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Abstract. The purpose of this paper is the study of dimension of hypervector spaces. In this regard first
we introduce the notions of linear independent (resp. dependent) and basis of hypervector spaces. Then
we study the properties of hypervector spaces and prove that under certain conditions dimension for such
spaces there exist. Finally, we use the fundamental relation on hypervector spaces to construct a functor
from the category of hypervector spaces over a fixed field K and the category of classical vector spaces
over K, and we will prove that this functor preserves dimension.
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1. Introduction

Hyperstructures theory was born in 1934, when Marty [5] defined hypergroups, began to anal-
ysis their properties and applied them to groups, rational algebraic functions. Now they are widely
studied from theoretical point of view and for their applications to many subjects of pure and
applied properties. Since then many researchers have worked on hyperalgebraic structures and
developed this theory (ref. [3], [4] and [10]) . M.S. Tallini introduced the notion of hypervector
spaces ( [6], [7]) and studied basic properties of them. In [8] the notion of Matroidal hypervector
space was introduced and the basic properties of such space studied. In this paper we study the
properties of dimension of hypervector spaces. In §3 we introduce the notions of linearly indepen-
dent (resp. dependent), generator, and basis of a hypervector space. We show that in contrast of the
classical vector spaces a hypervector space has not necessarily a basis. We will prove that under
the certain conditions a hypervector space has a basis and then we investigate the basic properties
of dimension of such spaces.

In §4 for a given hypervector space V over a classical field K, the fundamental relation on V ,
ε∗, is defined as the smallest equivalence relation on V such that V/ε∗ is a classical vector spaces
over K. Then it is proved that dimKV = dimKV/ε

∗. In §5 we form the category of hypervector
spaces, and then we use the fundamental relation to construct a functor between the category of
hypervector spaces over K and the category of vector spaces over K, and prove that this functor
preserves dimension.
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2. Preliminaries

A map ◦ : H ×H −→ P∗(H) is called hyperoperation or join operation, where P∗(H) is the
set of all non-empty subsets of H . The join operation is extended to subsets of H in natural way,
so that A ◦B is given by

A ◦B =
⋃
{a ◦ b : a ∈ A and b ∈ B }.

The notations a ◦ A and A ◦ a are used for {a} ◦ A and A ◦ {a} respectively. Generally, the
singleton {a} is identified by its element a.

Definition 2.1. [6] Let K be a field and (V,+) be an abelian group. We define a hypervector
space over K to be the quadrupled (V,+, ◦,K), where ” ◦ ” is a mapping

◦ : K × V −→ P∗(V ),

such that the following conditions hold:
(H1) ∀a ∈ K, ∀x, y ∈ V, a ◦ (x+ y) ⊆ a ◦ x+ a ◦ y, right distributive law,
(H2) ∀a, b ∈ K, ∀x ∈ V, (a+ b) ◦ x ⊆ a ◦ x+ b ◦ x, left distributive law,
(H3) ∀a, b ∈ K, ∀x ∈ V, a ◦ (b ◦ x) = (ab) ◦ x, associative law,
(H4) ∀a ∈ K, ∀x ∈ V, a ◦ (−x) = (−a) ◦ x = −(a ◦ x),
(H5) ∀x ∈ V, x ∈ 1 ◦ x.

Remark 2.1. (i) In the right hand side of (H1) the sum is meant in the sense of Frobenius, that is
we consider the set of all sums of an element of a ◦ x with an element of a ◦ y. Similarly we have
in (H2).

(ii) We say that (V,+, ◦,K) is anti-left distributive, if

∀a, b ∈ K, ∀x ∈ V, (a+ b) ◦ x ⊇ a ◦ x+ b ◦ x,

and strongly left distributive, if

∀a, b ∈ K, ∀x ∈ V, (a+ b) ◦ x = a ◦ x+ b ◦ x,

In a similar way we define the anti-right distributive and strongly right distributive hypervector
spaces, respectively. V is called strongly distributive if it is both strongly left and strongly right
distributive.

(iii) The left hand side of (H3) means the set-theoretical union of all the sets a ◦ y, where y
runs over the set b ◦ x, i.e.

a ◦ (b ◦ x) =
⋃
y∈b◦x

a ◦ y.

(iv) Let Ω = 0 ◦ 0, where 0 is the zero of (V,+). In [6] it is shown if V is either strongly right
or left distributive, then Ω is a subgroup of (V,+).

Example 2.1. In (Rn,+) we define, ∀a ∈ R and ∀x ∈ Rn, a ◦ x as the set of vectors in Rn

belonging to the closed segment whose vertices are the origin, 0, and the point ax in Rn. Then
(Rn,+, ◦,R) is a hypervector space.
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Example 2.2. In (R2,+) we define{
◦ : R× R2 −→ P∗(R2)

a ◦ (x, y) = ax× R or
{
◦ : R× R2 −→ P∗(R2)

a ◦ (x, y) = R× ay

Then (R2,+, ◦,R) is a strongly distributive hypervector space.

Example 2.3. Let (V,+, .,K) be a classical vector space and P be a subspace of V and{
◦ : K × V −→ P∗(V )

a ◦ x = a.x+ P

Then (V,+, ◦,K) is a strongly distributive hypervector space.

Theorem 2.1. [6] Every strongly right distributive hypervector space is strongly left distributive
hypervector space. Let (V,+) be an abelian group, Ω a subgroup of V and K a field such that
W = V/Ω is a classical vector space over K. If p : V −→ W is the canonical projection of
(V,+) onto (W,+) and we set: {

◦ : K × V −→ P∗(V )
a ◦ x = p−1 (a.p (x))

Then (V,+, ◦,K) is a strongly distributive hypervector space over K. Moreover every strongly
distributive hypervector space can be obtained in such a way.

Example 2.4. [6] (i) In (R2,+) we define the product times a scalar in R by setting:

∀a ∈ R, ∀x ∈ R2 : a ◦ x =
{

line ox if x 6= 0
{0} if x 6= 0,

where 0 = (0, 0). Then (R2,+, ◦,R) is a strongly left, but not right, distributive hypervector
space.

From now on, in every strongly left distributive hypervector space we set:

T = {x ∈ V : x ∈ 0 ◦ x}
= {x ∈ V : 1 ◦ x = 0 ◦ x}
= {x ∈ V : ∀a ∈ K, a ◦ x = 0 ◦ x}

Example 2.5. Let (V,+) be an abelian group and Ω a proper subgroup of (V,+). for any field K
set: {

◦ : K × V −→ P∗(V )
a ◦ x = 〈x,Ω〉

where 〈x,Ω〉 is the subgroup of (V,+) spanned by x and Ω. Then (V,+, ◦,K) is a strongly left,
but not right, distributive hypervector space such that T = V .
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3. Basis of Hypervector Spaces

In [8], the notions of generator, dependent (resp. independent) set, and basis was defined, in the
sense of universal algebra. In the following we introduce and characterize these notions based on
the theory of linear algebra and study the basic properties of them. In the sequel by V we mean a
hypervector space over the field K.

Definition 3.1. A nonempty subset W of V is called a subhyperspace if W is itself a hypervector
space with the hyperoperation on V , i.e.

W 6= ∅,
∀x, y ∈W =⇒ x− y ∈W,
∀a ∈ K, ∀x ∈W =⇒ a ◦ x ⊆W.

In this case we write W 6 V .

Lemma 3.1. A nonempty subset W of V is a subhyperspace if and only if a ◦ u + b ◦ v ⊆
W, ∀a, b ∈ K, ∀u, v ∈W.

Proof. Let W be a subhyperspace of V . Then for every a, b ∈ K and u, v ∈ W we have
a ◦ u ⊆ W and b ◦ v ⊆ W . Thus a ◦ u + b ◦ v ⊆ W . Conversely if u, v ∈ W , then u + v ∈
1 ◦ u + 1 ◦ v ⊆ W , hence u + v ∈ W. Also 0 ∈ 1 ◦ 0, implies that a ◦ u ⊆ a ◦ u + 1 ◦ 0. Thus
a ◦ u ⊆W and hence W is a subhyperspace.

Remark 3.1. (i)We denote by S the family of all subhyperspaces of V. We easily prove that:{
V ∈ S,
{Wi}i∈I , Wi ∈ S =⇒

⋂
i∈I

Wi ∈ S.

It follows that S is a closure system in V .

(ii) If W1 and W2 are any two subhyperspaces of V , then W1 ∪W2 is a subhyperspace of V if
and only if W1 ⊆W2 or W2 ⊆W1.

Definition 3.2. A subset S of V is called linearly independent if for every vectors v1, v2, . . . , vn
in S, and c1, . . . , cn ∈ K, 0 ∈ c1 ◦ v1 + · · · + cn ◦ vn, implies that c1 = c2 = · · · = cn = 0. A
subset S of V is called linearly dependent if it is not linearly independent.

Lemma 3.2. If V is strongly left distributive, then a subset S of V is linearly independent if and
only if for every vectors v1, v2, . . . , vn in S, and c1, . . . , cn ∈ K, Ω∩ c1 ◦ v1 + · · ·+ cn ◦ vn 6= ∅,
implies that c1 = c2 = · · · = cn = 0.

Proof. Let V be linearly independent and for vectors v1, v2, . . . , vn in S, and c1, . . . , cn ∈ K,
x ∈ Ω ∩ c1 ◦ v1 + · · ·+ cn ◦ vn. Then

0 = x− x ∈ 0 ◦ 0− c1 ◦ v1 + · · · − cn ◦ vn
=⇒ c1 = c2 = · · · = cn = 0.
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Conversely, if for vectors v1, v2, . . . , vn in S, and c1, . . . , cn ∈ K, 0 ∈ c1 ◦ v1 + · · · + cn ◦ vn,
then by Remark 2.1

0 ∈ Ω ∩ c1 ◦ v1 + · · ·+ cn ◦ vn.

Thus c1 = c2 = · · · = cn = 0.

Definition 3.3. A basis for V is a linearly independent subset of V such that span V . We say that
V has finite dimensional if it has a finite basis.

Remark 3.2. Note that some hypervector spaces V (some set W of vectors) may not have any
collection of linearly independent vectors. Such hypervector space (set) is called independent-
less. Clearly if V is independentless, then V has not any basis and for such hypervector spaces
dimension is not defined. In this case we say that V is dimensionless.

Recall that

T = {x ∈ V : x ∈ 0 ◦ x}
= {x ∈ V : 1 ◦ x = 0 ◦ x}
= {x ∈ V : ∀a ∈ K, a ◦ x = 0 ◦ x}

Corollary 3.1. Every strongly left distributive hypervector space with T = V is independentless.

Example 3.1. The hypervector space (R2,+, ◦,R) in Example 2.4 is a nontrivial example of an
independentless hypervector space, since 0 belongs to every line through the 0.

Definition 3.4. If S is a nonempty subset of V , then the linear span of S is defined by:

L(S) =

{
t ∈ V : t ∈

n∑
i=1

ai ◦ si , ai ∈ K , si ∈ S , n ∈ N

}
(3.1)

= {t1 + t2 + · · ·+ tn : ti ∈ ai ◦ si , ai ∈ K , si ∈ S , n ∈ N} .

Lemma 3.3. L(S) is the smallest subhyperspace of V containing S.

Proof. Let t1, t2 ∈ L(S), then t1 ∈
n∑
i=1

ai ◦ si and t2 ∈
m∑
i=1

ái ◦ śi, where ai, ái ∈ K and

si, śi ∈ S. Thus

t1 − t2 ∈
n∑
i=1

ai ◦ si−
m∑
i=1

ái ◦ śi

=
n∑
i=1

ai ◦ si+
m∑
i=1

(−ái) ◦ śi, (by H4)
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Then t1 − t2 ∈ L(S). Also if t ∈ L(S) and k ∈ K, then

k ◦ t ⊆ k ◦
n∑
i=1

ai ◦ si

⊆
n∑
i=1

k ◦ (ai ◦ si) (by H1)

=
n∑
i=1

(kai) ◦ si (by H3)

so k ◦ t ⊆ L(S), therefore L(S) ≤ V . Now suppose that W is a subhyperspace of V containing

S. Then for every t ∈ L(S) we have t ∈
n∑
i=1

ai ◦si, for some ai ∈ K, si ∈ S and n ∈ N. Since W

is a subhyperspace and S ⊆W, thus si ∈W , so
n∑
i=1

ai ◦ si ⊆W , therefore t ∈W . Consequently

L(S) ⊆ W . Thus L(S) is the smallest subhyperspace of V . Also for all s ∈ S, s ∈ 1K ◦ s, so
s ∈ L(S), therefore S ⊆ L(S).

Sometimes we denote L(S), by 〈S〉 , which is called the subhyperspace generated by S.

Proposition 3.1. Let V be strongly left distributive. Then

∀x ∈ V, 〈x〉 =
⋃
a∈K

a ◦ x.

Proof. Let t ∈ 〈x〉 . Then there exist a1, . . . , an ∈ K such that t ∈ a1 ◦ x+ · · ·+ an ◦ x. So

t ∈ a1 ◦ x+ · · ·+ an ◦ x
= (a1 + · · ·+ an) ◦ x,

thus t ∈
⋃
a∈K

a ◦ x. Conversely, if t ∈
⋃
a∈K

a ◦ x, then

∃a ∈ K, t ∈ a ◦ x =⇒ t ∈ 〈x〉 .

Proposition 3.2. If W1 and W2 are two subhyperspaces of V , Then

L(W1 ∪W2) = W1 +W2.

Proof. Obvious.

Lemma 3.4. Let V be anti-left distributive and v1, v2, ..., vn be linearly independent in V . Then
every element in their linear span belongs to a unique sum in the form c1◦v1+c2◦v2+...+cn◦vn
with ci ∈ K.
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Proof. By Definition 3.4, every element in the linear span is belong to a set of the form
c1 ◦ v1 + c2 ◦ v2 + ...+ cn ◦ vn. To prove uniqueness we must demonstrate if for some u ∈ V, u ∈
c1 ◦ v1 + c2 ◦ v2 + ...+ cn ◦ vn and u ∈ d1 ◦ v1 + d2 ◦ v2 + ...+ dn ◦ vn, then c1 = d1, ..., dn = cn.
But by (H4) we obtain that

0 = u− u
∈ c1 ◦ v1 + c2 ◦ v2 + · · ·+ cn ◦ vn −
− (d1 ◦ v1 + d2 ◦ v2 + · · ·+ dn ◦ vn)

= c1 ◦ v1 + c2 ◦ v2 + · · ·+ cn ◦ vn −
− (d1 ◦ v1)− (d2 ◦ v2)− · · · − (dn ◦ vn)

= c1 ◦ v1 + c2 ◦ v2 + · · ·+ cn ◦ vn +
+(−d1) ◦ v1 + (−d2) ◦ v2 + · · ·+ (−dn) ◦ vn,

now since V is anti-left distributive, then we have

0 ∈ (c1 − d1) ◦ v1 + · · ·+ (cn − dn) ◦ vn,

which implies that c1 = d1, . . . , cn = dn, by linearly independently of v1, v2, . . . , vn.

Remark 3.3. Clearly Lemma 3.4 is satisfied for every strongly distributive hypervector space.

Definition 3.5. A hypervector space V over K is said to be K-invertible or shortly invertible if
and only if u ∈ a ◦ v implies that v ∈ a−1 ◦ u.

Theorem 3.1. Let V be invertible. Then for every v1, ..., vn in V , either v1, ..., vn are linearly
independent or for some 1 ≤ j ≤ n, vj is in a linear combination of the others.

Proof. Suppose that v1, . . . , vn are not linearly independent. Then 0 ∈ c1 ◦ v1 + · · ·+ cn ◦ vn
for some c1, . . . , cn, such that cj 6= 0 for some j, 1 ≤ j ≤ n. Thus 0 = t1 + · · · + tn for some
ti ∈ ci ◦ vi. By invertibility of V , it conclude that vj ∈ cj−1 ◦ tj and hence

vj ∈ cj
−1 ◦ (−t1 − · · · − tj−1 − tj+1 − · · · − tn)

⊆ cj
−1 ◦ (−t1) + · · ·+ cj

−1 ◦ (−tj−1) +
+cj−1 ◦ (−tj+1) + · · ·+ cj

−1 ◦ (−tn)
= −cj−1 ◦ t1 − · · · − cj−1 ◦ tj−1 − cj−1 ◦ tj+1 − · · · − cj−1 ◦ tn
⊆ −cj−1 ◦ (c1 ◦ v1)− · · · − cj−1 ◦ (cj−1 ◦ vj−1)−
−cj−1 ◦ (cj+1 ◦ vj+1)− · · · − cj−1 ◦ (cn ◦ vn)

= (−cj−1c1) ◦ v1 + · · ·+ (−cj−1cj−1) ◦ vj−1 +
+(−cj−1cj+1) ◦ vj+1 + · · ·+ (−cj−1cn) ◦ vn,

thus vj is in a linear combination of v1, . . . ,vj−1, vj+1, . . . , vn, as desired.
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Lemma 3.5. Let V be strongly left distributive and invertible. If W is a subhyperspace of V span
by β = {v1, . . . , vn}, such that β is not independentless, Then β has a linearly independent subset
such that spanning W .

Proof. Since β is not independentless, so β has a linearly independent subset {v1, . . . , vk}.
Now if k = n, we are done. If not, weed out from this set the first vj , which is in a linear
combination of others. It is clearly that j > k. Let

vj ∈ b1 ◦ v1 + · · ·+ bj−1 ◦ vj−1 + bj+1 ◦ vj+1 + · · ·+ bn ◦ vn. (3.2)

The subset so constructed, v1, . . . , vk, . . . , vj−1, vj+1, . . . , vn has n − 1 elements and its linear
span is contained in W . Because if

v ∈
n∑
i=1
i 6=j

ai ◦ vi,

then since 0 ∈ 0 ◦ vj , it follows that v ∈W . However, we claim that it is actually equal to W :

For every w ∈ W, there exist a1, a2, . . . , an in K such that w ∈
n∑
i=1

ai ◦ vi, thus by (2) we

have

w ∈ a1 ◦ v1 + · · ·+ aj ◦ (b1 ◦ v1 + · · ·+ bj−1 ◦ vj−1 +
+bj+1 ◦ vj+1 + · · ·+ bn ◦ vn) + · · ·+ an ◦ vn

= a1 ◦ v1 + · · ·+ ajb1 ◦ v1 + · · ·+ ajbj−1 ◦ vj−1 +
+ajbj+1 ◦ vj+1 + · · ·+ ajbn ◦ vn + · · ·+ an ◦ vn

= (a1 + ajb1) ◦ v1 + · · ·+ (aj−1 + ajbj−1) ◦ vj−1 +
+(aj+1 + ajbj+1) ◦ vj+1 + · · ·+ (an + ajbn) ◦ vn,

that is,w is in a linear combination of v1, . . . , vk, . . . , vj−1, vj+1, . . . , vn. Continuing this weeding
out process, we reach a subset v1, . . . , vk, vi1 , . . . , vir whose linear span is still W but in which no
element is in a linear combination of others. By Theorem 3.1 the elements v1, . . . , vk, vi1 , . . . , vir
must be linearly independent.

Corollary 3.2. Let V be strongly left distributive and invertible. Then every non independentless
spanning subset of V containing a basis.

Corollary 3.3. Let V be strongly left distributive and invertible. If V containing a finite spanning
set which is not independentless, then V is finite dimensional.

Proof. Suppose V = 〈v1, v2, ..., vn〉 such that v1, ..., vk are not independentless. Then
by Lemma 3.5 there exist linearly independent vectors v1, . . . , vk, vi1 , . . . , vir such that V =
〈v1, . . . , vk, vi1 , . . . , vir〉.

Theorem 3.2. Let V be strongly left distributive and invertible. If V has a finite basis with n
elements, then every linearly independent subset of V has no more than n elements.
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Proof. Let {v1, . . . , vn} be a basis of V and {w1, . . . , wm} be a linearly independent subset of
V . We show that m ≤ n:

Every vector in V , so in particular wm, is in a linear combination of v1, . . . , vn. Therefore the
vectors wm, v1, . . . , vn are linearly dependent. Moreover they span V, since v1, . . . , vn already do
so and 0 ∈ 0 ◦ wm. Thus by Lemma 3.5 there exists some proper subset {wm, vi1 , . . . , vir} of
{wm, v1, . . . , vn}with k ≤ n−1, such that forms a basis for V . We have traded off onew, in form-
ing this new basis, for at least one vi. Repeat this procedure with the set {wm−1, wm, vi1 , . . . , vir}.
From this linearly dependent set, by Lemma 3.5 we can extract a basis of the form {wm−1, wm, vi1 , . . . , vis}
such that s ≤ n − 2. Keeping up this procedure we eventually get down to a basis of V of the
form {w2, . . . , wm−1, wm, vα, vβ, . . .}. Since w1 is not in a linear combination of w2, . . . , wm−1,
the above basis must actually include some v. To get to this basis we have introduced m− 1 w‘s,
each such introduction having cost us at least one v, and yet there is a v left. Thus m− 1 ≤ n− 1
and so m ≤ n.

Corollary 3.4. Let V be strongly left distributive and invertible. If V is finite dimensional then
every two basis of V have the same elements.

Proof. Let {v1, . . . , vn} and {w1, . . . , wm} be two basis of V over K. Then by Theorem 3.2
we have m ≤ n, since w1, . . . , wm are linearly independent. Now interchange the roles of the v‘s
and w‘s and obtain that n ≤ m. Together these say that n = m.

Lemma 3.6. Let V be strongly left distributive and invertible. If V is finite dimensional, then
every linearly independent subset of V is contained in a finite basis.

Proof. Let {v1, . . . , vn} be a basis of V and {u1, . . . , um} be a linearly independent subset of

V . Then vectors u1, . . . , um, v1, . . . , vn span V (since v1, . . . , vn span V and 0 ∈
m∑
j=1

0 ◦ uj ). By

Lemma 3.5 there is a subset of these of the form u1, . . . , um, vi1 , . . . , vir which consist of linearly
independent elements which span V .

Remark 3.4. Let (V,+, ◦,K) be a (resp. strongly left distributive) hypervector space and W be
a subhyperspace of V . Consider the quotient abelian group (V/W,+). Define the rule{

∗ : K × V/W −→ P∗(V/W )
(a, v +W ) 7−→ a ◦ v +W

Then it is easy to verify that (V/W,+, ∗,K) is a (resp. strongly left distributive) hypervector
space over K and it is called the quotient hypervector space of V over W .

Theorem 3.3. Let V be strongly left distributive and invertible. If V is finite dimensional and W
is subhyperspace of V , then the following hold:

(i) W is finite dimensional and dimW ≤ dimV.
(ii) dimV/W = dimV − dimW.
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Proof. (i) Let Y be a basis of W . Then by Lemma 3.6 there exists a basis X of V such that
contains Y . Thus by Corollary 3.4 we have

dimW = |Y | ≤ |X| = dimV .

(ii) Let {w1, . . . , wm} be a basis of W . By Lemma 3.6 we can fill this out to a basis,
{w1, . . . , wm, v1, . . . , vr} of V , where m + r = dimV and m = dimW . Let v̄1, . . . , v̄r be
the images in V̄ = V/W , of v1, . . . , vr. Since any vector v ∈ V is in a linear combination of
w1, . . . , wm, v1, . . . , vr, so

v ∈ α1 ◦ w1 + · · ·+ αm ◦ wm + β1 ◦ v1 + · · ·+ βr ◦ vr,
then

v ∈ α1 ◦ w1 + · · ·+ αm ◦ wm + β1 ◦ v1 + · · ·+ βr ◦ vr
⊆ β1 ◦ v1 + · · ·+ βr ◦ vr
= β1 ∗ v̄1 + · · ·+ βr ∗ v̄r,

(since αi ◦ wi = αi ◦wi +W ⊆W ). Thus v̄1, . . . , v̄r span V/W . We claim that they are linearly
independent, for if

0 ∈ γ1 ∗ v̄1 + · · ·+ γr ∗ v̄r,
then

0 ∈ γ1 ◦ v1 + · · ·+ γr ◦ vr +W

⊆ γ1 ◦ v1 + · · ·+ γr ◦ vr + λ1 ◦ w1 + · · ·+ λm ◦ wm,
which by the linear independence of the set {w1, . . . , wm, v1, . . . , vr} forces γ1 = · · · = γr =
λ1 = · · · = λm = 0. We have shown that V/W has a basis of r elements, and

dimV/W = dimV −m = dimV − dimW.

Example 3.2. Let β = {e1, . . . , en} be a basis for a classical vector space (V,+, .,K) and let
β́ = {e1, . . . , ek} be a basis for subspace P of V . Then β∗ = {ek+1, . . . , en} is a basis for
hypervector space (V,+, ◦,K) in Example 2.3, because for every x ∈ V we have:

x = a1.e1 + · · ·+ ak.ek + ak+1.ek+1 + · · ·+ an.en

∈ a1.e1 + · · ·+ ak.ek + ak+1.ek+1 + · · ·+ an.en + P

= ak+1.ek+1 + · · ·+ an.en + P

= ak+1 ◦ ek+1 + · · ·+ an ◦ en,
thus β∗ span (V,+, ◦,K). Moreover β∗ is linearly independent, because

0 ∈ ak+1 ◦ ek+1 + · · ·+ an ◦ en
=⇒ 0 ∈ ak+1.ek+1 + · · ·+ an.en + P
=⇒ ak+1.ek+1 + · · ·+ an.en ∈ P
=⇒ ak+1.ek+1 + · · ·+ an.en = a1.e1 + · · ·+ ak.ek
=⇒ a1.e1 + · · ·+ ak.ek − ak+1.ek+1 − · · · − an.en = 0
=⇒ a1 = · · · = ak = ak+1 = · · · = an = 0.

Therefor β∗ is a basis.
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Example 3.3. Let (K[x],+, ·,K) be the vector space of all polynomials of degree less than n in
x. Define the external operation ” ◦ ” on K[x] by{

◦ : K ×K[x] −→ P∗ (K[x])
a ◦ f(x) = a · f(x) + 〈x〉 ,

where 〈x〉 = {kx : k ∈ K} .Then it is easy to verify that (K[x],+, ◦,K) is a strongly distributive
hypervector space and β = {1, x2, x3, . . . , xn−1} is a basis for (K[x],+, ◦,K).

Definition 3.6. Let V and W be hypervector spaces over K. A mapping T : V −→W is called
(i) weak linear transformation iff

T (x+ y) = T (x) + T (y) and T (a ◦ x) ∩ a ◦ T (x) 6= ∅, ∀x, y ∈ V, a ∈ K,

(ii) linear transformation iff

T (x+ y) = T (x) + T (y) and T (a ◦ x) ⊆ a ◦ T (x), ∀x, y ∈ V, a ∈ K,

(iii) good linear transformation iff

T (x+ y) = T (x) + T (y) and T (a ◦ x) = a ◦ T (x), ∀x, y ∈ V, a ∈ K.

A (resp. weak, good) linear isomorphism is defined as usual. If T : V −→W is a (resp. weak,
good) linear isomorphism, then it is denoted by (resp. V ∼=w W, V ∼=g W ) V ∼= W.

Definition 3.7. Let T : V −→W be a linear transformation. The kernel of T is denoted by kerT
and defined by

kerT = {x ∈ V : T (x) ∈ Ω},

where Ω = 0 ◦ 0W .

Proposition 3.3. Let W be a subhyperspace of V . Then the mapping{
π : V −→ V/W
x 7−→ x+W

is an onto good linear transformation. The mapping π is called canonical transformation.

Proof. Obvious.

Proposition 3.4. Let T : V −→ U be a good linear transformation.
(i) If W is a subhyperspace of V , then the image of W, T (W ) is a subhyperspace of U .
(ii) If L be a subhyperspace of U , then the preimage of L, T−1(L) is a subhyperspace of V

containing kerT .
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Proof. (i) Let a ∈ K and x́, ý ∈ T (W ), such that x́ = T (x), ý = T (y) for some x, y ∈ W .
Thus x+ y ∈W and a ◦ x ⊆W . So

x́− ý = T (x)− T (y) = T (x− y) ∈ T (W ),

and
a ◦ x́ = a ◦ T (x) = T (a ◦ x) ⊆ T (W ),

therefore T (W ) 6 U .
(ii) Let a ∈ K and x, y ∈ T−1(L), such that T (x) = x́, T (y) = ý, for some x́, ý ∈ L. Thus

x́+ ý ∈ L and a ◦ x́ ⊆ L. So

x́− ý = T (x)− T (y) = T (x− y),

=⇒ x− y ∈ T−1(L),

and
a ◦ x́ = a ◦ T (x) = T (a ◦ x),

=⇒ a ◦ x ⊆ T−1(a ◦ x́) ⊆ T−1(L),

therefor T−1(L) 6 V . Also if x ∈ kerT, then

T (x) ∈ 0 ◦ 0U ⊆ 0 ◦ L ⊆ L,

=⇒ x ∈ T−1(L),

thus kerT ⊆ T−1(L).

Proposition 3.5. Let V and U be strongly left distributive hypervector spaces over the field K,
and T : V −→ U be a linear transformation. Then kerT is a subhyperspace of V . Moreover,
Ω ⊆ kerT .

Proof. Since

T (Ω) = T (0 ◦ 0)
⊆ 0 ◦ T (0)
= 0 ◦ 0 = Ω,

thus ∅ 6= kerT ⊆ V . Also ∀a, b ∈ K and ∀x, y ∈ kerT, T (x) ∈ Ω, T (y) ∈ Ω. so

T (a ◦ x+ b ◦ y) = T (a ◦ x) + T (b ◦ y)
⊆ a ◦ T (x) + b ◦ T (y)
⊆ a ◦ Ω + b ◦ Ω
= Ω + Ω = Ω,

=⇒ a ◦ x+ b ◦ y ⊆ kerT.

Therefore kerT 6 V .
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Proposition 3.6. Let V and U be strongly left distributive hypervector spaces over the field K,
and T : V −→ U be a good linear transformation. Then there is a one-to-one correspondence
between subhyperspaces of V containing kerT and subhyperspaces of U .

Proof. Let A = {W : W 6 V and W ⊇ kerT} , and B = {L : L 6 U} , then we show that
the mapping {

ϕ : A −→ B
W 7−→ T (W )

is a bijection. By Proposition 3.4, ϕ is well defined. Now if W1 and W2 are two elements of A
such that W1 6= W2. Without loss of generality, suppose that W2 * W1 then

∃w1 ∈W1 −W2 or ∃w2 ∈W2 −W1.

If w1 ∈ W1 −W2, then T (w1) ∈ T (W1) − T (W2), so T (W1) 6= T (W2). If w2 ∈ W2 −W1,
then similarly T (W1) 6= T (W2). Therefore ϕ is a welldefined one to one map. Now if L ∈ B, let
W = T−1(L). Then by Proposition 3.5, we obtain that W ∈ A and T (W ) = L. Consequently ϕ
is a bijection.

Corollary 3.5. Every subhyperspace of V/W is of the form L/W, such that L is a subhyperspace
of V containing W .

Proof. By Proposition 3.3 the mapping π : V −→ V/W is a good linear transformation.
It is easy to verify that kerπ = W. Thus by Proposition 3.6, for an arbitrary subhyperspace L̄
of V/W , there exists a subhyperspace L of V , such that W ⊆ L and ϕ(L) = L̄. Moreover,
ϕ(L) = {l +W : l ∈ L} = L/W . This complete the proof.

Theorem 3.4. Let V and U be strongly left distributive hypervector spaces over the field K, and
T : V −→ U be a linear transformation. Then

V/ kerT ∼= T (V )/Ω,

Moreover if T is onto, then
V/ kerT ∼= U/Ω.

Proof. We show that the mapping{
ϕ : V/ kerT −→ T (V )/Ω
ϕ(x+ kerT ) = T (x) + Ω

is an isomorphism. For this let x+ kerT and y + kerT be two elements of V/ kerT . Then

x+ kerT = y + kerT ⇐⇒ x− y ∈ kerT
⇐⇒ T (x− y) ∈ Ω
⇐⇒ T (x)− T (y) ∈ Ω
⇐⇒ T (x) + Ω = T (y) + Ω
⇐⇒ ϕ(x+ kerT ) = ϕ(y + kerT ),
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thus ϕ is welldefined and one to one. It is clearly that ϕ is onto. Now for every x + kerT and
y + kerT belong to V/ kerT and a ∈ K we have:

ϕ ((x+ kerT ) + (y + kerT )) = ϕ (x+ y + kerT )
= T (x+ y) + Ω
= T (x) + T (y) + Ω
= T (x) + Ω + T (y) + Ω
= ϕ(x+ kerT ) + ϕ(y + kerT ),

and

ϕ (a ∗ (x+ kerT )) = ϕ (a ◦ x+ kerT )
= {ϕ (t+ kerT ) : t ∈ a ◦ x}
= {T (t) + Ω : t ∈ a ◦ x}
= T (a ◦ x) + Ω
⊆ a ◦ T (x) + Ω
= a • (T (x) + Ω)
= a • ϕ(x+ kerT ).

Therefore ϕ is an isomorphism.

Corollary 3.6. Let V be a strongly left distributive, and let β = {x1, . . . , xn} be a basis for V .

Then V/0 ◦ ω ∼= Kn, where ω =
n∑
i=1

xi.

Proof. Note that (Kn,+, ◦K ,K) is a strongly distributive hypervector space with trivial ex-
ternal operation ◦K , that is:{

◦K : K ×Kn −→ P∗ (Kn)
a ◦K (a1, . . . , an) = {(aa1, . . . , aan)} .

Define the mapping  T : V −→ Kn

x ∈
n∑
i=1

ai ◦ xi 7−→ (a1, . . . , an) ,

It is easy to see that T is an onto linear transformation, such that kerT == 0 ◦ ω, since V is
strongly left distributive. Then by Theorem 3.4 it follows that:

V/0 ◦ ω ∼= V/ kerT ∼= Kn/0 ∼= Kn.
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4. Fundamental Relation of Hypervector spaces

Let (V,+, ◦,K) be a hypervector space over K. The smallest equivalence relation ε∗ on
V , such that the quotient V/ε∗ is a vector space over K is called the fundamental relation of
V . T. Vougiouklis in [10] introduced and studied the fundamental relation of Hv-vector space (a
general class of hypervector spaces). In the following we characterize the fundamental relation on
hypervector spaces (in the sense of Tallini) and study the relationship between V and V/ε∗.

Let U be the set of all finite linear combinations of elements of V with coefficient in K, that
is

U =

{
n∑
i=1

ai ◦ xi : ai ∈ K and xi ∈ V , n ∈ N

}
.

Define the relation ε over V by

xεy ⇐⇒ ∃u ∈ U : {x, y} ⊆ u, ∀x, y ∈ V .

Then ε∗ is the transitive closure of ε. Define addition operation and scalar multiplication on V/ε∗

by {
⊕ : V/ε∗ × V/ε∗ −→ V/ε∗

ε∗(x)⊕ ε∗(y) = {ε∗(t) : t ∈ ε∗(x) + ε∗(y)} ,

and {
� : K × V/ε∗ −→ V/ε∗

a� ε∗(x) = {ε∗(z) : z ∈ a ◦ ε∗(x)} ,

Lemma 4.1. The following statement are satisfied:
(i) ε∗(a ◦ x) = ε∗(y) for all y ∈ a ◦ x, ∀a ∈ K, ∀x ∈ V, where ε∗(a ◦ x) =

⋃
b∈a◦x

ε∗(b).

(ii) ε∗(x)⊕ ε∗(y) = ε∗(x+ y).
(iii) ε∗(0) is the identity element of (V/ε∗,⊕).
(iv) (V/ε∗,⊕,�,K) is a vector space over K.
The vector space (V/ε∗,⊕,�,K) is called the fundamental vector space of V .

Proof. The proof is similar to the proof of [11, Thm. 2.4].

Theorem 4.1. Let (V,+, ◦,K) be a hypervector space and (V/ε∗,⊕,�,K) be the fundamental
vector space of V . Then

dimV = dimV/ε∗.

Proof. Let S = {x1, x2, . . . , xn} be a basis for V . Then we show that S∗ = {ε∗(x1), ε∗(x2), . . . , ε∗(xn)}
is a basis for V/ε∗. For this let ε∗(x) ∈ V/ε∗, then:

x ∈ V =⇒ ∃ a1, . . . , an ∈ K; x ∈
n∑
i=1

ai ◦ xi,

=⇒ x = t1 + · · ·+ tn; for some ti ∈ ai ◦ xi , 1 6 i 6 n.
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Then by Lemma 4.1, we obtain
ε∗(ai ◦ xi) = ε∗(ti).

and

ε∗(x) = ε∗(t1 + · · ·+ tn)
= ε∗(t1)⊕ · · · ⊕ ε∗(tn)
= ε∗(a1 ◦ x1)⊕ · · · ⊕ ε∗(an ◦ xn)
= a1 � ε∗(x1)⊕ · · · ⊕ an�ε∗(xn),

therefore V/ε∗ is generated by S∗. Now we show that S∗ is linearly independent.
Suppose that a1 � ε∗(x1)⊕ · · · ⊕ an�ε∗(xn) = ε∗(0), then:

ε∗(a1 ◦ x1)⊕ · · · ⊕ ε∗(an ◦ xn) = ε∗(0)
=⇒ ε∗(a1 ◦ x1 + · · ·+ an ◦ xn) = ε∗(0)
=⇒ 0 ∈ a1 ◦ x1 + · · ·+ an ◦ xn.

Since S is linearly independent, so a1 = · · · = an = 0. Consequently, S∗ is linearly independent.

5. Category of Hypervector Spaces

For hypervector spaces V and W on the field K, by Homw
K(V,W ), Homi

K(V,W ) and
Homg

K(V,W ) we mean the set of all week linear transformation, linear transformation and good
linear transformation, respectively.

Definition 5.1. The category of hypervector spaces overK denoted byHVwK is defined as follows:
(i) The objects ofHVwK are all hypervector spaces over K;
(ii) For the objects V and W of HVwK , the set of all morphisms from V to W is the set

Homw
K(V,W );

(iii) The composition ST of morphisms T : V −→ L and S : L −→W is defined as usual;
(iv) For any object V , the morphism 1V : V −→ V, is the identity map from V to V .

Note that in the Definition 5.1 part (ii) if we replace Homw
K(V,W ) by Homi

K(V,W ) or
Homg

K(V,W ), then we will obtain some new categories, which we denote them by HV iK and
HVgK , respectively. In fact, HVgK � HV

i
K � HVwK (by A � B read A is a subcategory of B).

We denote the category of all vector spaces over the field K by VK . In fact, VK � HVgK . (see [2])

Lemma 5.1. Let V and W be two hypervector spaces and T : V −→ W be a good linear
transformation. Then

(i) ∀x ∈ V, T (ε∗(x)) ⊆ ε∗(T (x));
(ii) The map {

T ∗ : V/ε∗ −→W/ε∗

T ∗(ε∗(x)) = ε∗(T (x))

is a linear transformation.
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Proof. Straightforward.

In [7] the notions of pseudonorm and norm in hypervector spaces was introduced. Let (V,+, ◦,K)
be a hypervector space over a valued field K, (for a ∈ K, we denote by /a/ the valuation of a in
K). A pseudonorm in V is a mapping ‖ ‖ : V −→ R, such that the following conditions hold:

(i) ‖0‖ = 0,
(ii) ∀x, y ∈ V, ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ,
(iii) ∀a ∈ K, ∀x, y ∈ V, sup ‖a ◦ x‖ = /a/ ‖x‖ .
A pseudonorm in V is called norm if:
(iv) ‖x‖ = 0⇐⇒ x = 0.
Now let ‖ ‖ be a norm on the fundamental vector space V/ε∗ of V . Define the mapping

‖ ‖∗ : V −→ R by ‖x‖∗ = ‖ε∗(x)‖ . The next result follows:

Theorem 5.1. The mapping ‖ ‖∗ is a pseudonorm on V.

Proof. (i) ‖0‖∗ = ‖ε∗(0)‖ = 0,
(ii) ∀x, y ∈ V,

‖x+ y‖∗ = ‖ε∗(x+ y)‖
= ‖ε∗(x)⊕ ε∗(y)‖
≤ ‖ε∗(x)‖+ ‖ε∗(y)‖
= ‖x‖∗ + ‖y‖∗ ,

(iii) ∀a ∈ K, ∀x, y ∈ V,

sup ‖a ◦ x‖∗ = sup ‖ε∗(a ◦ x)‖
= ‖a� ε∗(x)‖
= /a/ ‖ε∗(x)‖
= /a/ ‖x‖∗ .

Remark 5.1. The ‖ ‖∗ is called the fundamental pseudonorm associated to ‖ ‖ .

Theorem 5.2. The mapping F : HVgK −→ VK is defined by F (V ) = V/ε∗ is a functor. Moreover,
the functor F preserves the dimension.

Proof. By Lemma 5.1, F is well-defined. Let T : V −→ W and S : W −→ L be good linear
transformations. Then we have F (SoT ) = (SoT )∗ . Also

(SoT )∗ (ε∗(x)) = ε∗ ((SoT )(x))
= ε∗ (S(T (x)))
= S∗ε∗(T (x))
= S∗T ∗(ε∗(x))
= F (S)F (T )(ε∗(x)),
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for all x ∈ V . Hence F (SoT ) = F (S)F (T ).Also, F (1∗V ) : V/ε∗ −→ V/ε∗, is obtained by
1∗V (ε∗(x)) = ε∗(x), is the identity morphism. Therefore, F is a functor. Also by Theorem 4.1,

dim(F (V )) = dim(V/ε∗) = dim(V ).

Corollary 5.1. Let T : V −→ W be a morphism in HVgK . Then the following diagram is
commutative:

V
T−→ W

ϕV ↓ ↓ϕW
V/ε∗

T ∗−→ W/ε∗

where ϕV and ϕW are the canonical projections of V and W , respectively.

Proof. Let x ∈ V . Then

ϕW (T (x)) = ε∗(T (x))
= T ∗(ε∗(x))
= T ∗(ϕV (x))
= T ∗ϕV (x).
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