λ̄1, Λ̄2, σ̄, ψ̄a, ψ̄b) =
(1, 0, 1/2, 1/2, 0, 0, 7) is an µ-stationary point of (P1) and (ψ̄a, ψ̄b) ≥ 0.
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We next prove that Ψ, Φ, −Φ, −Θ, −Π are υ-bonvex functions at each ε ∈ R2. For Ψ(ε)
and ε̄ ∈ R2, it holds

∇Ψ1(ε) =

2(ε1 − 1)

2(ε2 + 1)

, ∇2Ψ1(ε) =

(
2 0
0 2

)
.

Thus ∇2Ψ1(ε̄) ≻ 0. ∇Ψ2(ε) =

2(ε1 − 3)

2(ε2 + 3)

, ∇2Ψ2(ε) =

(
2 0
0 2

)
.

Thus ∇2Ψ2(ε̄) ≻ 0.

For Φ(ε), we get ∇Φ(ε) =

1

1

, ∇2Φ(ε) =

(
0 0
0 0

)
.

Then ∇2Φ(ε) ⪰ 0 and ∇Φ(ε) /∈ Im[∇2Φ(ε)].
For −Π(ε), we have

−∇Π(ε) =

 2(ε1 − 1)

(2(ε1 − 1),−1)

, −∇2Π(ε) =

(
2 0
0 0

)
,

hence −∇2Π(ε) ⪰ 0 and −∇Π(ε) /∈ Im[−∇2Π(ε)].
For −Θ(ε) and ε̄ ∈ R2, it satisfies

−∇Θ(ε) =

 2(ε1 + ε2)− 4

2(ε1 + ε2)− 4)

, −∇2Θ(ε) =

(
2 2
2 2

)
,

hence −∇2Θ(ε) ⪰ 0 and −∇Θ(ε) ∈ Im[−∇2Θ(ε)], and

(ε1 + ε2)
2 − 2(ε1 + ε2) = (ε1 + ε2 − 1)2 − 1 > −7 = (ε̄1 + ε̄2)

2 − 2(ε̄1 + ε̄2)

−
1

2
(2ε̄1 + 2ε̄2,−4)

(
2 2
2 2

)2ε̄1 + 2ε̄2

−4


Thus, Ψ is υ-bonvex function for any ε̄ ∈ R2 by Corollary 1 and Φ, −Φ, −Θ, −Π are
υ-bonvex functions at each ε ∈ R2 by Proposition 1.
For Ω0(.,Λ1,Λ2, δ, σ, ψa, ψb) and ε̄ ∈ R2, we have

∇Ω0(ε1, ε2,Λ1,Λ2, δ, σ, ψa, ψb) =2Λ1(ε1 − 1) + 2Λ2(ε1 − 3) + σ + 2ψa(ε1 − 1) + 2ψb(ε1 + ε2)− 4ψb

2Λ2(ε2 + 1) + 2Λ2(ε2 + 3) + σ − ψa + 2ψb(ε1 + ε2)− 4ψb

 ,

∇Ω0(ε1, ε2,Λ1,Λ2, δ, σ, ψa, ψb) =2(1/2)(ε1 − 1) + 2(1/2)(ε1 − 3) + σ + 2ψa(ε1 − 1) + 2ψb(ε1 + ε2)− 4ψb

2(1/2)(ε2 + 1) + 2(1/2)(ε2 + 3) + σ − ψa + 2ψb(ε1 + ε2)− 4ψb

 ,
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∇2Ω0(ε1, ε2,Λ1,Λ2, δ, σ, ψa, ψb) =

(
2 + 2ψa + 2ψb 2ψb

2ψb 2 + 2ψb

)
.

Then ∇2Ω0(ε1, ε2,Λ1,Λ2, δ, σ, ψa, ψb) ≻ 0 because of ψa, ψb ≥ 0. Thus, we obtain that
Ω0(.,Λ1,Λ2, δ, σ, ψa, ψb) is strictly υ-bonvex function at ε̄ by Corollary 1, where the infi-
mum of Ω0(.,Λ1,Λ2, δ, σ, ψa, ψb) cannot be attained at ε̄. Hence, (1, 0, 1/2, 1/2, 0, 0, 7) is
a globally efficient solution of (P1) by Theorems 1-2, and Theorem 3 also holds for the
(P1).
Next we prove that the second-order dual offers a tighter lower bound, we compare the ob-
jective function values given by the approximation (ε1, ε2) = (0, 0) in the (MSD) with that
in (MFD). Note that the objective value of (MMPCC) at (0, 0) is Ψ = (Ψ1,Ψ2) = (2, 18).
Suppose (0, 0) is a feasible solution of (MFD), it should satisfy ∇Ω0(ε,Λ1,Λ2, δ, σ, ψa, ψb) =
0, i.e.,

−4 + σ − 2ψa − 4ψb = 0, (27)

4 + σ − ψa − 4ψb = 0. (28)

and ψa ≥ 0, ψb ≥ 0. From (27) and (28), we get −8 − ψa = 0, which yields ψa = −8,
contradicting ψa ≥ 0. Thus, (0, 0) is not a feasible solution of (MFD). If the functions Ψ,
Φ, Π and Θ satisfy the constraints of (MSD) at (0, 0), then the subsequent system holds

∇Ω0(ϖ1, ϖ2,Λ, δ, σ, ψa, ψb) +∇2Ω0(ϖ1, ϖ2,Λ, δ, σ, ψa, ψb)ς = 0, ψa ≥ 0, ψb ≥ 0,

namely,
−4 + σ − 2ψa − 4ψb + (2 + 2ψa + 2ψb)ς1 + 2ψbς2 = 0,

4 + σ − ψa − 4ψb + 2ψbς1 + (2 + 2ψb)ς2 = 0, ψa ≥ 0, ψb ≥ 0.

Choosing ς1 = 2, ς2 = −2, we obtain, σ = 4, ψa = 0, ψb = 1. We get, a feasible solution
of (0, 0, 2,−2, 1/2, 1/2, 4, 0, 1) of (MSD). The corresponding objective value of (MSD) is(
(ϖ1− 1)2+(ϖ2+1)2+ δT .0+σT (ϖ1+ϖ2− 1)−ψaT [(ϖ1− 1)2−ϖ2]−ψbT [(ϖ1+ϖ2)

2,

−4(ϖ1+ϖ2)](ϖ1−3)2+(ϖ2+3)2+δT .0+σT (ϖ1+ϖ2−1)−ψaT [(ϖ1−1)2−ϖ2]−ψbT [(ϖ1+ϖ2)
2

−4(ϖ1 +ϖ2)]

)
=

(
(0− 1)2 + (0 + 1)2 − 4, (0− 3)2 + (0 + 3)2 − 4

)
= (−2, 14)

which provides a lower bound for (MMPCC).

4. Mangasarian-type higher-order duality

The present section deals with the formulation of Mangasarian-type higher-order dual
problem for (MMPCC) and proves the results of duality based on the higher-order type I
condition.
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Remark 1. (Key Benefits of Using Higher-Order Duality) While second-order duality
captures quadratic approximations using the Hessian, higher-order duality extends this to
include cubic and higher-degree polynomial approximations, leading to more accurate solu-
tions in highly nonlinear and nonconvex problems. Additionally, higher-order duality helps
in proving stronger optimality results, especially in cases where second-order conditions are
insufficient to guarantee global optimality.

Example 3. (Application of Higher-Order Duality in a Supply Chain Model) Consider
a multi-stage supply chain model where a firm optimizes its production, inventory, and
transportation costs while ensuring customer demand satisfaction. The objective function
includes cost components such as production cost Ψ1(ε), holding cost Ψ2(ε), and trans-
portation cost Ψ3(ε), leading to the following multi-objective mathematical program with
complementarity constraints:

(MMPCC-2) min
ε∈Rn

Ψ(ε) = (Ψ1(ε),Ψ2(ε),Ψ3(ε))

subject to

φ(ε) ≦ 0,

Φ(ε) = 0,

0 ≦ Π(ε) ⊥ Θ(ε) ≧ 0,

Here, ε represents decision variables like production levels, shipment quantities, and in-
ventory levels. The complementarity constraints capture supply-demand balance and ware-
house capacity limitations.

Using Mangasarian-type higher-order duality, we introduce additional derivatives to ana-
lyze supply chain sensitivity and robustness. Unlike second-order duality, which only uses
Hessians, higher-order duality incorporates third and higher-degree derivatives to improve
accuracy in nonconvex settings. The higher-order dual problem takes the form:

(MHD-1) max Ω0(ϖ, ς,Λ, δ, σ, ψa, ψb) =

(
(Ω0)1(ϖ, ς,Λ, δ, σ, ψa, ψb)

(Ω0)2(ϖ, ς,Λ, δ, σ, ψa, ψb), (Ω0)3(ϖ, ς,Λ, δ, σ, ψa, ψb)

)
where

(Ω0)t(ϖ, ς,Λ, δ, σ, ψa, ψb) = Ψt(ϖ) + {ξt(ϖ, ς)− ςT∇ςξt(ϖ, ς)}+
g∑
ȷ=1

δȷ{φȷ(ϖ)

+ξφȷ(ϖ, ς)− ςT∇ςξφȷ(ϖ, ς)}+
h∑
ν=1

σν{Φν(ϖ) + ξΦν (ϖ, ς)− ςT∇ςξΦν (ϖ, ς)}



I. Ahmad, K. Kummari, R. R. Jaichander / Eur. J. Pure Appl. Math, 19 (1) (2026), 6313 19 of 29

−
m0∑
γ=1

(ψa)γ{Πγ(ϖ) + ξπγ (ϖ, ς)− ςT∇ςξΠγ (ϖ, ς)}

−
m0∑
γ=1

(ψb)γ{Θγ(ϖ) + ξΘγ (ϖ, ς)− ςT∇ςξΘγ (ϖ, ς)}, t = 1, 2, 3.

Let ξt : Rn×Rn → R, t = 1, 2, 3, ξφ : Rn×Rn → Rg, ξΦ : Rn×Rn → Rh, ξΠ : Rn×Rn →
Rm0, ξΘ : Rn × Rn → Rm0 are differentiable functions.

Mangasarian-type higher-order duality provides a robust mathematical framework for solv-
ing complex supply chain optimization problems. By incorporating higher-degree deriva-
tives, this approach enhances cost approximation, risk assessment, and decision-making
accuracy, leading to more efficient and resilient supply chain models.

The higher-order dual problem of (MMPCC) is defined in the following way:

(MHD) max Ω0(ϖ, ς,Λ, δ, σ, ψa, ψb) =

(
(Ω0)1(ϖ, ς,Λ, δ, σ, ψa, ψb)

, . . . , (Ω0)f0(ϖ, ς,Λ, δ, σ, ψa, ψb)

)
subject to

f0∑
t=1

Λt{∇ςξt(ϖ, ς)}+
g∑
ȷ=1

δȷ{∇ςξφȷ(ϖ, ς)}+
h∑
ν=1

σν{∇ςξΦν (ϖ, ς)}

−
m0∑
γ=1

(ψa)γ{∇ςξΠγ (ϖ, ς)} −
m0∑
γ=1

(ψb)γ{∇ςξΘγ (ϖ, ς)} = 0, (29)

Λ > 0,

f0∑
t=1

Λt = 1, δ ≧ 0, ψa ≧ 0, ψb ≧ 0,

where

(Ω0)t(ϖ, ς,Λ, δ, σ, ψa, ψb) = Ψt(ϖ) + {ξt(ϖ, ς)− ςT∇ςξt(ϖ, ς)}+
g∑
ȷ=1

δȷ{φȷ(ϖ)

+ξφȷ(ϖ, ς)− ςT∇ςξφȷ(ϖ, ς)}+
h∑
ν=1

σν{Φν(ϖ) + ξΦν (ϖ, ς)− ςT∇ςξΦν (ϖ, ς)}

−
m0∑
γ=1

(ψa)γ{Πγ(ϖ) + ξπγ (ϖ, ς)− ςT∇ςξΠγ (ϖ, ς)}
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−
m0∑
γ=1

(ψb)γ{Θγ(ϖ) + ξΘγ (ϖ, ς)− ςT∇ςξΘγ (ϖ, ς)}, t = 1, 2, ..., f0.

Let ξt : Rn × Rn → R, t = 1, 2, ..., f0, ξφ : Rn × Rn → Rg, ξΦ : Rn × Rn → Rh,
ξΠ : Rn × Rn → Rm0 , ξΘ : Rn × Rn → Rm0 are differentiable functions.

Remark 2. (i) If ξt(ϖ, ς) = ςT∇Ψt(ϖ) +
1

2
ςT∇2Ψt(ϖ)ς(t = 1, 2..., f0), ξφȷ(ϖ, ς) =

ςT∇φȷ(ϖ) +
1

2
ςT∇2φȷ(ϖ)ς (ȷ = 1, 2..., g), ξΦν (ϖ, ς) = ςT∇Φν(ϖ) +

1

2
ςT∇2Φν(ϖ)ς (ν =

1, 2..., h), ξΠγ (ϖ, ς) = ςT∇Πγ(ϖ) +
1

2
ςT∇2Πγ(ϖ)ς (γ = 1, 2...,m0) and ξΘγ (ϖ, ς) =

ςT∇Θγ(ϖ) +
1

2
ςT∇2Θγ(ϖ)ς (γ = 1, 2...,m0) then (MHD) reduces to (MSD).

(ii) If ξt(ϖ, ς) = ςT∇Ψt(ϖ) (t = 1, 2..., f0), ξφȷ(ϖ, ς) = ςT∇φȷ(ϖ) (ȷ = 1, 2..., g),
ξΦν (ϖ, ς) = ςT∇Φν(ϖ) (ν = 1, 2..., h), ξΠγ (ϖ, ς) = ςT∇Πγ(ϖ) (γ = 1, 2...,m0) and
ξΘγ (ϖ, ς) = ςT∇Θγ(ϖ) (γ = 1, 2...,m0) then (MHD) reduces to (MFD).

We use FMHD to denote the feasible region of Problem (MHD). Let FMHD(ϖ) = {ϖ :
(ϖ, ς,Λ, δ, σ, ψa, ψb) ∈ FMHD}.
We next establish several higher order duality theorems for (MMPCC).

Theorem 4. (Weak duality) Let ε and (ϖ, ς,Λ, δ, σ, ψa, ψb) be feasible solutions for (MM-
PCC) and (MSD), respectively. Suppose that functions Ψt(t = 1, ..., f0), φȷ(ȷ = 1, ..., g),
Φν , −Φν(ν = 1, ..., h), −Πγ and −Θγ(γ = 1, ...,m0) are higher-order type I at ϖ, then the
following cannot hold:

Ψt(ε) ≦ Ψt(ϖ) + {ξt(ϖ, ς)− ςT∇ςξt(ϖ, ς)}+
g∑
ȷ=1

δȷ{φȷ(ϖ) + ξφȷ(ϖ, ς))− ςT∇ςξφȷ(ϖ, ς)}

+

h∑
ν=1

σν{Φν(ϖ) + ξΦν (ϖ, ς)− ςT∇ςξΦν (ϖ, ς)}

−
m0∑
γ=1

(ψa)γ{Πγ(ϖ) + ξΠγ (ϖ, ς)− ςT∇ςξΠγ (ϖ, ς)}

−
m0∑
γ=1

(ψb)γ{Θγ(ϖ) + ξΘγ (ϖ, ς)− ςT∇ςξΘγ (ϖ, ς)}, for all t ∈ ξ, (30)

and

Ψℓ(ε) < Ψℓ(ϖ) + {ξt(ϖ, ς)− ςT∇ςξt(ϖ, ς)}+
q∑
ȷ=1

δȷ{φȷ(ϖ) + ξφȷ(ϖ, ς))− ςT∇ςξφȷ(ϖ, ς)}
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+

h∑
ν=1

σν{Φν(ϖ) + ξΦν (ϖ, ς)− ςT∇ςξΦν (ϖ, ς)}

−
m0∑
γ=1

(ψa)γ{Πγ(ϖ) + ξΠγ (ϖ, ς)− ςT∇ςξΠγ (ϖ, ς)}

−
m0∑
γ=1

(ψb)γ{Θγ(ϖ) + ξΘγ (ϖ, ς)− ςT∇ςξΘγ (ϖ, ς)}, for atleast one ℓ ∈ ξt. (31)

Proof. Suppose to the contrary that (30) and (31) hold, that is,

Ψt(ε) ≦ Ψt(ϖ) + {ξt(ϖ, ς)− ςT∇ςξt(ϖ, ς)}+
g∑
ȷ=1

δȷ{φȷ(ϖ) + ξφȷ(ϖ, ς))− ςT∇ςξφȷ(ϖ, ς)}

+
h∑
ν=1

σν{Φν(ϖ) + ξΦν (ϖ, ς)− ςT∇ςξΦν (ϖ, ς)}

−
m0∑
γ=1

(ψa)γ{Πγ(ϖ) + ξΠγ (ϖ, ς)− ςT∇ςξΠγ (ϖ, ς)}

−
m0∑
γ=1

(ψb)γ{Θγ(ϖ) + ξΘγ (ϖ, ς)− ςT∇ςξΘγ (ϖ, ς)}, for all t ∈ ξ,

and

Ψℓ(ε) < Ψℓ(ϖ) + {ξt(ϖ, ς)− ςT∇ςξt(ϖ, ς)}+
g∑
ȷ=1

δȷ{φȷ(ϖ) + ξφȷ(ϖ, ς))− ςT∇ςξφȷ(ϖ, ς)}

+
h∑
ν=1

σν{Φν(ϖ) + ξΦν (ϖ, ς)− ςT∇ςξΦν (ϖ, ς)}

−
m0∑
γ=1

(ψa)γ{Πγ(ϖ) + ξΠγ (ϖ, ς)− ςT∇ςξΠγ (ϖ, ς)}

−
m0∑
γ=1

(ψb)γ{Θγ(ϖ) + ξΘγ (ϖ, ς)− ςT∇ςξΘγ (ϖ, ς)}, for atleast one ℓ ∈ ξt.

Because Λ > 0 and
∑f0

t=1 Λt = 1, the above inequalities yield:

f0∑
t=1

ΛtΨt(ε) <

f0∑
t=1

Λt{Ψt(ϖ) + ξt(ϖ, ς)− ςT∇ςξt(ϖ, ς)}+
g∑
ȷ=1

δȷ{φȷ(ϖ) + ξφȷ(ϖ, ς))−
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ςT∇ςξφȷ(ϖ, ς)}+
h∑
ν=1

σν{Φν(ϖ) + ξΦν (ϖ, ς)− ςT∇ςξΦν (ϖ, ς)}

−
m0∑
γ=1

(ψa)γ{Πγ(ϖ) + ξΠγ (ϖ, ς)− ςT∇ςξΠγ (ϖ, ς)}

−
m0∑
γ=1

(ψb)γ{Θγ(ϖ) + ξΘγ (ϖ, ς)− ςT∇ςξΘγ (ϖ, ς)}. (32)

We introduce the subsequent index sets:

Γ+ = {ν : σν ≥ 0}, Γ− = {ν : σν ≤ 0},
ϑ+ = {γ : (ψa)γ > 0, (ψb)γ > 0}, ϑ0 = {γ : (ψa)γ = 0, (ψb)γ = 0},
ϑ+Θ = {γ : (ψa)γ = 0, (ψb)γ > 0}, ϑ+Π = {γ : (ψa)γ > 0, (ψb)γ = 0}.

Since Ψt(t = 1, ..., f0), φȷ, Φν , −Φν , −Πγ and −Θγ are higher-order type I at ϖ, we have,
for any ε ∈ Y and ϖ ∈ FMHD(ϖ),

Ψt(ε)−Ψt(ϖ) ≧ [υ(ε,ϖ)]T∇ςξt(ϖ, ς) + ξt(ϖ, ς)− ςT (∇ςξt(ϖ, ς)), (33)

φȷ(ε)−φȷ(ϖ) ≧ [υ(ε,ϖ)]T∇ςξφȷ(ϖ, ς)+ξφȷ(ϖ, ς)−ςT (∇ςξφȷ(ϖ, ς)), ∀ȷ ∈ {1, 2, ..., g}, (34)

Φν(ε)− Φν(ϖ) ≧ [υ(ε,ϖ)]T∇ςξΦν (ϖ, ς) + ξΦν (ϖ, ς)− ςT (∇ςξΦν (ϖ, ς)), ∀ν ∈ Γ+, (35)

−Φν(ε)+Φν(ϖ) ≧ [υ(ε,ϖ)]T [−∇ςξΦν (ϖ, ς)]−ξΦν (ϖ, ς)+ς
T (∇ςξΦν (ϖ, ς)), ∀ν ∈ Γ−, (36)

−Πγ(ε)+Πν(ϖ) ≧ [υ(ε,ϖ)]T [−∇ςξΠγ (ϖ, ς)]−ξΠγ (ϖ, ς)+ ς
T (∇ςξΠγ (ϖ, ς)), ∀γ ∈ ϑ+∪ϑ+Π,

(37)
−Θγ(ε)+Θν(ϖ) ≧ [υ(ε,ϖ)]T [−∇ςξΠγ (ϖ, ς)]−ξΘγ (ϖ, ς)+ ς

T (∇ςξΘγ (ϖ, ς)), ∀γ ∈ ϑ+∪ϑ+Θ.
(38)

Multiplying inequalities (33)–(38) by Λt > 0, t ∈ ξ, δȷ(ȷ ∈ {1, 2, ..., g}), σν(ν ∈ Γ+),
−σν(ν ∈ Γ−), (ψa)γ(γ ∈ ϑ+ ∪ ϑ+Π), and (ψb)γ(γ ∈ ϑ+ ∪ ϑ+Θ), respectively, and adding, we
then get the following inequality

f0∑
t=1

ΛtΨt(ε)−
f0∑
t=1

Λt{Ψt(ϖ)+ξt(ϖ, ς)−ςT∇ςξt(ϖ, ς)}+
g∑
ȷ=1

δȷφȷ(ε)−
g∑
ȷ=1

δȷ{φȷ(ϖ)+ξφȷ(ϖ, ς))

−ςT∇ςξφȷ(ϖ, ς)}+
h∑
ν=1

σνΦν(ε)−
h∑
ν=1

σν{Φν(ϖ)+ξΦν (ϖ, ς)−ςT∇ςξΦν (ϖ, ς)}−
m0∑
γ=1

(ψa)γΠγ(ε)

+

m0∑
γ=1

(ψa)γ{Πγ(ϖ) + ξΠγ (ϖ, ς)− ςT∇ςξΠγ (ϖ, ς)} −
m0∑
γ=1

(ψb)γΘγ(ε) +

m0∑
γ=1

(ψb)γ{Θγ(ϖ)+

ξΘγ (ϖ, ς)− ςT∇ςξΘγ (ϖ, ς)} ≧ [υ(ε,ϖ)]T
f0∑
t=1

Λt{∇ςξt(ϖ, ς)}+
g∑
ȷ=1

δȷ{∇ςξφȷ(ϖ, ς)}+
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h∑
ν=1

σν{∇ςξΦν (ϖ, ς)} −
m0∑
γ=1

(ψa)γ{∇ςξΠγ (ϖ, ς)} −
m0∑
γ=1

(ψb)γ{∇ςξΘγ (ϖ, ς)}. (39)

Since ε and (ϖ, ς, δ, σ, ψa, ψb) are feasible solutions for (MMPCC) and (MSD), respectively,
we imply that φ(ε) ≦ 0, Φ(ε) = 0, Π(ε) ≧ 0, Θ(ε) ≧ 0, δ ≧ 0, ψa ≧ 0, ψb ≧ 0, whence

g∑
ȷ=1

δȷφȷ(ε) +
h∑
ν=1

σνΦν(ε)−
m0∑
γ=1

(ψa)γΠγ(ε)−
m0∑
γ=1

(ψb)γΘγ(ε) ≦ 0. (40)

The inequality (39), in view of (32) and (40) gives

f0∑
t=1

Λt{∇ςξt(ϖ, ς)}+
g∑
ȷ=1

δȷ{∇ςξφȷ(ϖ, ς)}+
h∑
ν=1

σν{∇ςξΦν (ϖ, ς)}

−
m0∑
γ=1

(ψa)γ{∇ςξΠγ (ϖ, ς)} −
m0∑
γ=1

(ψb)γ{∇ςξΘγ (ϖ, ς)} < 0, (41)

which contradicts (29).

Theorem 5. (Strong duality) Let ε0 be an efficient solution of (MMPCC) which satisfies
the Kuhn–Tucker conditions with the multiplier (Λ0, δ0, σ0, (ψa)0, (ψb)0) and ((ψa)0,
(ψb)0) ≥ 0. For t = 1, ..., f0, ȷ = 1, ..., g, ν = 1, ..., h, γ = 1, ...,m0, let

ξt(ε0, 0) = 0, ξφ(ε0, 0) = 0, ξΦ(ε0, 0) = 0, ξΠ(ε0, 0) = 0, ξΘ(ε0, 0) = 0,

∇ςξt(ε0, 0) = ∇ςΨt(ε0),∇ςξφȷ(ε0, 0) = ∇ςφȷ(ε0),∇ςξΦν (ε0, 0) = ∇ςΦν(ε0),

∇ςξΠγ (ε0, 0) = ∇ςΠγ(ε0),∇ςξΘγ (ε0, 0) = ∇ςΘγ(ε0).

(42)

Then (ε0, ς = 0, δ0, σ0, (ψa)0, (ψb)0) is feasible for (MHD), and the corresponding objective
values of (MMPCC) and (MHD) are equal. If, in addition, functions Ψt(t = 1, ..., f0),
φȷ(ȷ = 1, ..., g), Φν , −Φν(ν = 1, ..., h), −Πγ and −Θγ(γ = 1, ...,m0) are higher-order type
I at ϖ ∈ FMSD(ϖ), then (ε0, ς = 0,Λ0, δ0, σ0, (ψa)0, (ψb)0) is a globally efficient solution
of (MHD).

Proof. Since ε0 be an efficient solution of (MMPCC) which satisfies the Kuhn–Tucker
conditions with the multiplier (δ0, σ0, (ψa)0, (ψb)0) and ((ψa)0, (ψb)0) ≥ 0, we have

f0∑
t=1

(Λ0)t∇Ψt(ε0) +∇δ0Tφ(ε0) +∇σ0TΦ(ε0)−∇(ψa)
T
0 Π(ε0)−∇(ψb)

T
0 Θ(ε0) = 0, (43)

δ0
Tφ(ε0) = 0, (ψa)0

TG(ε0) = 0, (ψb)0
TΘ(ε0) = 0, (44)

Λ0 > 0,

f0∑
t=1

(Λ0)t = 1, δ0 ≧ 0, (ψa)0 ≧ 0, (ψb)0 ≧ 0. (45)
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From (42), (43) and using the feasibility of ε0 for (MMPCC), it follows that

f0∑
t=1

(Λ0)t{∇ςξt(ε0, ς)}+
g∑
ȷ=1

(δ0)ȷ{∇ςξφȷ(ε0, ς)}+
h∑
ν=1

(σ0)ν{∇ςξΦν (ε0, ς)}

−
m0∑
γ=1

((ψa)0)γ{∇ςξΠγ (ε0, ς)} −
m0∑
γ=1

((ψb)0)γ{∇ςξΘγ (ε0, ς)} =

f0∑
t=1

(Λ0)t∇Ψt(ε0) +∇δ0Tφ(ε0) +∇σ0TΦ(ε0)−∇(ψa)
T
0 Π(ε0)−∇(ψb)

T
0 Θ(ε0) = 0. (46)

Hence (45) and (46) imply that (ε0, ς = 0,Λ0, δ0, σ0, (ψa)0, (ψb)0) is a feasible solution for
(MHD). The assumption (42) together with (44) and Φ(ε0) = 0 shows that

(Ψ1(ε0),Ψ2(ε0), ...,Ψt(ε0)) = Ω0(ε0, ς = 0,Λ0, δ0, σ0, (ψa)0, (ψb)0),

hence the corresponding objective values of (MMPCC) and (MHD) are equal. Note that
functions Ψt(t = 1, ..., f0), φȷ(ȷ = 1, ..., g), Φν , −Φν(ν = 1, ..., h), −Πγ and −Θγ(γ =
1, ...,m0) are higher-order type I atϖ ∈ FMSD(ϖ). Then (ε0, ς = 0,Λ0, δ0, σ0, (ψa)0, (ψb)0)
is a globally efficient solution of (MHD) by Theorem 4.

Theorem 6. (Strict converse duality) Let ε∗ and (ϖ∗, ς∗,Λ∗, δ∗, σ∗, ψa
∗, ψb

∗) be feasible
solutions for (MMPCC) and (MHD), respectively, such that

f0∑
t=1

Λ∗
tΨt(ε

∗) ≦
f0∑
t=1

Λ∗
t {Ψt(ϖ

∗) + ξt(ϖ
∗, ς∗)− ς∗T∇ς∗ξt(ϖ

∗, ς∗)}+
g∑
ȷ=1

δ∗ȷ{φȷ(ϖ∗)

+ξφȷ(ϖ
∗, ς∗))− ς∗T∇ς∗ξφȷ(ϖ

∗, ς∗)}+
h∑
ν=1

σ∗ν{Φν(ϖ∗) + ξΦν (ϖ
∗, ς∗)

−ς∗T∇ς∗ξΦν (ϖ
∗, ς∗)} −

m0∑
γ=1

(ψa
∗)γ{Πγ(ϖ∗) + ξΠγ (ϖ

∗, ς∗)− ς∗T∇ς∗ξΠγ (ϖ
∗, ς∗)}

−
m0∑
γ=1

(ψb
∗)γ{Θγ(ϖ

∗) + ξΘγ (ϖ
∗, ς∗)− ς∗T∇ς∗ξΘγ (ϖ

∗, ς∗)}. (47)

Suppose that Ψt(t = 1, ..., f0) is strictly higher-order type I at ϖ∗, φȷ(ȷ = 1, ..., g), Φν ,
−Φν(ν = 1, ..., h), −Πγ and −Θγ(γ = 1, ...,m0) are higher-order type I at ϖ∗, then
ε∗ = ϖ∗.

Proof. We assume that ε∗ ̸= ϖ∗ and exhibit a contradiction. Since Ψt(t = 1, ..., f0) is
strictly higher-order type I at ϖ∗, φȷ, Φν , −Φν , −Πγ and −Θγ are higher-order type I at
ϖ∗, we have, for any ε∗ ∈ Y and ϖ∗ ∈ FMHD(ϖ

∗),

Ψt(ε
∗)−Ψt(ϖ

∗) > [υ(ε∗, ϖ∗)]T∇ς∗ξt(ϖ
∗, ς∗) + ξt(ϖ

∗, ς∗)− ς∗T (∇ς∗ξt(ϖ
∗, ς∗)), (48)
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φȷ(ε
∗)− φȷ(ϖ

∗) ≧ [υ(ε∗, ϖ∗)]T∇ς∗ξφȷ(ϖ
∗, ς∗) + ξφȷ(ϖ

∗, ς∗)

−ς∗T (∇ς∗ξφȷ(ϖ
∗, ς∗)), ∀ȷ ∈ {1, 2, ..., g}, (49)

Φν(ε
∗)− Φν(ϖ

∗) ≧ [υ(ε∗, ϖ∗)]T∇ς∗ξΦν (ϖ
∗, ς∗) + ξΦν (ϖ

∗, ς∗)−

ς∗T (∇ς∗ξΦν (ϖ
∗, ς∗)), ∀ν ∈ Γ+, (50)

−Φν(ε
∗) + Φν(ϖ

∗) ≧ [υ(ε∗, ϖ∗)]T [−∇ς∗ξΦν (ϖ
∗, ς∗)]− ξΦν (ϖ

∗, ς∗)

+ς∗T (∇ς∗ξΦν (ϖ
∗, ς∗)), ∀ν ∈ Γ−, (51)

−Πγ(ε
∗) + Πν(ϖ

∗) ≧ [υ(ε∗, ϖ∗)]T [−∇ς∗ξΠγ (ϖ
∗, ς∗)]− ξΠγ (ϖ

∗, ς∗)

+ς∗T (∇ς∗ξΠγ (ϖ
∗, ς∗)), ∀γ ∈ ϑ+ ∪ ϑ+Π, (52)

−Θγ(ε
∗) + Θν(ϖ

∗) ≧ [υ(ε∗, ϖ∗)]T [−∇ς∗ξΠγ (ϖ
∗, ς∗)]− ξΘγ (ϖ

∗, ς∗)

+ς∗T (∇ς∗ξΘγ (ϖ
∗, ς∗)), ∀γ ∈ ϑ+ ∪ ϑ+Θ. (53)

Multiplying inequalities (48)–(53) by Λ∗
t > 0, t ∈ ξ, δ∗ȷ (ȷ ∈ {1, 2, ..., g}), σ∗ν(ν ∈ Γ+),

-σ∗ν(ν ∈ Γ−), (ψa
∗)γ(γ ∈ ϑ+ ∪ ϑ+Π), and (ψb

∗)γ(γ ∈ ϑ+ ∪ ϑ+Θ), respectively, and adding, we
then get the following inequality

f0∑
t=1

Λ∗
tΨt(ε

∗)−
f0∑
t=1

Λ∗
t {Ψt(ϖ

∗)+ξt(ϖ
∗, ς∗)−ς∗T∇ς∗ξt(ϖ

∗, ς∗)}+
g∑
ȷ=1

δ∗ȷφȷ(ε
∗)−

g∑
ȷ=1

δ∗ȷ{φȷ(ϖ∗)

+ξφȷ(ϖ
∗, ς∗))− ς∗T∇ς∗ξφȷ(ϖ

∗, ς∗)}+
h∑
ν=1

σ∗νΦν(ε
∗)−

h∑
ν=1

σ∗ν{Φν(ϖ∗) + ξΦν (ϖ
∗, ς∗)−

ς∗T∇ς∗ξΦν (ϖ
∗, ς∗)}−

m0∑
γ=1

(ψa
∗)γΠγ(ε

∗)+

m0∑
γ=1

(ψa
∗)γ{Πγ(ϖ∗)+ξΠγ (ϖ

∗, ς∗)−ς∗T∇ς∗ξΠγ (ϖ
∗, ς∗)}

−
m0∑
γ=1

(ψb
∗)γΘγ(ε

∗)+

m0∑
γ=1

(ψb
∗)γ{Θγ(ϖ

∗)+ξΘγ (ϖ
∗, ς∗)−ς∗T∇ς∗ξΘγ (ϖ

∗, ς∗)} > [υ(ε∗, ϖ∗)]T

f0∑
t=1

Λ∗
t {∇ς∗ξt(ϖ

∗, ς∗)}+
g∑
ȷ=1

δ∗ȷ{∇ς∗ξφȷ(ϖ
∗, ς∗)}+

h∑
ν=1

σ∗ν{∇ς∗ξΦν (ϖ
∗, ς∗)}−

m0∑
γ=1

(ψa
∗)γ{∇ς∗ξΠγ (ϖ

∗, ς∗)} −
m0∑
γ=1

(ψb
∗)γ{∇ς∗ξΘγ (ϖ

∗, ς∗)}. (54)

Since ε∗ and (ϖ∗, ς∗,Λ∗, δ∗, σ∗, ψa
∗, ψb

∗) are feasible solutions for (MMPCC) and (MHD),
respectively, we imply that φ(ε∗) ≦ 0, Φ(ε∗) = 0, Π(ε∗) ≧ 0, Θ(ε∗) ≧ 0, δ∗ ≧ 0, ψa

∗ ≧ 0,
ψb

∗ ≧ 0, whence

g∑
ȷ=1

δ∗ȷφȷ(ε
∗) +

h∑
ν=1

σ∗νΦν(ε
∗)−

m0∑
γ=1

(ψa
∗)γΠγ(ε

∗)−
m0∑
γ=1

(ψb
∗)γΘγ(ε

∗) ≦ 0. (55)
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The inequality (54) on using (29) and (55), gives

f0∑
t=1

Λ∗
tΨt(ε

∗) >

f0∑
t=1

Λ∗
t {Ψt(ϖ

∗) + ξt(ϖ
∗, ς∗)− ς∗T∇ς∗ξt(ϖ

∗, ς∗)}+
g∑
ȷ=1

δ∗ȷ{φȷ(ϖ∗)

+ξφȷ(ϖ
∗, ς∗))− ς∗T∇ς∗ξφȷ(ϖ

∗, ς∗)}+
h∑
ν=1

σ∗ν{Φν(ϖ∗) + ξΦν (ϖ
∗, ς∗)

−ς∗T∇ς∗ξΦν (ϖ
∗, ς∗)} −

m0∑
γ=1

(ψa
∗)γ{Πγ(ϖ∗) + ξΠγ (ϖ

∗, ς∗)− ς∗T∇ς∗ξΠγ (ϖ
∗, ς∗)}

−
m0∑
γ=1

(ψb
∗)γ{Θγ(ϖ

∗) + ξΘγ (ϖ
∗, ς∗)− ς∗T∇ς∗ξΘγ (ϖ

∗, ς∗)}, (56)

which contradicts (47).

5. Conclusion

In this study, we proposed Mangasarian-type second and higher-order dual formulations
for multi-objective mathematical programs with complementarity constraints (MMPCC),
incorporating µ-stationarity conditions. By invoking υ-bonvexity and higher-order type I
assumptions, we derived weak, strong, and converse duality theorems for the respective
dual models. The illustrative examples demonstrate that higher-order duals can yield
tighter optimality bounds than their first-order counterparts, thus underscoring their the-
oretical and practical relevance.

Future research may aim to extend the proposed duality framework to nonconvex and
nonsmooth settings, develop efficient computational algorithms for large-scale problems,
and explore stochastic or fuzzy extensions to address uncertainty. It may also consider
alternative notions of second-order generalized convexity, such as those discussed by Zuali-
nescu [26], and investigate effective computational strategies for solving the proposed dual
formulations in practical scenarios.

The proposed Mangasarian-type second- and higher-order duality framework strengthens
theoretical insights into multi-objective problems with complementarity constraints but
is limited by its reliance on smoothness assumptions, higher-order differentiability, and
υ-bonvexity conditions, which may restrict use in nonsmooth or highly nonconvex cases.
Despite these limitations, the approach has broad potential applications in economics,
engineering, supply chain optimization, and data science, where multi-criteria decision-
making and equilibrium constraints naturally arise.
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