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Abstract. In the presence of an automorphism denoted as α of a ring specifically referred to
as R, and with ∗ symbolizing involution on R, this study endeavors to establish the conceptual
framework for (α, ∗)-derivations on R. By leveraging the functions of α and ∗, we extract certain
commutativity theorems applicable to prime rings. Furthermore, the demonstrations of these
theorems, particularly in the context of non-commutative prime rings, alongside the conditions in
which a generalized (α, ∗)-derivation functions as a α-centralizer, will be scrutinized. Pertinent
examples are presented to elucidate the proposed concepts.
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1. Introduction

The symbol Z(R) represents the center of an associative ring R throughout the paper.
The mathematical expression ax − xa represents the commutator of a, x ∈ R, which is
specified by the symbol [a, x]. A ring R is a t-torsion free ring if tr = 0 implies r = 0 for
every r ∈ R and t > 1 is a fixed integer. If aRx = {0} indicates that either a = 0 or
x = 0, then a ring R is a prime. If it meets the condition that aRa = {0} results in a = 0,
it is referred to as semiprime.

The next attempt is to define certain key terms and concepts before going on to the
literature review of this section. Involution ∗ from R to R is an additive mapping that
satisfies the condition for every d, j ∈ R., (dj)∗ = j∗d∗ and (d∗)∗ = d for each d, j ∈ R.
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The most common types of involution are identity maps, negation, and complex conju-
gation. For example, consider the negation of the function (x)∗ = −x on the set of real
numbers. Then (x+ y)∗ = −(x+ y) = (−x)+ (−y) = (x)∗+(y)∗ is clearly additive. Also,
(xy)∗ = −(xy) = −(−y)(−x) = (y)∗(x)∗ and ((x)∗)∗ = −(−x) = x, hence ∗ is an involu-
tion. An involution ring, or ring having an involution ∗, is commonly used for a ∗-ring.
The most influential research to start reading about generalized derivations, involution,
centralizers, etc., are [1–6].

In short, if ζ(c)c + cζ(c) = 0 for each of c ∈ R, then the mapping ζ is (skew)-
commuting on R. A map ζ from R to R is considered to be (skew)-centralizing on R
if ζ(c)c + cζ(c) ∈ Z(R) for each c ∈ R. The mapping η from R to R is considered a
derivation on R if it satisfies the equation η(ce) = η(c)e + cη(e), for each of c, e ∈ R.
An additive mapping η : R −→ R is said to be ∗-derivation if it fulfills the condition for
every x, y ∈ R, η(xy) = η(x)y∗ + xη(y). An additive mapping ζ : R −→ R is said to be
α-derivation if it fulfills the condition for every x, y ∈ R,

ζ(xy) = ζ(x)α(y) + xζ(y).

Example 1. Let a ring R =

{(
a 0
b c

) ∣∣∣∣ a, b, c ∈ 2Z4

}
. Define the map D and α in such

a way D : R → R, D

((
a 0
b c

))
=

(
0 0
0 c

)
, and

α

((
a 0
b c

))
=

(
c 0
b a

)
. Then D is a α-derivation on R.

Consider the additive mappings F, d : R −→ R, F is said to be a generalized deriva-
tion on R associated with d if it satisfies the condition F (xy) = F (x)y + xd(y), for every
x, y ∈ R. For example define F : R → R defined by F (x) = 2x and the associated
derivation d : R → R as d(x) = 0. Then for any x, y ∈ R, we have F (xy) = 2xy, and
F (x)y + xd(y) = (2x)y + x(0) = 2xy. So F (x) = 2x is a generalized derivation with
d(x) = 0.

As stated by [7], if T (xy) = T (x)y (T (xy) = xT (y)) holds for all x, y ∈ R and T is
additive, then a mapping T : R → R is referred to as a left (right) centralizer respec-
tively. The equation for ∗-centralizer in the same line of inquiry is as follows: The left
∗-centralizer and the right ∗-centralizer on R shall be identifiers for a mapping T on R
that is additive and satisfies T (xy) = T (x)y∗ and T (xy) = x∗T (y) for all x, y ∈ R. In
[8–13], an outstanding analysis of the theory of centralizers and ∗-centralizers was offered.
The extended idea of ∗-derivation on standard operator algebra has been developed by
the authors in [3].

Definition 1. An additive map d : R → R is said to be (α, ∗)-derivation if is satisfies

d(xy) = d(x)α(y) + x∗d(y)
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or d(xy) = d(x)y∗ + α(x)d(y)

for all x, y ∈ R.

Definition 2. An additive map F : R → R is said to be generalized (α, ∗)-derivation with
associative derivation d, if

F (xy) = F (x)α(y) + x∗d(y)

or F (xy) = F (x)y∗ + α(x)d(y)

for all x, y ∈ R.

To understand the concept well, we pose the following example:

Example 2. Consider a ring as follows;

R =


 0 a b

0 0 c
0 0 0

∣∣∣∣∣∣a, b, c ∈ 2Z4

 .

Define the mappings
F, d, α, ∗ : R → R

such that

F


 0 a b

0 0 c
0 0 0

 =

 0 0 b
0 0 0
0 0 0

 ,

d


 0 a b

0 0 c
0 0 0

 =

 0 0 0
0 0 c
0 0 0

 ,

α


 0 a b

0 0 c
0 0 0

 =

 0 c 0
0 0 a
0 0 0

 ,

and  0 a b
0 0 c
0 0 0

∗

=

 0 a −b
0 0 −c
0 0 0

 .

We can verify that F is a generalized (α, ∗)-derivation associated with (α, ∗)-derivation on
R.

A lot of research has been done in the context of involution involved with derivation,
generalized derivation, Jordan derivation, left derivation, etc. Our present research is mo-
tivated by all the above theories and the role of automorphism and involution on R. We
will prove some commutativity theorems in the setting of prime and semiprime rings. We
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will observe that α and ∗ play a crucial role in our proofs. The commutativity theorem
on prime rings possessing automorphisms/ endomorphisms, n-commuting mappings, was
proved in [4, 14–16]. Further, we refer the reader to the extensive bibliography contained
in it.

Motivated by the above literature review and concepts, we put out the extension of
generalized derivation to generalized (α, ∗)-derivations on rings. In the present paper,
our objective is to investigate some differential identities related to generalized (α, ∗)-
derivation on rings and algebras.

2. Main results

Throughout, α and ∗ will represent the automorphism and involution of R. To prove
our theorems, we use only one of the given conditions in Definition 2 (or Definition 1)
randomly. We begin with the following theorems:

Lemma 1. [17] The center of R includes the center of a nonzero ideal (one-sided) for a
semiprime ring R. Any commutative ideal (one-sided) is immediately enclosed in Z(R).

Theorem 1. Let R be a semiprime ∗-ring and F be a (α, ∗)-generalized derivation on R
with associative (α, ∗)-derivation. Then F maps R into Z(R).

Proof. We are given that

F (xy) = F (x)y∗ + α(x)d(y) for each x, y ∈ R. (1)

Put yz for y in (1) to observe

F (x(yz)) = F (x)(yz)∗ + α(x)d(yz) for each x, y, z ∈ R. (2)

This implies that

F (xyz) = F (x)z∗y∗ + α(x)d(y)z∗ + α(x)α(y)d(z) for each x, y, z ∈ R. (3)

Also, expand the left hand side of (2) as

F ((xy)z) = F (xy)z∗ + α(xy)d(z) for each x, y, z ∈ R. (4)

Which yields that

F (xyz) = F (x)y∗z∗ + α(x)d(y)z∗ + α(x)α(y)d(z) for each x, y, z ∈ R. (5)

Comparing (6) and (7) together, we obtain

F (x)[y∗, z∗] = 0 for each x, y, z ∈ R. (6)
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Substitute y and z for y∗ and z∗ respectively in (6) to get

F (x)[y, z] = 0 for each x, y, z ∈ R. (7)

Putting yF (x) in place of y in (7), we have

F (x)y[F (x), z] = 0 for each x, y, z ∈ R. (8)

Reword the above expression in terms

F (x)zy[F (x), z] = 0 for each x, y, z ∈ R. (9)

Multiply (8) by z from left to get

zF (x)y[F (x), z] = 0 for each x, y, z ∈ R. (10)

On subtracting (9) and (10), we obtain

[F (x), z]y[F (x), z] = 0 for each x, y, z ∈ R. (11)

Since R is semiprime, thus [F (x), z] = 0 for all x, z ∈ R. Hence F maps R into Z(R).

The preceding findings wield significant influence, forging new pathways and opening
unprecedented avenues for exploration.

Corollary 1. Let R be a semiprime ∗-ring and d be a (α, ∗)-derivation on R. Then d
maps R into Z(R).

Corollary 2. If d is a (α, ∗)-derivation on a prime ∗-ring R, then d is commuting on R.

Theorem 2. Let R be a prime ∗-ring. If F is a (α, ∗)-generalized derivation on R, then
F = 0 or R is commutative.

Proof. Following the foot steps of Theorem 1 and from (7), we have

F (x)[y, z] = 0 for each x, y, z ∈ R. (12)

Replace y by ry in (12), we get

F (x)r[y, z] = 0 for each x, y, z, r ∈ R. (13)

Primeness yields that either F = 0 or [y, z] = 0 for all y, z ∈ R. Commutativity of R
guaranteed from the last case.
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Theorem 3. Let R be a prime ∗-ring with involution ∗. If F is a nonzero (α, ∗)-generalized
derivation with associated (α, ∗)-derivation D such that

F (ς)[y, z] = 0 for each ς, y, z ∈ R,

then one of the following holds:

(i) R is commutative,

(ii) D = 0, moreover, F acts as an α-centralizer.

Proof. We are given that by hypothesis

F (ς)[y, z] = 0 for every ς, y, z ∈ R. (14)

Put ςw in place of ς in (14) to obtain

F (ςw)[y, z] = 0 for every ς, y, z, w ∈ R. (15)

By the definition of F , we have

F (ς)α(w)[y, z] + ς∗D(w)[y, z] = 0 for every ς, y, z, w ∈ R.

Now replace w by α−1(w) in above equation to find

F (ς)w[y, z] + ς∗D(α−1(w))[y, z] = 0 for every ς, y, z, w ∈ R. (16)

Substitute wy for y in equation (14) to find

F (ς)[wy, z] = 0 for every ς, y, z, w ∈ R (17)

This implies that

F (ς)w[y, z] + F (ς)[w, z]y = 0 for every ς, y, z, w ∈ R. (18)

In view of (14),(18) gives that

F (ς)w[y, z] = 0 for every ς, w, y, z ∈ R. (19)

Encounter (16) and (19) together to find

ς∗D(α−1(w))[y, z] = 0 for everyς, y, z ∈ R.

Again replacing w = α(w) and ς∗ = ς in above expression, we arrive at

ςD(w)[y, z] = 0 for every ς, w, y, z ∈ R. (20)
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Reword the last equation after substituting ry for y to observe

ςD(w)r[y, z] = 0 for every ς, w, y, z, r ∈ R. (21)

Thus, either ςD(w) = 0 or [y, z] = 0. From (21), we say that R can be viewed as joint
K+

1 ∪K+
2 , where

K+
1 = {[y, z] = 0 | z, y ∈ R}

and
K+

2 = {ς, w ∈ R | ςD(w) = 0}

are two additive subgroup of R. Which is a contradiction to the fact that R cannot be
determined by the union of two additive subgroups, namely K+

1 and K+
2 . Hence, prime-

ness implies that either K+
1 = R or K+

2 = R.

If K+
1 = R, then R is commutative by Lemma 1. In case K+

2 = R, we say that after
simple manipulation if ςD(w) = 0, then D(w)ςD(w) = 0, which implies D = 0. In case
D = 0, F possessing the form F (ςy) = F (ς)α(y) acting as α−centralizer on R.

Theorem 4. Let R be a prime ∗-ring. If F is a nonzero generalized (α, ∗)-derivation with
associated derivation D such that

[F (ς), y] = 0 for every ς, y ∈ R,

then either R is commutative or F acts as an α-centralizer.

Proof. We are given that

[F (ς), y] = 0 for every ς, y ∈ R, (22)

Put ςz in place of ς in equation (22) to obtain the following

[F (ςz), y] = 0 for every ς, z, y ∈ R

Expanding the above expression, we get

[F (ς)α(z) + ς∗D(z), y] = 0 for every ς, z, y ∈ R

This implies that

[F (ς)α(z), y] + [ς∗D(z), y] = 0 for every ς, z, y ∈ R.

Using the properties of commutators, we find

[F (ς), y]α(z) + F (ς)[α(z), y] + ς∗[D(z), y] + [ς∗, y]D(z) = 0 for every ς, z, y ∈ R
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Put ς∗ for y, and use the fact that [F (ς), y] = 0 to get

F (ς)[α(z), y] + y[D(z), y] = 0 for every ς, z, y ∈ R.

Put α(z) for w in above expression to obtain

F (ς)[w, y] + y[D(z), y] = 0 for every ς, w, z, y ∈ R.

Considering w for y, we get

y[D(z), y] = 0 for every z, y ∈ R.

Since y ̸= 0, then it follows that

[D(z), y] = 0 for every z, y ∈ R. (23)

Further, putting zw for z in the above equation, we obtain the following

[D(zw), y] = 0 for every z, w, y ∈ R.

Expanding the derivation

[D(z)α(w), y] + [z∗D(w), y] = 0 for every z, w, y ∈ R.

Using the properties of commutators, we obtain

[D(z), y]α(w) +D(z)[α(w), y] + z∗[D(w), y] + [z∗, y]D(w) = 0 for every z, w, y ∈ R.

Putting y for z∗, we get
D(z)[α(w), y] = 0

Now, substitute α−1(w) for w, we find that

D(z)[w, y] = 0 for every z, w, y ∈ R. (24)

Next, replacing rw for w, we have

D(z)[rw, y] = 0 for every z, w, y, r ∈ R.

Simplify the above equation, we get

D(z)r[w, y] +D(z)[r, y]w = 0 for every z, w, y, r ∈ R. (25)

In view of (24), (25) yields that

D(z)r[w, y] = 0 for every z, w, y, r ∈ R. (26)

Making use of primeness of R, we obtain either D(z) = 0 or [w, y] = 0 for each w, y, z ∈ R.
This implies R is commutative in the last condition. In case D = 0, F acting as α-
centralizer.
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Theorem 5. Let R be a prime ∗-ring. If F is a nonzero generalized (α, ∗)-derivation with
associated derivation D such that

F (ς)F (y)[z, u] = 0 for every ς, y, z, u ∈ R,

then either R is commutative or F acts as an α-centralizer.

Proof. We are given that

F (ς)F (y)[z, u] = 0 for every ς, y, y′, z, u ∈ R. (27)

Put y′z in place of z in (27) and making use of commutator identities to obtain

F (ς)F (y)y′[z, u] + F (ς)F (y)[y′, u]z = 0 for every ς, y, y′, z, u ∈ R. (28)

Using (27) and (28), we observe

F (ς)F (y)y′[z, u] = 0 for every ς, y, y′, z, u ∈ R. (29)

Substitute yy′ for y in (29) to find

F (ς)
(
F (y)α(y′) + y∗D(y′)

)
[z, u] = 0 for every ς, y, y′, z, u ∈ R. (30)

Simplifying (30) after putting y′ = α−1(y′), we get

F (ς)F (y)y′[z, u] + F (ς)y∗D(α−1(y′))[z, u] = 0 for every ς, y, y′, z, u ∈ R. (31)

In view of (29), (31) reduces to the form

F (ς)y∗D(α−1(y′))[z, u] = 0 for every ς, y, y′, z, u ∈ R. (32)

Again replace y′ by α(y′) and y by y∗ to obtain

F (ς)yD(y′)[z, u] = 0 for every ς, y, y′, z, u ∈ R. (33)

Which yields that

F (ς)yrD(y′)[z, u] = 0 for every ς, y, y′, z, u, r ∈ R. (34)

Using primeness of R, we conclude that either F (ς)y = 0 or D(y′)[z, u] = 0 for every
ς, y, y′, z, u ∈ R. Consider the first case F (ς)y = 0 for every ς, y ∈ R. Primeness argument
gives that F (ς) = 0 for each ς ∈ R, hence F = 0, which leads to a contradiction.

Next, investigate the second case if D(y′)[z, u] = 0 for every u, y′, z ∈ R. Last equa-
tion gives that D(y′)R[z, u] = 0 for every u, y′, z ∈ R. Again, applying primeness of
R, we get either D(y′) = 0 or [z, u] = 0 for each u, y′, z ∈ R. Second case guaranteed
the commutativity of R. In case D(y′) = 0 for each y′ ∈ R, F will act as left α-centralizer.
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Theorem 6. Let R be a prime ∗-ring. If F is a generalized (α, ∗)-derivation with asso-
ciated derivation D such that

F (ς)(y ◦ z) = 0 for every ς, y, z ∈ R,

then either R is commutative or F acts as an α-centralizer.

Proof. By the given hypothesis, we have

F (ς)(y ◦ z) = 0 for every ς, y, z ∈ R. (35)

Recall that (y◦z) represents the Jordan product, which in this context is defined as yz+zy.
Substituting zu for z in (35) and using the identity (y ◦ zu) = (y ◦ z)u+ z[u, y], we obtain

F (ς)(y ◦ z)u+ F (ς)z[u, y] = 0 for every ς, y, u, z ∈ R. (36)

Encounter (35) and (36) together to find

F (ς)z[u, y] = 0 for every ς, y, u, z ∈ R. (37)

Multiplying (37) by r from left to get

rF (ς)z[u, y] = 0 for every ς, y, u, r, z ∈ R. (38)

From (37), we also write

F (ς)rz[u, y] = 0 for every ς, y, u, r, z ∈ R. (39)

Evaluate (38) and (39) to obtain

[F (ς), r]z[u, y] = 0 for every ς, y, u, r, z ∈ R. (40)

This implies that either [F (ς), r] = 0 or [u, y] = 0 for each ς, y, u, r ∈ R. Take first if
[F (ς), r] = 0 for each ς, r ∈ R, then conclusion follows from Theorem 4. The commutativ-
ity is straightforward from the second condition. This completes the proof.

Theorem 7. Let R be a prime ∗-ring. If F is a generalized (α, ∗)-derivation with asso-
ciated derivation D such that

F (µ)F (ς)(y ◦ z) = 0 for every µ, ς, y, z ∈ R,

then either R is commutative or F acts as an α-centralizer.

Proof. By the given hypothesis, we have

F (µ)F (ς)(y ◦ z) = 0 for every µ, ς, y, z ∈ R. (41)

Substituting zu for z in (41) and simplifying, we obtain

F (µ)F (ς)(y ◦ z)u+ F (µ)F (ς)z[u, y] = 0 for every µ, ς, y, u, z ∈ R. (42)

Encounter the lats two equations in combination to determine

F (µ)F (ς)z[u, y] = 0 for every µ, ς, y, u, z ∈ R. (43)

Following the footsteps of Theorem 5 from equation (29), we conclude the desired result.
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3. Application on C∗-algebra

An algebra equipped with an involution is called a ∗-algebra. A C∗-algebra C is a
Banach ∗-algebra with the additional norm condition ||ρ∗ρ|| = ||ρ||2 for all ρ ∈ A. Since
a C∗-algebra C is primitive if its zero ideal is primitive. Hence C has a faithful nonzero
irreducible structure. we consider C is non-unital unless indicate otherwise throughout.

Theorem 8. Let C be a C∗-algebra. If F : C → C is a linear generalized (α, ∗)-derivation
with associated (α, ∗)-derivation d : C → C, then F is commuting on C.

Proof. Since every C∗-algebra is a semiprime ring [18]. Hence C is semiprime. We
divide the proof into the following two cases:

Case(1) : If d ̸= 0, then by Theorem 1, we have F maps C into Z(C). This implies
that [F (r), r] = 0 for all r ∈ C. Hence F is commuting.

Case(2) : If d = 0, then by definition F (x) has one possible form, that is

F (xy) = F (x)y∗.

Similarly,

F (x(yz)) = F (x)(yz)∗ = F (x)z∗y∗. (44)

Also, we may have

F ((xy)z) = F (xy)z∗ = F (x)y∗z∗. (45)

Subtract (45) from (44) to get

F (x)[y∗, z∗] = 0 for all x, y, z ∈ C. (46)

This implies that
F (x)[y, z] = 0 for all x, y, z ∈ C. (47)

Put yF (x) in place of y in (47) and use (47) to find

F (x)y[F (x), z] = 0 for all x, y, z ∈ C. (48)

Reword (48) in the form

F (x)zy[F (x), z] = 0 for all x, y, z ∈ C. (49)

Left multiplication to (48) by z yields that

zF (x)y[F (x), z] = 0 for all x, y, z ∈ C. (50)
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Simplifies the equations (49) and (50) to obtain

[F (x), z]y[F (x), z] = 0 for all x, y, z ∈ C. (51)

Making use of primness of C, we find [F (x), x] = 0 for all x ∈ C. This is the desired
conclusion.

Moreover, in case d = 0, we have another form of F by following Definition 2 as
F (xy) = F (x)α(y), x, y ∈ C. Putting α−1(y) for y in the last expression to get F (xy) =
F (x)y for each x, y ∈ C. Which implies that after some manipulation [F (x), x] = 0 for all
x ∈ C. Hence, in both definitions, we have seen that F is commuting on C. This completes
the proof of the theorem.

Theorem 9. Let R be a semisimple ∗-ring. If R admits a generalized (α, ∗)-derivation
F , associate with (α, ∗)-derivation, then F maps R into Z(R).

Proof. Since every semisimple ∗-ring is a semiprime ∗-ring. By application of Theorem
8, we obtain [F (x), x] = 0 for all x ∈ R. Hence F maps R into Z(R).

Conclusions

Our goal is to investigate the commutative structure within the specified framework.
We determine that in certain scenarios, generalized (α, ∗)-derivations are found within
Z(R). Moreover, we elucidate the structure of all generalized (α, ∗)-derivations on ∗-prime
(semiprime) rings. Furthermore, we have established that certain differential identities in-
volving generalized (α, ∗)-derivation F lead to the conclusion that either F operates as
a α-centralizer or R exhibits commutativity. Ultimately, we applied our theorems to
semisimple ∗-rings, demonstrating that if R permits a generalized (α, ∗)-derivation F as-
sociated with a (α, ∗)-derivation, then F maps R into Z(R). The roles of α, ∗, the Jordan
product, and the Lie product (Lie identities) are intricate and intriguing within our proofs.

The exploration of generalized (α, ∗)-derivations, α-centralizer, and ∗-centralizer pro-
cesses within rings (potentially incorporating an involution of the second kind), in conjunc-
tion with the CSL subalgebra of the von Neumann algebra, constitutes a fertile domain
for future scholarly inquiry. This study aspires to unveil continuity theorems throughout
diverse algebraic frameworks, spanning Banach and semi-simple Banach algebras to Lie
and C ∗ algebras, underscoring its auspicious promise. Scholars are encouraged to investi-
gate functional identities pertinent to specific derivation types, such as α-centralizer and
∗-centralizer in the CSL subalgebra of the von Neumann algebra.
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This investigation into additive mappings about rings and their subsets reveals a pro-
found level of mathematical sophistication and theoretical insight. Moreover, such struc-
tural analyses are indispensable to numerous applications within the realms of computer
science, engineering, and various other disciplines. These structures garner significant
interest among researchers, facilitating future endeavors to efficiently organize, compare,
and optimize data, thus providing essential tools for addressing complex challenges across
a confined spectrum of fields.
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