EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 3, Article Number 6569 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Upper and Lower Quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuity

Napassanan Srisarakham¹, Areeyuth Sama-Ae², Chawalit Boonpok^{1,*}

¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

Abstract. This paper presents new concepts of continuous multifunctions, called upper quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions and lower quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions. Moreover, several characterizations and some properties concerning upper quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions and lower quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions are considered.

2020 Mathematics Subject Classifications: 54C08, 54C60

Key Words and Phrases: Upper quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous multifunction, lower quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous multifunction

1. Introduction

In 1963, Levine [1] introduced and studied the notion of semi-continuous functions. Arya and Bhamini [2] introduced the concept of θ -semi-continuity as a generalization of semi-continuity. Noiri [3] and Jafari and Noiri [4] have further investigated some characterizations of θ -semi-continuous functions. Marcus [5] introduced and investigated the notion of quasi continuous functions. Popa [6] introduced and studied the notion of almost quasi continuous functions. Neubrunnovaá [7] showed that quasi continuity is equivalent to semi-continuity due to Levine [1]. Popa and Stan [8] introduced and investigated the notion of weakly quasi continuous functions. Weak quasi continuity is implied by quasi continuity and weak continuity [9] which are independent of each other. Popa [10] extended the concept of quasicontinuous functions to the setting of multifunctions. Popa and Noiri [11] introduced the concept of almost quasi continuous multifunctions and investigated some characterizations of such multifunctions. Noiri and Popa [12] introduced and studied the notion of weakly quasi continuous multifunctions. Popa and Noiri [13] introduced the notion of θ -quasicontinuous multifunctions and investigated several further properties of such multifunctions. Moreover, some characterizations of upper and

DOI: https://doi.org/10.29020/nybg.ejpam.v18i3.6569

Email addresses: napassanan.sri@msu.ac.th (N. Srisarakham), areeyuth.s@psu.ac.th (A. Sama-Ae), chawalit.b@msu.ac.th (C. Boonpok)

² Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand

^{*}Corresponding author.

lower θ -quasicontinuous multifunctions were presented in [14]. Semi- \mathcal{I} -open sets, pre-I-open sets, α -I-open sets, β -I-open sets and δ -I-open sets play an important role in the research of generalizations of continuity in ideal topological spaces. Hatir and Noiri [15] introduced and investigated the notions of weakly pre-I-open sets and weakly pre-\(\mathcal{I}\)-continuous functions. Furthermore, Hatir and Noiri [16] investigated further properties of semi-I-open sets and semi-I-continuous functions. In 2019, the present author [17] introduced new classes of multifunctions between ideal topological spaces, namely upper *-continuous multifunctions and lower *-continuous multifunctions. In particular, several characterizations of upper *-continuous multifunctions, lower *-continuous multifunctions, upper almost *-continuous multifunctions, lower *-continuous multifunctions, upper weakly *-continuous multifunctions and lower weakly *-continuous multifunctions were considered in [17]. On the other hand, the present author introduced and investigated the notions of pi-continuous multifunctions [18] and weakly pi-continuous multifunctions [18]. Pue-on et al. [19] introduced and studied the concepts of upper (τ_1, τ_2) -continuous multifunctions and lower (τ_1, τ_2) -continuous multifunctions. Klanarong et al. [20] introduced and investigated the notions of upper almost (τ_1, τ_2) -continuous multifunctions and lower almost (τ_1, τ_2) -continuous multifunctions. Thongmoon et al. [21] introduced and studied the concepts of upper weakly (τ_1, τ_2) -continuous multifunctions and lower weakly (τ_1, τ_2) -continuous multifunctions. In this paper, we introduce the notions of upper quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions and lower quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions. We also investigate several characterizations of upper quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions and lower quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [22] if $A = \tau_1 \text{-Cl}(\tau_2 \text{-Cl}(A))$. The complement of a $\tau_1 \tau_2 \text{-closed}$ set is called $\tau_1 \tau_2 \text{-open}$. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The intersection of all $\tau_1\tau_2$ -closed sets of X containing A is called the $\tau_1\tau_2$ -closure [22] of A and is denoted by $\tau_1\tau_2$ -Cl(A). The union of all $\tau_1\tau_2$ -open sets of X contained in A is called the $\tau_1\tau_2$ -interior [22] of A and is denoted by $\tau_1\tau_2$ -Int(A). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ -clopen [22] if A is both $\tau_1\tau_2$ -open and $\tau_1\tau_2$ -closed. A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r$ -open [23] (resp. $(\tau_1, \tau_2)s$ -open [24], $(\tau_1, \tau_2)p$ -open [24], $(\tau_1, \tau_2)\beta$ -open [24]) if $A = \tau_1 \tau_2 - \operatorname{Int}(\tau_1 \tau_2 - \operatorname{Cl}(A))$ (resp. $A \subseteq \tau_1 \tau_2 - \operatorname{Cl}(\tau_1 \tau_2 - \operatorname{Int}(A))$), $A \subseteq \tau_1 \tau_2 - \operatorname{Int}(\tau_1 \tau_2 - \operatorname{Cl}(A))$, $A \subseteq \tau_1\tau_2\text{-Cl}(\tau_1\tau_2\text{-Int}(\tau_1\tau_2\text{-Cl}(A))))$. The complement of a $(\tau_1,\tau_2)r$ -open (resp. $(\tau_1,\tau_2)s$ open, $(\tau_1, \tau_2)p$ -open, $(\tau_1, \tau_2)\beta$ -open) set is called $(\tau_1, \tau_2)r$ -closed (resp. $(\tau_1, \tau_2)s$ -closed, (τ_1, τ_2) p-closed, $(\tau_1, \tau_2)\beta$ -closed). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\alpha(\tau_1, \tau_2)$ -open [25] if $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A))). The complement of an $\alpha(\tau_1, \tau_2)$ -open set is said to be $\alpha(\tau_1, \tau_2)$ -closed.

Let A be a subset of a bitopological space (X, τ_1, τ_2) . A point $x \in X$ is called a $(\tau_1, \tau_2)\theta$ -cluster point [23] of A if $\tau_1\tau_2$ -Cl $(U) \cap A \neq \emptyset$ for every $\tau_1\tau_2$ -open set U containing x. The set of all $(\tau_1, \tau_2)\theta$ -cluster points of A is called the $(\tau_1, \tau_2)\theta$ -closure [23] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Cl(A). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)\theta$ -closed [23] if $(\tau_1, \tau_2)\theta$ -Cl(A) = A. The complement of a $(\tau_1, \tau_2)\theta$ -closed set is said to be $(\tau_1, \tau_2)\theta$ -open. The union of all $(\tau_1, \tau_2)\theta$ -open sets of X contained in A is called the $(\tau_1, \tau_2)\theta$ -interior [23] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Int(A).

Lemma 1. [23] For a subset A of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) If A is $\tau_1\tau_2$ -open in X, then $\tau_1\tau_2$ -Cl(A) = $(\tau_1, \tau_2)\theta$ -Cl(A).
- (2) $(\tau_1, \tau_2)\theta$ -Cl(A) is $\tau_1\tau_2$ -closed in X.

An ideal \mathscr{I} on a topological space (X,τ) is a nonempty collection of subsets of X satisfying the following properties: (1) $A \in \mathscr{I}$ and $B \subseteq A$ imply $B \in \mathscr{I}$; (2) $A \in \mathscr{I}$ and $B \in \mathscr{I}$ imply $A \cup B \in \mathscr{I}$. A topological space (X,τ) with an ideal \mathscr{I} on X is called an ideal topological space and is denoted by (X,τ,\mathscr{I}) . For an ideal topological space (X,τ,\mathscr{I}) and a subset A of X, $A^*(\mathscr{I})$ is defined as follows:

$$A^{\star}(\mathscr{I}) = \{x \in X : U \cap A \notin \mathscr{I} \text{ for every open neighbourhood } U \text{ of } x\}.$$

In case there is no chance for confusion, $A^*(\mathscr{I})$ is simply written as A^* . In [26], A^* is called the local function of A with respect to \mathscr{I} and τ and $\operatorname{Cl}^{\star}(A) = A^{\star} \cup A$ defines a Kuratowski closure operator for a topology $\tau^*(\mathscr{I})$ finer than τ . A subset A is said to be \star -closed [27] if $A^* \subseteq A$. The interior of a subset A in $(X, \tau^*(\mathscr{I}))$ is denoted by $Int^*(A)$. A subset A of an ideal topological space (X, τ, \mathscr{I}) is said to be $semi^*-\mathscr{I}$ -open [28] (resp. $semi-\mathscr{I}$ -open [16]) if $A \subseteq \operatorname{Cl}(\operatorname{Int}^*(A))$ (resp. $A \subseteq \operatorname{Cl}^*(\operatorname{Int}(A))$). The complement of a semi*- \mathscr{I} -open (resp. semi- \mathcal{I} -open) set is said to be $semi^{\star}$ - \mathcal{I} -closed [28] (resp. semi- \mathcal{I} -closed [16]). A subset A of an ideal topological space (X, τ, \mathscr{I}) is called semi- \mathscr{I}^* -open [29] if $A \subseteq \mathrm{Cl}^*(\mathrm{Int}^*(A))$. The complement of a semi- \mathscr{I}^* -open set is called *semi-\mathscr{I}^*-closed*. For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the intersection of all semi- \mathscr{I}^* -closed sets containing A is called the semi- \mathscr{I}^* -closure [29] of A and is denoted by $\mathrm{sCl}^*(A)$ ($\mathrm{sCl}_{\mathscr{I}^*}(A)$ [29]). The union of all semi- \mathcal{I}^* -open sets contained in A is called the semi- \mathcal{I}^* -interior [29] of A and is denoted by $\operatorname{SInt}^*(A)$ ($\operatorname{SInt}_{\mathscr{I}^*}(A)$ [29]). The family of all semi- \mathscr{I}^* -open sets of an ideal topological space (X, τ, \mathscr{I}) is denoted by $S_{\mathscr{I}^*}O(X)$. Let A be a subset of an ideal topological space (X, τ, \mathscr{I}) . The semi- $\theta(\star)$ -closure [30] of $A, \star_{\theta} sCl(A)$ and the $semi-\theta(\star)$ -interior [30] of A, $\star_{\theta} sInt(A)$ are defined as follows:

$$\star_{\theta} s\mathrm{Cl}(A) = \{ x \in X \mid A \cap s\mathrm{Cl}^{\star}(U) \neq \emptyset \text{ for every } U \in S_{\mathscr{I}^{\star}}O(X, x) \},$$

$$\star_{\theta} s\mathrm{Int}(A) = \{ x \in X \mid s\mathrm{Cl}^{\star}(U) \subseteq A \text{ for some } U \in S_{\mathscr{I}^{\star}}O(X, x) \},$$

where $S_{\mathscr{I}^*}O(X,x) = \{U \mid x \in U \text{ and } U \in S_{\mathscr{I}^*}O(X)\}.$

By a multifunction $F: X \to Y$, we mean a point-to-set correspondence from X into Y, and always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F: X \to Y$, we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and $F^-(B) = \{x \in X \mid F(x) \cap B \neq \emptyset\}$.

3. Upper and lower quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions

In this section, we introduce the notions of upper quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions and lower quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions. Moreover, several characterizations of upper quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions and lower quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions are discussed.

Definition 1. A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be upper quasi $\theta\tau^*(\sigma_1,\sigma_2)$ -continuous if for each $x\in X$ and each $\sigma_1\sigma_2$ -open set V of Y containing F(x), there exists a semi- \mathscr{I}^* -open set U of X containing x such that $F(sCl^*(U))\subseteq \sigma_1\sigma_2$ -Cl(V).

Theorem 1. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is upper quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous;
- (2) $\star_{\theta} sCl(F^{-}(\sigma_{1}\sigma_{2}\text{-}Int((\sigma_{1},\sigma_{2})\theta\text{-}Cl(B)))) \subseteq F^{-}((\sigma_{1},\sigma_{2})\theta\text{-}Cl(B))$ for every subset B of Y:
- (3) $\star_{\theta} sCl(F^{-}(\sigma_{1}\sigma_{2}-Int(\sigma_{1}\sigma_{2}-Cl(V)))) \subseteq F^{-}(\sigma_{1}\sigma_{2}-Cl(V))$ for every $\sigma_{1}\sigma_{2}$ -open set V of Y;
- (4) $\star_{\theta} sCl(F^{-}(\sigma_{1}\sigma_{2}\text{-}Int(K))) \subseteq F^{-}(K)$ for every $(\sigma_{1}, \sigma_{2})r\text{-}closed$ set K of Y;
- (5) $F^+(V) \subseteq \star_{\theta} SInt(F^+(\sigma_1\sigma_2 Cl(V)))$ for every $\sigma_1\sigma_2$ -open set V of Y;
- (6) $\star_{\theta} sCl(F^{-}(\sigma_{1}\sigma_{2}\text{-}Int(K))) \subseteq F^{-}(K)$ for every $\sigma_{1}\sigma_{2}\text{-}closed$ set K of Y;
- (7) $\star_{\theta} sCl(F^{-}(V)) \subseteq F^{-}(\sigma_{1}\sigma_{2}-Cl(V))$ for every $\sigma_{1}\sigma_{2}$ -open set V of Y.

Proof. (1) \Rightarrow (2): Let B be any subset of Y. Suppose that $x \notin F^-((\sigma_1, \sigma_2)\theta\text{-Cl}(B))$. Then, $x \in X - F^-((\sigma_1, \sigma_2)\theta\text{-Cl}(B))$ and $F(x) \subseteq Y - (\sigma_1, \sigma_2)\theta\text{-Cl}(B)$. Since $(\sigma_1, \sigma_2)\theta\text{-Cl}(B)$ is $\sigma_1\sigma_2$ -closed in Y, by (1) there exists a semi- \mathscr{I}^* -open set U of X containing x such that $F(s\mathrm{Cl}^*(U)) \subseteq \sigma_1\sigma_2\text{-Cl}(Y - (\sigma_1, \sigma_2)\theta\text{-Cl}(B)) = Y - \sigma_1\sigma_2\text{-Int}((\sigma_1, \sigma_2)\theta\text{-Cl}(B))$. Thus, we have $F(s\mathrm{Cl}^*(U)) \cap \sigma_1\sigma_2\text{-Int}((\sigma_1, \sigma_2)\theta\text{-Cl}(B)) = \emptyset$ and

$$\mathrm{sCl}^{\star}(U) \cap F^{-}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Int}((\sigma_{1},\sigma_{2})\theta\text{-}\mathrm{Cl}(B))) = \emptyset.$$

This shows that $x \notin \star_{\theta} \mathrm{sCl}(F^{-}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Int}((\sigma_{1},\sigma_{2})\theta\text{-}\mathrm{Cl}(B))))$. Thus,

$$\star_{\theta}$$
sCl $(F^{-}(\sigma_{1}\sigma_{2}-Int((\sigma_{1},\sigma_{2})\theta-Cl(B))))\subseteq F^{-}((\sigma_{1},\sigma_{2})\theta-Cl(B)).$

- (2) \Rightarrow (3): This is obvious since $\sigma_1\sigma_2$ -Cl(V) = $(\sigma_1, \sigma_2)\theta$ -Cl(V) for every $\sigma_1\sigma_2$ -open set V of Y.
 - $(3) \Rightarrow (4)$: Let K be any $(\sigma_1, \sigma_2)r$ -closed set of Y. Thus by (3), we have

$$\star_{\theta} \operatorname{sCl}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K))) = \star_{\theta} \operatorname{sCl}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K)))))$$

$$\subseteq F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K))) = F^{-}(K).$$

 $(4) \Rightarrow (5)$: Let V be any $\sigma_1 \sigma_2$ -open set of Y. Then, we have

$$X - \star_{\theta} \operatorname{SInt}(F^{+}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(V))) = \star_{\theta} \operatorname{sCl}(X - F^{+}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(V)))$$
$$= \star_{\theta} \operatorname{sCl}(F^{-}(Y - \sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(V))),$$

 $Y - \sigma_1 \sigma_2$ -Cl(V) = $\sigma_1 \sigma_2$ -Int($Y - \sigma_1 \sigma_2$ -Cl(V)) $\subseteq \sigma_1 \sigma_2$ -Int($Y - \sigma_1 \sigma_2$ -Int($\sigma_1 \sigma_2$ -Cl(V))) and $Y - \sigma_1 \sigma_2$ -Int($\sigma_1 \sigma_2$ -Cl(V)) is $(\sigma_1, \sigma_2)r$ -closed in Y. Thus by (4),

$$\star_{\theta} \operatorname{sCl}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(Y - \sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V))))) \subseteq F^{-}(Y - \sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V)))$$

$$= X - F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V)))$$

$$\subseteq X - F^{+}(V)$$

and hence $F^+(V) \subseteq \star_{\theta} \operatorname{SInt}(F^+(\sigma_1 \sigma_2 \operatorname{-Cl}(V)))$.

 $(5) \Rightarrow (6)$: Let K be any $\sigma_1 \sigma_2$ -closed set of Y. Then by (5), we have

$$X - F^{-}(K) = F^{+}(Y - K) \subseteq \star_{\theta} \operatorname{SInt}(F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(Y - K)))$$

$$= \star_{\theta} \operatorname{SInt}(F^{+}(Y - \sigma_{1}\sigma_{2}\operatorname{-Int}(K)))$$

$$= \star_{\theta} \operatorname{SInt}(X - F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K)))$$

$$= X - \star_{\theta} \operatorname{SCl}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K))).$$

Thus, $\star_{\theta} \operatorname{sCl}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K))) \subseteq F^{-}(K)$.

- $(6) \Rightarrow (7)$: Let V be any $\sigma_1 \sigma_2$ -closed set of Y. Then, we have $\sigma_1 \sigma_2$ -Cl(V) is $\sigma_1 \sigma_2$ -closed in Y and by (6), \star_{θ} sCl $(F^-(V)) \subseteq \star_{\theta}$ sCl $(F^-(\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl $(V)))) \subseteq F^-(\sigma_1 \sigma_2$ -Cl(V).
- $(7) \Rightarrow (1)$: Let $x \in X$ and V be any $\sigma_1\sigma_2$ -open set of Y containing F(x). Then, $\sigma_1\sigma_2\text{-Cl}(Y \sigma_1\sigma_2\text{-Cl}(V)) \cap F(x) = \emptyset$ and $x \notin F^-(\sigma_1\sigma_2\text{-Cl}(Y \sigma_1\sigma_2\text{-Cl}(V)))$. It follows from (7) that $x \notin \star_{\theta} \text{sCl}(F^-(Y \sigma_1\sigma_2\text{-Cl}(V)))$. Then, there exists a semi- \mathscr{I}^* -open set U of X containing x such that $\text{sCl}^*(U) \cap F^-(Y \sigma_1\sigma_2\text{-Cl}(V)) = \emptyset$; hence $F(\text{sCl}^*(U)) \subseteq \sigma_1\sigma_2\text{-Cl}(V)$. This shows that F is upper quasi $\theta\tau^*(\sigma_1, \sigma_2)$ -continuous.

Definition 2. A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be lower quasi $\theta\tau^*(\sigma_1,\sigma_2)$ -continuous if for each $x\in X$ and each $\sigma_1\sigma_2$ -open set V of Y such that

$$V \cap F(x) \neq \emptyset$$
.

there exists a semi- \mathscr{I}^* -open set U of X containing x such that $\sigma_1\sigma_2$ - $Cl(V) \cap F(z) \neq \emptyset$ for every $z \in sCl^*(U)$.

Lemma 2. If $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is lower quasi $\theta\tau^*(\sigma_1,\sigma_2)$ -continuous, then for each $x\in X$ and each subset B of Y with $(\sigma_1,\sigma_2)\theta$ -Int $(B)\cap F(x)\neq\emptyset$ there exists a semi- \mathscr{I}^* -open set U of X containing x such that $sCl^*(U)\subseteq F^-(B)$.

Proof. Since $(\sigma_1, \sigma_2)\theta$ -Int $(B) \cap F(x) \neq \emptyset$, there exists a $\sigma_1\sigma_2$ -open set V of Y such that $V \subseteq \sigma_1\sigma_2$ -Cl $(V) \subseteq B$ and $V \cap F(x) \neq \emptyset$. Since F is lower quasi $\theta\tau^*(\sigma_1, \sigma_2)$ -continuous, there exists a semi- \mathscr{I}^* -open set U of X containing x such that $\sigma_1\sigma_2$ -Cl $(V) \cap F(z) \neq \emptyset$ for every $z \in \mathrm{sCl}^*(U)$ and hence $\mathrm{sCl}^*(U) \subseteq F^-(B)$.

Theorem 2. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is lower quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous;
- (2) $\star_{\theta} sCl(F^{+}(B)) \subseteq F^{+}((\sigma_{1}, \sigma_{2})\theta Cl(B))$ for every subset B of Y;
- (3) $\star_{\theta} sCl(F^+(V)) \subseteq F^+(\sigma_1\sigma_2 Cl(V))$ for every $\sigma_1\sigma_2$ -open set V of Y;
- (4) $F^-(V) \subseteq \star_{\theta} SInt(F^-(\sigma_1\sigma_2 Cl(V)))$ for every $\sigma_1\sigma_2$ -open set V of Y;
- (5) $F(\star_{\theta}sCl(A)) \subseteq (\sigma_1, \sigma_2)\theta$ -Cl(F(A)) for every subset A of X;
- (6) $\star_{\theta} sCl(F^{+}(\sigma_{1}\sigma_{2}\text{-}Int((\sigma_{1},\sigma_{2})\theta\text{-}Cl(B)))) \subseteq F^{+}((\sigma_{1},\sigma_{2})\theta\text{-}Cl(B))$ for every subset B of Y;
- (7) $\star_{\theta} sCl(F^{+}(\sigma_{1}\sigma_{2}\text{-}Int(\sigma_{1}\sigma_{2}\text{-}Cl(V)))) \subseteq F^{+}(\sigma_{1}\sigma_{2}\text{-}Cl(V))$ for every $\sigma_{1}\sigma_{2}\text{-}open$ set V of Y;
- (8) $\star_{\theta} sCl(F^+(\sigma_1\sigma_2\text{-}Int(K))) \subseteq F^+(K)$ for every $(\sigma_1, \sigma_2)r\text{-}closed$ set K of Y;
- $(9) \star_{\theta} sCl(F^+(\sigma_1\sigma_2-Int(K))) \subseteq F^+(K) \text{ for every } \sigma_1\sigma_2\text{-closed set } K \text{ of } Y.$
- Proof. (1) \Rightarrow (2): Let B be any subset of Y. Suppose that $x \notin F^+((\sigma_1, \sigma_2)\theta\text{-Cl}(B))$. Then, $x \in F^-(Y (\sigma_1, \sigma_2)\theta\text{-Cl}(B)) = F^-((\sigma_1, \sigma_2)\theta\text{-Int}(Y B))$. Since F is lower quasi $\theta\tau^*(\sigma_1, \sigma_2)$ -continuous, by Lemma 2 there exists a semi- \mathscr{I}^* -open set U of X containing x such that $\mathrm{sCl}^*(U) \subseteq F^-(Y B) = X F^+(B)$. Thus, $\mathrm{sCl}^*(U) \cap F^+(B) = \emptyset$ and hence $x \notin \star_{\theta} \mathrm{sCl}(F^+(B))$.
- (2) \Rightarrow (3): This is obvious since $\sigma_1\sigma_2$ -Cl(V) = $(\sigma_1, \sigma_2)\theta$ -Cl(V) for every $\sigma_1\sigma_2$ -open set V of Y.
 - $(3) \Rightarrow (4)$: Let V be any $\sigma_1 \sigma_2$ -open set of Y. Then by (3), we have

$$X - \star_{\theta} \operatorname{SInt}(F^{-}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(V))) = \star_{\theta} \operatorname{sCl}(X - F^{-}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(V)))$$

$$= \star_{\theta} \operatorname{sCl}(F^{+}(Y - \sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(V)))$$

$$\subseteq F^{+}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(Y - \sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(V)))$$

$$\subseteq F^{+}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(Y - V))$$

$$= F^{+}(Y - V) = X - F^{-}(V)$$

and hence $F^-(V) \subseteq \star_{\theta} \operatorname{SInt}(F^-(\sigma_1 \sigma_2 - \operatorname{Cl}(V)))$.

- $(4) \Rightarrow (1)$: Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y such that $F(x) \cap V \neq \emptyset$. By $(4), x \in F^-(V) \subseteq \star_{\theta} \operatorname{SInt}(F^-(\sigma_1 \sigma_2 \operatorname{Cl}(V)))$. Then, there exists a semi- \mathscr{I}^* -open set U of X containing x such that $\operatorname{sCl}^*(U) \subseteq F^-(\sigma_1 \sigma_2 \operatorname{Cl}(V))$; hence $\sigma_1 \sigma_2 \operatorname{Cl}(V) \cap F(z) \neq \emptyset$ for every $z \in \operatorname{sCl}^*(U)$. This shows that F is lower quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous.
- $(2) \Rightarrow (5)$: Let A be any subset of X. By replacing B in (2) by F(A), we have $\star_{\theta} \mathrm{sCl}(A) \subseteq \star_{\theta} \mathrm{sCl}(F^+(F(A))) \subseteq F^+((\sigma_1, \sigma_2)\theta \mathrm{Cl}(F(A)))$. Thus,

$$F(\star_{\theta} \operatorname{sCl}(A)) \subset (\sigma_1, \sigma_2)\theta \operatorname{-Cl}(F(A)).$$

(5) \Rightarrow (2): Let B be any subset of Y. Replacing A in (5) by $F^+(B)$, we have $F(\star_{\theta} \mathrm{sCl}(F^+(B))) \subseteq (\sigma_1, \sigma_2)\theta\text{-Cl}(F(F^+(B))) \subseteq (\sigma_1, \sigma_2)\theta\text{-Cl}(B)$ and hence

$$\star_{\theta} \operatorname{sCl}(F^+(B)) \subseteq F^+((\sigma_1, \sigma_2)\theta \operatorname{-Cl}(B)).$$

(3) \Rightarrow (6): Let B be any subset of Y. Put $V = \sigma_1 \sigma_2$ -Int $((\sigma_1, \sigma_2)\theta$ -Cl(B)) in (3). Then, since $(\sigma_1, \sigma_2)\theta$ -Cl(B) is $\sigma_1 \sigma_2$ -closed in Y, we have

$$\star_{\theta} \operatorname{sCl}(F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Int}((\sigma_{1},\sigma_{2})\theta\operatorname{-Cl}(B)))) \subseteq F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}((\sigma_{1},\sigma_{2})\theta\operatorname{-Cl}(B))))$$

$$\subseteq F^{+}((\sigma_{1},\sigma_{2})\theta\operatorname{-Cl}(B)).$$

- (6) \Rightarrow (7): This is obvious since $\sigma_1\sigma_2$ -Cl(V) = $(\sigma_1, \sigma_2)\theta$ -Cl(V) for every $\sigma_1\sigma_2$ -open set V of Y.
 - $(7) \Rightarrow (8)$: Let K be any $(\sigma_1, \sigma_2)r$ -closed set of Y. Then by (7), we have

$$\star_{\theta} \operatorname{sCl}(F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K))) = \star_{\theta} \operatorname{sCl}(F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K)))))$$

$$\subseteq F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K))) = F^{+}(K).$$

(8) \Rightarrow (9): Let K be any $\sigma_1\sigma_2$ -closed set of Y. Then, $\sigma_1\sigma_2$ -Cl($\sigma_1\sigma_2$ -Int(K)) is $(\sigma_1, \sigma_2)r$ -closed in Y and by (8),

$$\star_{\theta} \operatorname{sCl}(F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K))) = \star_{\theta} \operatorname{sCl}(F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K)))))$$

$$\subseteq F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K))) \subseteq F^{+}(K).$$

 $(9) \Rightarrow (4)$: Let V be any $\sigma_1 \sigma_2$ -open set of Y. Then, Y - V is $\sigma_1 \sigma_2$ -closed in Y and by (9), $\star_{\theta} \text{sCl}(F^+(\sigma_1 \sigma_2\text{-Int}(Y - V))) \subseteq F^+(Y - V) = X - F^-(V)$. Moreover, we have

$$\star_{\theta} \operatorname{sCl}(F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Int}(Y-V))) = \star_{\theta} \operatorname{sCl}(F^{+}(Y-\sigma_{1}\sigma_{2}\operatorname{-Cl}(V)))$$

$$= \star_{\theta} \operatorname{sCl}(X-F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V)))$$

$$= X - \star_{\theta} \operatorname{sInt}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V))).$$

Thus, $F^-(V) \subseteq \star_{\theta} \operatorname{SInt}(F^-(\sigma_1 \sigma_2 \operatorname{-Cl}(V))).$

Theorem 3. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is upper quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous;
- (2) $\star_{\theta} sCl(F^{-}(\sigma_{1}\sigma_{2}\text{-}Int(\sigma_{1}\sigma_{2}\text{-}Cl(V)))) \subseteq F^{-}(\sigma_{1}\sigma_{2}\text{-}Cl(V))$ for every $(\sigma_{1}, \sigma_{2})\beta$ -open set V of Y;
- (3) $\star_{\theta} sCl(F^{-}(\sigma_{1}\sigma_{2}\text{-}Int(\sigma_{1}\sigma_{2}\text{-}Cl(V)))) \subseteq F^{-}(\sigma_{1}\sigma_{2}\text{-}Cl(V))$ for every $(\sigma_{1}, \sigma_{2})s$ -open set V of Y.

Proof. (1) \Rightarrow (2): Let V be any $(\sigma_1, \sigma_2)\beta$ -open set of Y. Then,

$$V \subseteq \sigma_1 \sigma_2$$
-Cl $(\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl $(V))$

and hence $\sigma_1\sigma_2\text{-Cl}(V) = \sigma_1\sigma_2\text{-Cl}(\sigma_1\sigma_2\text{-Int}(\sigma_1\sigma_2\text{-Cl}(V)))$. Since $\sigma_1\sigma_2\text{-Cl}(V)$ is $(\sigma_1, \sigma_2)r$ -closed in Y, by Theorem 1 we have

$$\star_{\theta} \operatorname{sCl}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V)))) \subseteq F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V)).$$

- $(2) \Rightarrow (3)$: The proof is obvious.
- (3) \Rightarrow (1): Let V be any $\sigma_1\sigma_2$ -open set of Y. Then, V is $(\sigma_1, \sigma_2)s$ -open in Y and by (3), $\star_{\theta} sCl(F^-(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(V)))) \subseteq F^-(\sigma_1\sigma_2-Cl(V))$. Thus by Theorem 1, F is upper quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous.

Theorem 4. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is lower quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous;
- (2) $\star_{\theta} sCl(F^{+}(\sigma_{1}\sigma_{2}\text{-}Int(\sigma_{1}\sigma_{2}\text{-}Cl(V)))) \subseteq F^{+}(\sigma_{1}\sigma_{2}\text{-}Cl(V))$ for every $(\sigma_{1}, \sigma_{2})\beta$ -open set V of Y;
- (3) $\star_{\theta} sCl(F^+(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(V)))) \subseteq F^+(\sigma_1\sigma_2-Cl(V))$ for every $(\sigma_1,\sigma_2)s$ -open set V of Y.

Proof. The proof is similar to that of Theorem 3.

Theorem 5. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is upper quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous;
- (2) $\star_{\theta} sCl(F^{-}(\sigma_{1}\sigma_{2}\text{-}Int(\sigma_{1}\sigma_{2}\text{-}Cl(V)))) \subseteq F^{-}(\sigma_{1}\sigma_{2}\text{-}Cl(V))$ for every $(\sigma_{1}, \sigma_{2})p$ -open set V of Y;
- (3) $\star_{\theta} sCl(F^{-}(V)) \subseteq F^{-}(\sigma_{1}\sigma_{2}-Cl(V))$ for every $(\sigma_{1},\sigma_{2})p$ -open set V of Y;
- (4) $F^+(V) \subseteq \star_{\theta} SInt(F^+(\sigma_1\sigma_2 Cl(V)))$ for every $(\sigma_1, \sigma_2)p$ -open set V of Y.

Proof. (1) \Rightarrow (2): Let V be any $(\sigma_1, \sigma_2)p$ -open set of Y. Since $\sigma_1\sigma_2$ -Cl(V) is a $\sigma_1\sigma_2$ -open set of Y, by Theorem 3 we have

$$\star_{\theta} \operatorname{sCl}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V)))) \subseteq F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V))))$$

$$= F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V)).$$

 $(2) \Rightarrow (3)$: Let V be any $(\sigma_1, \sigma_2)p$ -open set of Y. Then, $V \subseteq \sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)) and by (2),

$$\star_{\theta} \operatorname{sCl}(F^{-}(V)) \subset \star_{\theta} \operatorname{sCl}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V))))$$

$$\subseteq F^-(\sigma_1\sigma_2\text{-Cl}(V)).$$

 $(3) \Rightarrow (4)$: Let V be any $(\sigma_1, \sigma_2)p$ -open set of Y. Then by (3), we have

$$X - \star_{\theta} \operatorname{SInt}(F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V))) = \star_{\theta} \operatorname{sCl}(X - F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V)))$$

$$= \star_{\theta} \operatorname{sCl}(F^{-}(Y - \sigma_{1}\sigma_{2}\operatorname{-Cl}(V)))$$

$$\subseteq F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(Y - \sigma_{1}\sigma_{2}\operatorname{-Cl}(V)))$$

$$= X - F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V)))$$

$$\subseteq X - F^{+}(V)$$

and hence $F^+(V) \subseteq \star_{\theta} \operatorname{SInt}(F^+(\sigma_1 \sigma_2 - \operatorname{Cl}(V)))$.

 $(4) \Rightarrow (1)$: Let V be any $\sigma_1\sigma_2$ -open set of Y. Then, V is $(\sigma_1, \sigma_2)p$ -open in Y and by (4), we have $F^+(V) \subseteq \star_{\theta} \operatorname{SInt}(F^+(\sigma_1\sigma_2-\operatorname{Cl}(V)))$. By Theorem 1, F is upper quasi $\theta\tau^*(\sigma_1, \sigma_2)$ -continuous.

Theorem 6. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is lower quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous;
- (2) $\star_{\theta} sCl(F^{+}(\sigma_{1}\sigma_{2}\text{-}Int(\sigma_{1}\sigma_{2}\text{-}Cl(V)))) \subseteq F^{+}(\sigma_{1}\sigma_{2}\text{-}Cl(V))$ for every $(\sigma_{1}, \sigma_{2})p$ -open set V of Y;
- (3) $\star_{\theta} sCl(F^+(V)) \subseteq F^+(\sigma_1\sigma_2 Cl(V))$ for every $(\sigma_1, \sigma_2)p$ -open set V of Y;
- (4) $F^-(V) \subseteq \star_{\theta} SInt(F^-(\sigma_1\sigma_2 Cl(V)))$ for every $(\sigma_1, \sigma_2)p$ -open set V of Y.

Proof. The proof is similar to that of Theorem 5.

Recall that a bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ -compact [22] if for every cover of X by $\tau_1\tau_2$ -open sets of X has a finite subcover. A bitopological space (X, τ_1, τ_2) is said to be quasi (τ_1, τ_2) - \mathcal{H} -closed [21] if for every $\tau_1\tau_2$ -open cover $\{U_{\gamma} \mid \gamma \in \Gamma\}$, there exists a finite subset Γ_0 of Γ such that $X = \bigcup \{\tau_1\tau_2\text{-Cl}(U_{\gamma}) \mid \gamma \in \Gamma_0\}$. An ideal topological space (X, τ, \mathscr{I}) is called s^* -closed [29] if for every semi- \mathscr{I}^* -open cover $\{V_{\alpha} \mid \alpha \in \nabla\}$ of X, there exists a finite subset ∇_0 of ∇ such that $X = \bigcup \{\text{sCl}^*(V_{\alpha}) \mid \alpha \in \nabla_0\}$.

Theorem 7. Let $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ be an upper quasi $\theta\tau^*(\sigma_1,\sigma_2)$ -continuous surjective multifunction such that F(x) is $\sigma_1\sigma_2$ -compact for each $x\in X$. If (X,τ,\mathscr{I}) is s^* -closed, then (Y,σ_1,σ_2) is quasi (σ_1,σ_2) - \mathscr{H} -closed.

Proof. Let $\{V_{\gamma} \mid \gamma \in \Gamma\}$ be any $\sigma_1\sigma_2$ -open cover of Y. For each $x \in X$, F(x) is $\sigma_1\sigma_2$ -compact and there exists a finite subset $\Gamma(x)$ of Γ such that $F(x) \subseteq \cup \{V_{\gamma} \mid \gamma \in \Gamma(x)\}$. Put $V(x) = \cup \{V_{\gamma} \mid \gamma \in \Gamma(x)\}$. Then, $F(x) \subseteq V(x)$ and V(x) is $\sigma_1\sigma_2$ -open in Y. Since F is upper quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous, there exists a semi- \mathscr{I}^* -open set U(x) of X containing

x such that $F(sCl^*(U(x))) \subseteq \sigma_1\sigma_2\text{-}Cl(V(x))$. The family $\{U(x) \mid x \in X\}$ is a semi- \mathscr{I}^* -open cover of X. Since (X, τ, \mathscr{I}) is s^* -closed, there exists a finite number of points, say, $x_1, x_2, ..., x_n$ in X such that $X = \bigcup \{sCl^*(U(x_i)) \mid i = 1, 2, ..., n\}$. Since F is surjective,

$$Y = F(X) = F(\bigcup_{i=1}^{n} \mathrm{sCl}^{\star}(U(x_i))) = \bigcup_{i=1}^{n} F(\mathrm{sCl}^{\star}(U(x_i))) \subseteq \bigcup_{i=1}^{n} \sigma_1 \sigma_2 - \mathrm{Cl}(V(x_i))$$
$$= \bigcup_{i=1}^{n} \cup_{\gamma \in \Gamma(x_i)} \sigma_1 \sigma_2 - \mathrm{Cl}(V_{\gamma}).$$

This shows that (Y, σ_1, σ_2) is quasi (σ_1, σ_2) - \mathcal{H} -closed.

For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, a multifunction

$$\mathrm{sCl}F_{\circledast}:(X,\tau,\mathscr{I})\to(Y,\sigma_1,\sigma_2)$$

is defined as follows: $sClF_{\circledast}(x) = (\sigma_1, \sigma_2) - sCl(F(x))$ for each $x \in X$.

Lemma 3. Let $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ be a multifunction. Then, $sClF^-_{\circledast}(V)=F^-(V)$ for ever $(\sigma_1,\sigma_2)s$ -open set V of Y.

Proof. Let V be any $(\sigma_1, \sigma_2)s$ -open set of Y. Let $x \in \mathrm{sCl}F_{\circledast}^-(V)$. Then,

$$(\sigma_1, \sigma_2)$$
-sCl $(F(x)) \cap V = \text{sCl}F_{\circledast}(x) \cap V \neq \emptyset$.

Since V is $(\sigma_1, \sigma_2)s$ -open in Y, we have $V \cap F(x) \neq \emptyset$ and hence $x \in F^-(V)$. This shows that $\mathrm{sCl}F_{\widehat{\otimes}}^-(V) \subseteq F^-(V)$. On the other hand, let $x \in F^-(V)$. Then,

$$\emptyset \neq F(x) \cap V \subseteq (\sigma_1, \sigma_2)$$
-sCl $(F(x)) \cap V$.

Thus, $x \in {\mathrm{sCl}}F_\circledast^-(V)$ and so ${\mathrm{sCl}}F_\circledast^-(V) = F^-(V)$.

Theorem 8. A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is lower quasi $\theta\tau^*(\sigma_1,\sigma_2)$ -continuous if and only if $sClF_\circledast:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is lower quasi $\theta\tau^*(\sigma_1,\sigma_2)$ -continuous.

Proof. Suppose that F is lower quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous. Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y such that $\mathrm{sCl} F_\circledast(x) \cap V \neq \emptyset$. By Lemma 3, we have $F(x) \cap V \neq \emptyset$. Since F is lower quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous, there exists a semi- \mathscr{I}^* -open set U of X containing x such that $\sigma_1 \sigma_2$ -Cl(V) $\cap F(z) \neq \emptyset$ for every $z \in \mathrm{sCl}^*(U)$. Since $\sigma_1 \sigma_2$ -Cl(V) is $(\sigma_1, \sigma_2)s$ -open in Y, by Lemma 3 we have $\mathrm{sCl}^*(U) \subseteq F^-(\sigma_1 \sigma_2$ -Cl(V)) = $\mathrm{sCl} F_\circledast(\sigma_1 \sigma_2$ -Cl(V)) and hence $\mathrm{sCl} F_\circledast(z) \cap \sigma_1 \sigma_2$ -Cl(V) $\neq \emptyset$ for every $z \in \mathrm{sCl}^*(U)$. This shows that $\mathrm{sCl} F_\circledast$ is lower quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous.

Conversely, suppose that $\mathrm{sCl}F_\circledast$ is lower quasi $\theta\tau^\star(\sigma_1,\sigma_2)$ -continuous. Let $x\in X$ and V be any $\sigma_1\sigma_2$ -open set of Y such that $F(x)\cap V\neq\emptyset$. Then, (σ_1,σ_2) -sCl $(F(x))\cap V\neq\emptyset$. Since $\mathrm{sCl}F_\circledast$ is lower quasi $\theta\tau^\star(\sigma_1,\sigma_2)$ -continuous, there exists a semi- \mathscr{I}^\star -open set of X containing x such that $\mathrm{sCl}F_\circledast(z)\cap\sigma_1\sigma_2$ -Cl $(V)\neq\emptyset$ for every $z\in\mathrm{sCl}^\star(U)$. Since $\sigma_1\sigma_2$ -Cl(V) is $(\sigma_1,\sigma_2)s$ -open in Y and by Lemma 3, $\mathrm{sCl}^\star(U)\subseteq\mathrm{sCl}F_\circledast(\sigma_1\sigma_2$ -Cl $(V))=F^-(\sigma_1\sigma_2$ -Cl(V)) and hence $\sigma_1\sigma_2$ -Cl $(V)\cap F(z)\neq\emptyset$ for every $z\in\mathrm{sCl}^\star(U)$. Thus, F is lower quasi $\theta\tau^\star(\sigma_1,\sigma_2)$ -continuous.

Definition 3. [22] A subset A of a bitopological space (X, τ_1, τ_2) is said to be:

- (1) $\tau_1\tau_2$ -paracompact if every cover of A by $\tau_1\tau_2$ -open sets of X is refined by a cover of A which consists of $\tau_1\tau_2$ -open sets of X and is $\tau_1\tau_2$ -locally finite in X;
- (2) $\tau_1\tau_2$ -regular if for each $x \in A$ and each $\tau_1\tau_2$ -open set U of X containing x, there exists a $\tau_1\tau_2$ -open set V of X such that $x \in V \subseteq \tau_1\tau_2$ - $Cl(V) \subseteq U$.

Lemma 4. [22] If A is a $\tau_1\tau_2$ -regular $\tau_1\tau_2$ -paracompact set of a bitopological space (X, τ_1, τ_2) and U is a $\tau_1\tau_2$ -open neighborhood of A, then there exists a $\tau_1\tau_2$ -open set V of X such that $A \subseteq V \subseteq \tau_1\tau_2$ - $Cl(V) \subseteq U$.

Lemma 5. If $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is a multifunction such that F(x) is $\sigma_1\sigma_2$ -regular and $\sigma_1\sigma_2$ -paracompact for each $x\in X$, then $sClF^+_{\circledast}(V)=F^+(V)$ for each $\sigma_1\sigma_2$ -open set V of Y.

Proof. Let V be any $\sigma_1\sigma_2$ -open set of Y and $x \in \mathrm{sCl}F^+_{\circledast}(V)$. Then, $\mathrm{sCl}F^+_{\circledast}(x) \subseteq V$ and $F(x) \subseteq (\sigma_1, \sigma_2)$ -s $\mathrm{sCl}(F(x)) = \mathrm{sCl}F^+_{\circledast}(x) \subseteq V$. Thus, $x \in F^+(V)$ and so $\mathrm{sCl}F^+_{\circledast}(V) \subseteq F^+(V)$. On the other hand, let $x \in F^+(V)$. Then, $F(x) \subseteq V$ and by Lemma 4, there exists a $\sigma_1\sigma_2$ -open set W of Y such that $F(x) \subseteq W \subseteq \sigma_1\sigma_2$ - $\mathrm{Cl}(W) \subseteq V$; hence

$$\mathrm{sCl}F_{\circledast}^+(x) = (\sigma_1, \sigma_2)\text{-sCl}(F(x)) \subseteq \sigma_1\sigma_2\text{-Cl}(W) \subseteq V.$$

Thus, $x \in \mathrm{sCl}F^+_\circledast(V)$ and hence $F^+(V) \subseteq \mathrm{sCl}F^+_\circledast(V)$. Therefore, $F^+(V) = \mathrm{sCl}F^+_\circledast(V)$.

Theorem 9. Let $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ be a multifunction such that F(x) is $\sigma_1\sigma_2$ -paracompact and $\sigma_1\sigma_2$ -regular for each $x\in X$. Then, F is upper quasi $\theta\tau^*(\sigma_1,\sigma_2)$ -continuous if and only if $sClF_\circledast:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is upper quasi $\theta\tau^*(\sigma_1,\sigma_2)$ -continuous.

Proof. Suppose that F is upper quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous. It follows from Theorem 1 and Lemma 5 that for every $\sigma_1 \sigma_2$ -open set V of Y,

$$\mathrm{sCl}F_{\circledast}^+(V) = F^+(V) \subseteq \star_{\theta} \mathrm{sInt}(F^+(\sigma_1 \sigma_2 - \mathrm{Cl}(V))) = \star_{\theta} \mathrm{sInt}(\mathrm{sCl}F_{\circledast}^+(\sigma_1 \sigma_2 - \mathrm{Cl}(V))).$$

Thus by Theorem 1, $sClF_{\circledast}$ is upper quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous.

Conversely, suppose that $sClF_{\circledast}$ is upper quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous. It follows from Theorem 1 and Lemma 5 that for every $\sigma_1 \sigma_2$ -open set V of Y,

$$F^+(V) = \mathrm{sCl}F_{\circledast}^+(V) \subseteq \star_{\theta} \mathrm{sInt}(\mathrm{sCl}F_{\circledast}^+(\sigma_1\sigma_2\text{-}\mathrm{Cl}(V))) = \star_{\theta} \mathrm{sInt}(F^+(\sigma_1\sigma_2\text{-}\mathrm{Cl}(V))).$$

By Theorem 1, F is upper quasi $\theta \tau^*(\sigma_1, \sigma_2)$ -continuous.

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- [1] N. Levine. Semi-open sets and semi-continuity in topological spaces. *The American Mathematical Monthly*, 70:36–41, 1963.
- [2] S. P. Arya and M. P. Bhamini. Some weaker forms of semi-continuous functions. *Ganita*, 33:124–134, 1982.
- [3] T. Noiri. On θ -continuous functions. Indian Journal of Pure and Applied Mathematics, 21:410–415, 1990.
- [4] S. Jafari and T. Noiri. Properties of θ -continuous functions. Journal of Institute of Mathematics and Computer Sciences, Mathematics Series, 13:123–128, 2000.
- [5] S. Marcus. Sur les fonctions quasicontinues au sense de S. Kempisty. Colloquium Mathematicum, 8:47–53, 1961.
- [6] V. Popa. On the decomposition of the quasi-continuity in topological spaces (Romanian). Studii și Cercetări de Matematică, 30:31–35, 1978.
- [7] A. Neubrunnová. On certain generalizations of the notion of continuity. *Matematický* $\check{C}asopis,\ 23:374-380,\ 1973.$
- [8] V. Popa and C. Stan. On a decomposition of quasicontinuity in topological spaces. Studii și Cercetări de Matematică, 25:41–43, 1973.
- [9] N. Levine. A decomposition of continuity in topological spaces. *The American Mathematical Monthly*, 68:44–46, 1961.
- [10] V. Popa. On some decomposition of quasicontinuity of multifunctions. *Studii şi Cercetări de Matematică*, 27:322–328, 1975.
- [11] V. Popa and T. Noiri. Almost quasi continuous multifunctions. *Tatra Mountains Mathematical Publications*, 14:81–90, 1998.
- [12] T. Noiri and V. Popa. Weakly quasi continuous multifunctions. Analele Universității din Timișoara, Seria Științe Matematice, 26:33–38, 1988.
- [13] V. Popa and T. Noiri. θ -quasicontinuous multifunctions. Demonstratio Mathematica, 28:111–122, 1995.
- [14] T. Noiri and V. Popa. Some properties of upper and lower θ -quasicontinuous multifunctions. *Demonstratio Mathematica*, 38(1):223–234, 2005.
- [15] E. Hatir and T. Noiri. Weakly pre-*I*-open sets and decomposition of continuity. *Acta Mathematica Hungarica*, 106(3):227–238, 2005.
- [16] E. Hatir and T. Noiri. On decompositions of continuity via idealization. *Acta Mathematica Hungarica*, 96:341–349, 2002.
- [17] C. Boonpok. On continuous multifunctions in ideal topological spaces. *Lobachevskii Journal of Mathematics*, 40(1):24–35, 2019.
- [18] C. Boonpok. pi-continuity and weak pi-continuity. Carpathian Mathematical Publications, 17(1):171–186, 2025.
- [19] P. Pue-on, S. Sompong, and C. Boonpok. Upper and lower (τ_1, τ_2) -continuous multifunctions. International Journal of Mathematics and Computer Science, 19(4):1305–1310, 2024.
- [20] C. Klanarong, S. Sompong, and C. Boonpok. Upper and lower almost (τ_1, τ_2) continuous multifunctions. European Journal of Pure and Applied Mathematics,

- 17(2):1244-1253, 2024.
- [21] M. Thongmoon, S. Sompong, and C. Boonpok. Upper and lower weak (τ_1, τ_2) -continuity. European Journal of Pure and Applied Mathematics, 17(3):1705–1716, 2024.
- [22] C. Boonpok, C. Viriyapong, and M. Thongmoon. On upper and lower (τ_1, τ_2) -precontinuous multifunctions. *Journal of Mathematics and Computer Science*, 18:282–293, 2018.
- [23] C. Viriyapong and C. Boonpok. $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions. *Journal of Mathematics*, 2020:6285763, 2020.
- [24] C. Boonpok. $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions. Heliyon, 6:e05367, 2020.
- [25] N. Viriyapong, S. Sompong, and C. Boonpok. (τ_1, τ_2) -extremal disconnectedness in bitopological spaces. *International Journal of Mathematics and Computer Science*, 19(3):855–860, 2024.
- [26] K. Kuratowski. Topology, Vol. I. Academic Press, New York, 1966.
- [27] D. Janković and T. R. Hamlett. New topologies from old via ideals. The American Mathematical Monthly, 97:295–310, 1990.
- [28] E. Ekici and T. Noiri. ★-extremally disconnected ideal topological spaces. *Acta Mathematica Hungarica*, 122:81–90, 2009.
- [29] C. Boonpok. Weak quasi continuity for multifunctions in ideal topological spaces. Advances in Mathematics: Scientific Journal, 9(1):339–355, 2020.
- [30] C. Boonpok. $\theta(\star)$ -quasi continuity for multifunctions. WSEAS Transactions on Mathematics, 21:245–251, 2022.