EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 3, Article Number 6576 ISSN 1307-5543 – ejpam.com Published by New York Business Global

A Kurosh-Amitsur Completely Prime Radical for Near-rings

Kilaru J. Lakshminarayana^{1,*}, V.B.V.N. Prasad¹, Srinivasa Rao Ravi², Siva Prasad Korrapati² A.V. Ramakrishna³

Abstract. Two generalizations of the completely prime radical of rings to near-rings, namely the completely prime radical of near-rings and the completely equiprime radical of near-rings were introduced and studied. First one is not a Kurosh-Amitsur radical but the second one is a special radical in near-rings.

In this article another generalization of the completely prime radical of rings is introduced in near-rings using right modules of near-rings. For this completely prime right N-groups of type-r(1) are introduced in near-rings, N is a near-ring. Making use of these right N-groups of type-r(1), the completely prime radical of near-rings of type-r(1) is introduced. It is observed that the completely prime radical of type-r(1) is a Kurosh-Amitsur radical.

2020 Mathematics Subject Classifications: 16Y30

Key Words and Phrases: Near-ring, right N-group, right N-groups of type r(1), completely Prime radical of type r(1)

1. Introduction

In this article, we consider right zero-symmetric near-rings. The concept of the completely prime radical, originally developed for rings, was extended to near-rings by N. J. Groenewald [1]. He demonstrated that, analogous to the prime radical in near-rings, the completely prime radical of near-rings does not satisfy the properties of a Kurosh-Amitsur radical. Based on the notion of equiprime ideals in near-rings, a further generalization of

DOI: https://doi.org/10.29020/nybg.ejpam.v18i3.6576

Email addresses: 2002511005@kluniversity.in (Kilaru J. Lakshminarayana), vbvnprasad@kluniversity.in (V.B.V.N. Prasad), dr.rsrao@yahoo.com (S. Rao Ravi), siva235prasad@yahoo.co.in (S. P. Korrapati), amathi7@gmail.com (A. V. Ramakrishna)

¹ Department of Engineering Mathematics Koneru Lakshmaiah Education Foundation, Vaddeswaram-522502, Guntur (Dist.), Andhra Pradesh, India

² Department of Mathematics University College of Sciences, Acharya Nagarjuna University, Nagarjuna Nagar-522510 Guntur (Dist.), Andhra Pradesh, India

³ Department of Mathematics R.V.R and J.C College of Engineering, Chowdavaram-522019, Guntur (Dist.), Andhra Pradesh, India

 $^{^*}$ Corresponding author.

completely prime radical of rings called the completely equiprime radical was introduced in [2]. It was shown that this radical forms a special class of radicals within the framework of near-rings.

Completely prime modules of rings were introduced in [3]. In [4], completely prime modules of rings were extended to (left) N-groups, N is a near-ring and the corresponding radical is the completely prime radical of near-ring which is not a Kurosh-Amitsur radical of near-rings.

Right module theoretic characterization of radicals of near-rings was studied in [5]. Prime right N-groups were introduced and their correspoding radicals were studied in [6], [7] and [8].

In this article, the concept of completely prime module is extended to (right) N-groups which leads to another completely prime radical of near-rings and is a Kurosh-Amitsur radical of near-rings.

A group (T,+) is a right N-group if there is a mapping $(t,a) \to ta$ of $T \times N$ into T such that:

- (i) t(ab) = (ta)b;
- (ii) t(a+b) = ta + tb for all $t \in T, a, b \in N$.

I is a right N-group for any right ideal I of N under the multiplication in N. Moreover, for a right ideal I of N, N/I is a right N-group under (a+I)b=ab+I, $a,b\in N$.

A subgroup (normal subgroup) D of the right N-group T is a right N-subgroup (ideal) of T if $da \in D$ for all $d \in D$, $a \in N$.

 $t \in T$ is called a distributive element of the right N-group T if t(a+b)=ta+tb for all $a,b \in N$.

2. Completely Prime Right N-groups of type r(1)

Unless or otherwise specified near-rings considered are zero-symmetric right near-rings.

Definition 1. A right N-group G with $GN \neq \{0\}$ and $G0 = \{0\}$ is called a completely prime N-group of type r(1) if

- (i) every non-zero right N-subgroup of G contains a distributive element $g_0(\neq 0)$ and;
- (ii) gr = 0 implies either g = 0 or $Gr = \{0\}$ for all $g \in G, r \in R$.

Remark 1. Let R be a ring and M be a completely prime (right) R-module. Then M is also a completely prime right R-group of type r(1), when R is considered as a near-ring.

Example 1. Let N be a near-field. It is clear that N is a completely prime right N-group of type r(1).

The following Proposition is obvious in view of the above definition.

Proposition 1. Let G be right N-group with $GN \neq \{0\}$ and each non-zero N-subgroup of G has a non-zero distributive element. Then G is a completely prime N-group of type r(1) if and only if (g:0) = (G:0) for all $0 \neq g \in G$.

Proof. Suppose that G completely prime right N-group of type r(1). Let $0 \neq g \in G$ and $r \in N$ and gr = 0. By definition of completely prime right N-group of type r(1), $Gr = \{0\}$. So $(g:0) \subseteq (G:0)$. Since $(G:0) \subseteq (g:0)$, we have (g:0) = (G:0). Conversely suppose that (g:0) = (G:0) for all $0 \neq g \in G$. Let $0 \neq g \in G$, $r \in N$ and gr = 0. By assumption, $Gr = \{0\}$. So G completely prime right N-group of type r(1).

Proposition 2. Let G be a completely prime right N-group of type r(1) and H be N-subgroup of G. Then H is a completely prime right N-group of type r(1).

Proof. This follows from the definition of completely prime right N-group.

Proposition 3. Let G be a completely prime right N-group of type r(1). If N is a ring, then G is a completely prime ring N-module.

Proof. Obvious from the definition of the Completely prime right N-group.

Proposition 4. Let G be a completely prime right N-group of type r(1) and I be an ideal of N and $GI = \{0\}$. Then G has a right N-subgroup H which is a Completely prime N/I-group of type r(1).

Proof. Let g_0 be a distributive element of the right N-group G. Consider $g_0N:=\{g_0a\mid a\in N\}$. For $g_1,\,g_2\in g_0N,\,g_1=g_0b$ and $g_2=g_0c$ for some $b,c\in N$. Now $g_1-g_2=g_0(b-c)\in g_0N$. So g_0N is a subgroup of (G,+). Since $(g_0N)N\subseteq g_0(NN)\subseteq g_0N,\,g_0N$ is a right N-subgroup of G. We claim that g_0N is a right N/I-group, under $g(x+I)=g_0x,\,g\in g_0N$ and $x+I\in N/I$. Let $g:=g_0a\in g_0N$ and $x+I,\,y+I\in N/I$ and x+I=y+I. We have $x-y\in I$. $g_0x=(g_0a)x=g_0(ax)=g_0(a((x-y)+y))-g_0(ay)+g_0(ay)=g_0(a((x-y)+y)-ay)+g_0(ay)=0+(g_0a)y)=g_0N$. So the operation is well defined and g_0N is a right N/I-group. It is clear that $g'\in g_0N$ is a distributive element of the right N/I-group g_0N if and only if g' is a distributive element of the right N-group G. Since every right N/I-subgroup of g_0N is an N subgroup of G, every non-zero N/I-subgroup of g_0N contains a non-zero distributive element. Let $0\neq g_3\in g_0N$. We have $(g_3:0)_{N/I}=\{n+I\in N/I\mid g_3(n+I)=0\}=\{n+I\in N/I\mid g_3n=0\}=(g_3:0)_N/I=(g_0N:0)_N/I=(g_0N:0)_N/I$. Hence g_0N is a completely prime right N/I-group of type r(1).

Proposition 5. Let N be a near-ring and I is an ideal of N and G be completely prime right N/I-group type r(1). Then G is a completely prime right N-group of type r(1).

Proof. N is a near-ring and I is an ideal of N and G is a completely prime right N/I-group type r(1). Define gx := g(x+I) for all $g \in G$, $x \in N$. This makes G a right N-group. Let H be a non-zero right N-subgroup of G. It is clear that H is also a non-zero

right N/I-subgroup of G and it contains a non-zero distributive element h_0 . We have $h_0(x+y) = h_0(x+y+I) = h_0((x+I)+(y+I)) = h_0(x+I) + h_0(y+I) = h_0x + h_0y$. So h_0 is also a non-zero distributive element of the right N - subgroup H of G. Let $0 \neq g_1, 0 \neq g_2 \in G$. Now $(g_1:0)_N = \{x \in N \mid g_1x = 0\} = \{x \in N \mid g_1(x+I) = 0\} = \{x \in N \mid g_2(x+I) = 0\} = \{x \in N \mid g_2x = 0\} = (g_2:0)_N$. Hence G is a completely prime right N-group of typeF(1).

Proposition 6. Let G be a Completely prime right N-group of type 1 and $(G:0) = \{x \in N \mid gx = 0 \text{ for all } g \in G\}$ be the annihilator of G. Then there is a largest ideal of N contained in (G:0).

Proof. We have $0 \in (G:0)$. Let I,J be ideals of N contained in (G:0). By definition, G has a non zero distributive element g_0 . We have $(g_0:0)=(G:0)$ and $g_0(y+z)=g_0y+g_0z=0+0=0$ for all $y\in I$ and $z\in J$. So $g_0(I+J)=0$. Therefore $I+J\subseteq (g_0:0)=(G:0)$. Hence there is a largest ideal of N contained in (G:0).

(G:0) denotes the largest ideal of N contained in (G:0).

Definition 2. Let G be a completely prime right N-group of type 1 and P := (G:0). Then P is called a completely prime ideal of N of type r(1).

Definition 3. A near-ring N is called a completely prime near-ring of type r(1) if it's zero ideal is a completely prime ideal of type r(1).

Corollary 1. Let N be a near-ring and P be a completely prime ideal of N of type r(1). Then N/P completely prime near-ring of type r(1).

Proof. Since P is a completely prime ideal of N of type r(1), there is a completely prime right N-group G of type r(1) and P is the largest ideal of N contained in (G:0). By Propostion 4, there is a right N-subgroup H of G which is a completely prime N/P group of type r(1), where h(x+P) := hx for all $h \in H$, $x \in N$ and $(H:0)_{N/P} = (G:0)_N/P$. Therefore the zero ideal, (0), is the largest ideal of N/P contained in $(H:0)_{N/P}$. So (0) is a completely prime ideal of N/P of type r(1). Hence N/P is a completely prime near-ring of type r(1).

Corollary 2. Let N be a near-ring and P be an ideal of N and N/P be a completely prime near ring of type r(1). Then P is a completely prime ideal of N of type r(1).

Proof. P is an ideal of a near-ring N and N/P is a completely prime near-ring of type r(1). So the zero ideal, (0), is a completely prime ideal of N/P of type r(1). Therefore there is a completely prime right N/P - group G of type r(1) such that the zero ideal of N/P is the largest ideal of N/P contained in $(G:0)_{N/P}$. By Propostion 5, G is also a completely prime right N-group of type r(1), where gx := g(x+I) for all $g \in G$ and $x \in N$ and $(G:0)_{N/P} = (G:0)_N/P$. Therefore P is the largest ideal of N contained in $(G:0)_N$. Hence P is a completely prime ideal of N of type r(1).

Definition 4. Let N be nearring. Define $P_{cr(1)}(N) := \bigcap \{I \mid I \text{ is a completely prime ideal of } N \text{ of type } r(1)\}$ and $P_{cr(1)}(N) := N \text{ if } N \text{ has no completely prime ideals of type } r(1).$ $P_{cr(1)}$ is the completely prime radical of type r(1).

Proposition 7. $P_{cr(1)}$ is a H-radical corresponding to the class of all completely prime zero-symmetric near rings of type r(1).

Proof. Let $\mathcal{M}_{cr(1)} := \{N \mid N \text{ is completely prime zero-symmetric near rings of type } r(1)\}$. For a near-ring N, we have $(N)\mathcal{M}_{cr(1)} := \cap \{J \mid J \text{ is an ideal of } N \text{ and } N/J \in \mathcal{M}_{cr(1)}\}$. Now Q defined by $Q(N) := (N)\mathcal{M}_{cr(1)}$, is the H-radical corresponding to the class of all completely prime zero-symmetric near rings of type r(1). From the Corollaries 1 and 2, $P_{cr(1)} = Q$. Hence $P_{cr(1)}$ is the H radical corresponding to the class of all completely prime zero-symmetric near rings of type r(1).

Lemma 1. Let G be a Completely prime right N-group of type (1) and I be an ideal of N and $GI \neq \{0\}$. Then G is a Completely prime right I-group of type 1 and $\underline{(G:0)_I} \supseteq (G:0)_N \cap I$.

Proof. Since G is a right N-group and $GI \neq \{0\}$, G is also a non-trivial I-group under restriction. Let H be a non-zero right I-subgroup of G and $0 \neq h \in H$. Now $hI \neq \{0\}$ as $GI \neq \{0\}$. Let T be the subgroup of G generated by $hI := \{ha \mid a \in I\}$. T is a right I-subgroup of G as well as right N-subgroup of G. Being right N-subgroup of G, T has a distributive element t_0 . So $t_0(x+y) = t_0x + t_0y$ for all $x, y \in N$. Hence t_0 is a distributive element of the right I-group $T \subseteq H$. For $0 \neq g_1, 0 \neq g_2 \in G$, $(g_1 : 0)_I = (g_1 : 0)_N \cap I = (g_2 : 0)_N \cap I = (g_2 : 0)_I$. Also $(G : 0)_I = (g_1 : 0)_I = (g_1 : 0)_N \cap I = (G : 0)_N \cap I$. Therefore $(G : 0)_I \supseteq (G : 0)_N \cap I$.

Lemma 2. Let G be a Completely prime right I-group of type 1 and I, an ideal of a near-ring N. Then $H := g_0I$ is a completely prime right N-group of type r(1) and $(G:0)_I = (H:0)_I \supseteq (H:0)_N \cap I$, g_0 is a distributive element of the right I-group G.

Proof. It is clear that $H=g_0I:=\{g_0a\mid a\in I\}$ is a subgroup of (G,+) and hence H is a right I-subgroup of G. For $g_0a\in H$ define $(g_0a)x:=g_0(ax)$ for all $x\in N$. We claim that this operation is well defined. Let $g_0a=g_0b, a,b\in I$ and $x\in N$ and $c\in I$. $[g_0(ax)-g_0(bx)]c=g_0(ax)c-g_0(bx)c=(g_0a)(xc)-(g_0b)(xc)=(g_0a-g_0b)(xc)=0(xc)=0$. If $g_0(ax)-g_0(bx)\neq 0$ then GI=0, a contraction. So the operation is well defined and H is a right N-group with $HN\neq (0)$. Let \triangle be a non zero right N-subgroup of H. It is clear that \triangle is also a right I-subgroup of H and hence there is a $h_0\in \triangle$ such that $h_0(a+b)=h_0a+h_0b$ for all $a,b\in I$. Now $h_0:=g_0d$ for some $d\in I$. Let $x,y\in N$. $[h_0(x+y)-(h_0x+h_0y)]c=(g_0d)(x+y)c-((g_0d)xc+(g_0d)yc)=(g_0d)(xc+yc)-((g_0d)(xc)+(g_0d)(yc))=h_0(xc)+h_0(yc)-(h_0(xc)+h_0(yc))=0$ for all $c\in I$. Therefore $h_0(x+y)=h_0x+h_0y$ and hence a distributive element of the right N-subgroup \triangle . Let $0\neq g_0a, 0\neq g_0b\in H$, $a,b\in I$. $(g_0a:0)_N=(g_0a:0)_I\cap N=(g_0b:0)_I\cap N=(g_0b:0)_N$. Therefore H is a completely prime N-group of type r(1). We have $(H:0)_I=(H:0)_N\cap I$. So $(G:0)_I=(H:0)_I\supseteq (H:0)_N\cap I$.

Theorem 1. $P_{cr(1)}$ is a complete H-radical.

Proof. Suppose that $P_{cr(1)}(J) = J$, J is an ideal of N. We claim that $J \subseteq P_{cr(1)}(N)$. On the contrary suppose that $J \not\subseteq P_{cr(1)}(N)$. So there is completely prime right N-group G of type r(1) such that $GJ \neq \{0\}$. By Lemma 1, G is a completely prime right J-group of type r(1). This is a contradiction to $P_{cr(1)}(J) = J$. Therefore $J \subseteq P_{cr(1)}(N)$. Hence $P_{cr(1)}$ is a complete H-radical.

Theorem 2. The H-radical $P_{cr(1)}$ is r-hereditary.

Proof. If J is an ideal of a near-ring N and G is a Completely prime right J-group of type 1 then by Lemma 2, there is a right J-subgroup H of G such that H is a completely prime right N-group of type r(1) and $\underline{(G:0)_J} = \underline{(H:0)_J} \supseteq \underline{(H:0)_N} \cap J$. Therefore $P_{cr(1)}(J) \supseteq P_{cr(1)}(N) \cap J$. Hence $P_{cr(1)}(J) \supseteq P_{cr(1)}(N) \cap J$.

Theorem 3. $P_{cr(1)}$ is an idempotent H-radical.

Proof. Let N be a near-ring and $J := P_{cr(1)}(N)$. From Theorem 2, $P_{cr(1)}(J) \supseteq P_{cr(1)}(N) \cap J$. Taking $P_{cr(1)}(N)$ for J in the above inclusion, we have $P_{cr(1)}(P_{cr(1)}(N)) = P_{cr(1)}(N)$. Therefore $P_{cr(1)}$ is an idempotent H-radical.

From Proposition 7 and Theorems 3 and 1, we have the following:

Theorem 4. The H-radical $P_{cr(1)}$ is a Kurosh-Amitsur radical in the class of all zero-symmetric near-rings.

Proof. Since an idempotent, complete H-radical is a Kurosh-Amitsur radical, from Proposition 7 and Theorems 1 and 3, $P_{cr(1)}$ is a Kurosh-Amitsur radical.

3. Conclusions

Some important Kurosh-Amitsur prime radicals of rings fails to be Kurosh-Amitsur radicals, when they are generalized to near-rings using left N-groups. To see whether the situation will be different with right N-groups was studied in [6], [5] and [8].

As proved in [6], right N-groups play significant role in generalizing the prime radicals of rings to near-rings. This fact was completely established in [5] in general. In [8], the prime radical of rings was generalized to near-rings using right N-groups which is also a Kurosh-Amitsur radical of near-rings.

In this article, the completely prime radical of rings which is a Kurosh-Amitsur radical of rings is generalized to near-rings using right N-groups which is also a Kurosh-Amitsur radical of near-rings.

References

- [1] N. J. Groenewald. Note on the completely prime radical in near-rings. Near-rings and Near-fields, North-Holland Mathematics Studies, 137:97–100, 1987.
- [2] G. L. Booth and N. J. Groenewald. Equiprime left ideals and equiprime n-groups of a near-ring. *Contributions to General Algebra*, 8:25–38, 1992.
- [3] N. J. Groenewald. Completely prime submodules. *International Electronic Journal of Algebra*, 137:1–14, 2013.
- [4] S. Juglal and N.J. Groenewaldy. Different prime R-ideals. *Algebra Colloquium*, 17(1):887–904, 2010.
- [5] R. Srinivasa Rao and S. Veldsman. Right representations of right near-ring radicals. *Afrika Matematika*, 30(1-2):1333–1339, 2019.
- [6] R. Srinivasa Rao Kilaru J. Lakshminarayana, V. B. V. N. Prsad and A. V. Ramakrishna. A Module theoretic characterization of the prime radical of near-rings. *Beitr. Algebra Geom*, 59(1):51–60, 2018.
- [7] K. Siva Prasad R. Srinivasa Rao, K. Naga Koteswara Rao and K Jaya Lakshmi Narayana. A non-ideal-hereditary kurosh-amitsur prime radical for near-rings. Afrika Matematika, 32:1333–1339, 2021.
- [8] R. Srinivasa Rao Kilaru J. Lakshminarayana, V. B. V. N. Prsad and A. V. Ramakrishna. On the prime radicals of near-rings which is kurosh-amitsur. *European Journal of Pure and Applied Mathematics*, 17(2):1206–1212, 2024.