EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 4, Article Number 6597 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Collectionwise Pre-Normality in Topological Spaces

Sadeq Ali Thabit^{1,*}, Alyaa Al-Awadi^{2,3,*}, Rafiqa Noaman¹

Abstract. This paper introduces and studies a new topological property called collectionwise prenormality. A space X is said to be *collectionwise pre-normal* if and only if X is T_1 and for every discrete family $\mathcal{F} = \{F_s\}_{s \in S}$ of closed subsets of X, there exists a discrete family $\mathcal{U} = \{U_s\}_{s \in S}$ of pre-open subsets of X such that $F_s \subseteq U_s$ for each $s \in S$. We investigate this property and present examples that illustrate its relationship with other known topological properties.

2020 Mathematics Subject Classifications: 54C10, 54D10, 54D20, 54D15, 54D70

Key Words and Phrases: Normal, collectionwise normal, paracompact, pre-normal, discrete family, p_1 -paracompact, sub-maximal

1. Introduction

In this paper, we introduce and study a weak version of collectionwise normality called collectionwise pre-normality, which is a generalization of collectionwise normality. The space X means a topological space in whole paper. We need to recall that: a subset A of a space X is said to be a closed domain subset if it is the closure of its own interior [1]. The complement of a closed domain subset is called open domain. A subset A of a space X is called π -closed if it is a finite intersection of closed domain subsets [2]. The complement of a π -closed subset is called π -open. A subset A of X is said to be pre-open [3], if $A \subseteq \operatorname{int}(\overline{A})$. The complement of a pre-open set is called pre-closed. The intersection of all pre-closed sets containing A is called a pre-closure of A [4, 5], and denoted by $p\operatorname{cl}(A)$. The pre-interior of A, denoted by $p\operatorname{int}(A)$, is defined to be the union of all pre-open sets contained in A. A subset A is said to be a pre-neighborhood of x, [5], if there exists a

DOI: https://doi.org/10.29020/nybg.ejpam.v18i4.6597

Email addresses: sthabit1975@gmail.com,

s.thabit@mhru.edu.ye (S. A. Thabit), aaalawadi@uj.edu.sa (A. Al-Awadi),

rafiqa7757@gmail.com (R. Noaman)

¹ Department of Mathematics, Faculty of Applied and Health Sciences, Mahrah University, Yemen

² Department of Mathematics and Statistics, Faculty of Science, University of Jeddah, Jeddah. Saudi Arabia

³ Department of Mathematics, Faculty of Education, Mahrah University, Yemen

^{*}Corresponding author.

^{*}Corresponding author.

pre-open set U such that $x \in U \subseteq A$. The family of all pre-open subsets of X is denoted by PO(X) and the family of all pre-closed subsets is denoted by PC(X). Observe that:

closed domain $\Longrightarrow \pi$ -closed \Longrightarrow closed \Longrightarrow pre-closed open domain $\Longrightarrow \pi$ -open \Longrightarrow open \Longrightarrow pre-open

A space X is called *pre-normal* if for every pair of disjoint closed subsets A and B, there exist disjoint pre-open subsets U and V such that $A \subseteq U$ and $B \subseteq V$ [6]. A space X is said to be a sub-maximal if every dense subset of X is an open [6]. A space X is called an pre-regular if for each closed set F and each $x \notin F$, there exist disjoint pre-open sets U and V such that $x \in U$ and $F \subseteq V$ [3, 7]. A space X is called a pre-T₂, if for any distinct two points $x \neq y$, there exist two disjoint pre-open sets U and V in X such that $x \in U$ and $y \in V$. A space X is called a pre- T_1 -space if for each $x, y \in X$ with $x \neq y$, there exist pre-open sets U and V such that $x \in U$, $y \in V$ and $x \notin V$, $y \notin U$. A space X is called a p_1 -paracompact if every pre-open cover of X has a locally finite open refinement [3]. A space X is called a *pre-compact* space if every pre-open cover of X has a finite subcover. A space X is called a pre-Lindelöf space if every pre-open cover of X has a countable subcover. A family $\mathcal{U} = \{A_s\}_{s \in S}$ of subsets of a space X is called a discrete family if every point x of X has a neighborhood that intersects at most one element of \mathcal{U} [8]. A space X is paracompact if every open cover of X has a locally finite open refinement [8–10]. A space X is called *countably paracompact* if every countable open cover for X has a locally finite open-refinement, [8, 9]. A space X is called a collectionwise normal space if and only if X is a T_1 -space and for every discrete family $\mathcal{F} = \{F_s\}_{s \in S}$ of closed subsets of X, there exits a discrete family $\mathcal{U} = \{U_s\}_{s \in S}$ of open subsets of X such that $F_s \subseteq U_s$ for each $s \in S$ [9]. Observe that: every normal space is pre-normal.

2. Preliminaries

First, we present the main definitions of this work.

Definition 1. A space X is called a *collectionwise pre-normal* space if and only if X is T_1 and for every discrete family $\mathcal{F} = \{F_s\}_{s \in S}$ of closed subsets of X, there exits a discrete family $\mathcal{U} = \{U_s\}_{s \in S}$ of pre-open subsets of X such that $F_s \subseteq U_s$ for each $s \in S$.

From Definition 1, clearly that: every collectionwise pre-normal space is T_1 and any non T_1 -space cannot be collectionwise pre-normal. First, we give the following basic results:

Theorem 1. Every collectionwise normal space is collectionwise pre-normal.

Proof. Let X be a collectionwise normal space. We show that X is collectionwise pre-normal. For that, let $\{F_s\}_{s\in S}$ be a discrete family of closed subsets of X. Since X is collectionwise normal, there exists a discrete family $\{U_s\}_{s\in S}$ of open subsets of X such that $F_s\subseteq U_s$ for each $s\in S$. Since every open set is pre-open, $\{U_s\}_{s\in S}$ is a discrete family of pre-open subsets of X such that $F_s\subseteq U_s$ for each $s\in S$. Therefore, X is collectionwise pre-normal.

The converse of Theorem 1 is not true in general. Here is an example of a collectionwise pre-normal space which is not collectionwise normal:

Example 1. The finite complement topology: [10, Example 19], $(\mathbb{R}, \mathcal{CF})$ is a T_1 , compact, countably compact, Lindelöf, separable and paracompact space which is neither regular, normal, first countable nor second countable [10]. The finite complement topology is a pre-normal space which is not normal [11]. Hence, the finite complement topology is not collectionwise normal. Since X is T_1 countably compact pre-normal space, by Theorem 11 the finite complement topology is collectionwise pre-normal.

Theorem 2. Every collectionwise pre-normal space is pre-normal.

Proof. Let F_r and F_t be any two disjoint closed subsets of X. Consider $\mathcal{F} = \{F_s : s \in S\}$ be a discrete family of all pairwise disjoint closed subsets of a collectionwise prenormal space X. By collectionwise pre-normality of X, there exists a discrete family $\mathcal{V} = \{V_s : s \in S\}$ of pre-open subsets of X such that $F_s \subseteq V_s$ for each $s \in S$. Thus, there exist $V_r, V_t \in \mathcal{V}$ such that $F_r \subseteq V_r$, $F_t \subseteq V_t$ and $V_r \cap V_t = \emptyset$. Hence, X is pre-normal.

The converse of Theorem 2 is not true in general. Here is an example of a pre-normal space which is not collectionwise pre-normal:

Example 2. The left ray topology $(\mathbb{R}, \mathcal{L})$ and the right ray topology $(\mathbb{R}, \mathcal{R})$ are normal and almost completely regular spaces. Since the two spaces are normal, we conclude $(\mathbb{R}, \mathcal{L})$ and $(\mathbb{R}, \mathcal{R})$ are pre-normal. Since the two spaces are not T_1 , we get $(\mathbb{R}, \mathcal{L})$ and $(\mathbb{R}, \mathcal{R})$ are not collectionwise pre-normal. Therefore, $(\mathbb{R}, \mathcal{L})$ and $(\mathbb{R}, \mathcal{R})$ are examples of pre-normal spaces which are not collectionwise pre-normal.

Since every Hausdorff paracompact space is collectionwise normal [9], and every collectionwise normal is collectionwise pre-normal, we conclude the next corollary:

Corollary 1. Every Hausdorff paracompact space is collectionwise pre-normal.

Observe that: every p_1 -paracompact space is paracompact [11, 12], we get:

Corollary 2. Every regular p_1 -paracompact T_1 -space is collectionwise pre-normal.

Theorem 3. Every T_1 pre-regular p_1 -paracompact space is pre-normal.

Proof. Let X be a pre-regular paracompact space. We show that X is pre-normal. Let A and B be any disjoint closed sets in X, i.e. $A \cap B = \emptyset$. Then for each $x \in A$, we have $x \notin B$. Therefore, $X \setminus B$ is an open containing x and hence $X \setminus B$ is pre-open. By pre-regularity of X, there exists a pre-open set U_x such that $x \in U_x$ and $\operatorname{cl}(U_x) \cap B = \emptyset$. So, the family $\{U_x : x \in A\} \cup \{X \setminus B\}$ is pre-open cover of X. Since X is p_1 -paracompact, there exists a locally finite pre-open refinement of it. Let $\mathcal{U} = \{U_\alpha : \alpha \in \Lambda\}$ denotes to the members of the family which have a non-empty intersection with A. Let $V_1 = \bigcup_{\alpha \in \Lambda} U_\alpha$. Then, V_1 is pre-open such that $A \subseteq V_1$. Let $V_2 = X \setminus \bigcup_{\alpha \in \Lambda} \operatorname{cl}(U_\alpha)$. Then, V_2 is pre-open because $\{U_\alpha : \alpha \in \Lambda\}$ is locally finite and $\operatorname{cl}(\bigcup_{\alpha \in \Lambda} U_\alpha) = \bigcup_{\alpha \in \Lambda} \operatorname{cl}(U_\alpha)$. Thus, $V_1 \cap V_2 = \emptyset$. Since \mathcal{U} is refinement and each member of it intersects A, for each $U_\alpha \in \mathcal{U}$ there exists $x \in A$ such that $U_\alpha \subseteq \operatorname{cl}(U_x)$. Now, $\operatorname{cl}(U_\alpha) \subseteq X \setminus B$. Thus, $B \subseteq X \setminus \operatorname{cl}(U_\alpha)$ for each $U_\alpha \in \mathcal{U}$. So, $B \subseteq \bigcap_{\alpha \in \Lambda} (X \setminus \operatorname{cl}(U_\alpha)) = X \setminus \bigcup_{\alpha \in \Lambda} \operatorname{cl}(U_\alpha) = V_2$. Thus, $B \subseteq V_2$. Therefore, V_1 and V_2 are disjoint pre-open subsets of X such that $A \subseteq V_1$ and $B \subseteq V_2$. Hence, X is pre-normal.

Theorem 4. Every T_1 pre-regular space is pre- T_2 .

Proof. Let X be a T_1 pre-regular space. Let $x, y \in X$ such that $x \neq y$. Since X is T_1 , $\{x\}$ and $\{y\}$ are closed sets in X such that $x \notin \{y\}$. By pre-regularity of X, there exist two pre-open sets U and V in X such that $x \in U$, $\{y\} \subseteq V$ and $U \cap V = \emptyset$. Thus, there exist two pre-open sets U and V in X such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$. Therefore, X is pre- T_2 .

Theorem 5. Every pre- T_2 p_1 -paracompact space is collectionwise pre-normal.

Proof. Let $\mathcal{F} = \{B_s : s \in S\}$ be a discrete family of closed subsets of a p_1 -paracompact space X. Then, for each $x \in X$, choose a pre-open neighborhood H_x of a point x whose closure meets at most one set B_s . Thus, $\{H_x : x \in X\}$ is a pre-open cover for X. By p_1 -paracompactness of X, there exists a locally finite pre-open refinement \mathcal{W} of $\{H_x : x \in X\}$. Now, for each $s \in S$, let $V_s = X \setminus \bigcup \{\operatorname{cl}(W) : W \in \mathcal{W} \text{ and } \operatorname{cl}(W) \cap B_s = \emptyset \}$, which is pre-open in X for each $s \in S$ such that $B_s \subseteq V_s$. Since for each $W \in \mathcal{W}$, $\operatorname{cl}(W)$ meets at most one set B_s . Then, W meets at most one set B_s . So, $\{V_s : s \in S\}$ is a discrete family of pre-open subsets of X such that $B_s \subseteq V_s$ for each $s \in S$. Since X is X-parameters are get X-parameters and X-parameters are get X-parameters.

Since every T_2 -space is pre- T_2 -space, we conclude:

Corollary 3. Every T_2 p_1 -paracompact space is collectionwise pre-normal.

Since every pre-compact space is p_1 -paracompact, we get:

Corollary 4. Every pre- T_2 pre-compact space is collectionwise pre-normal.

Corollary 5. Every pre-regular pre-compact T_1 -space is collectionwise pre-normal.

The proofs of the next results is similar to that of the corresponding results for normality.

Theorem 6. Every T_1 -pre-normal space is pre-regular.

Proof. Let X be a T_1 pre-normal space. Let $x \in X$ and F be any closed set in X such that $x \notin F$. Since X is T_1 , we have $\{x\}$ is closed set in X and $\{x\} \cap F = \emptyset$. By pre-normality of X, there exist two disjoint pre-open sets U and V in X such that $\{x\} \subseteq U$ and $F \subseteq V$. Hence, $x \in U$, $F \subseteq V$ and $U \cap V = \emptyset$. Therefore, X is pre-regular.

Since every collectionwise pre-normal space is T_1 , we get:

Corollary 6. Every collectionwise pre-normal space is pre-regular.

Theorem 7. Every pre-regular pre-Lindelöf space is pre-normal.

Proof. Let X be a pre-regular pre-Lindelöf space. Let A and B be any disjoint closed subsets of X, i.e. $A \cap B = \emptyset$. Then for each $x \in A$, we have $x \notin B$. Therefore, $X \setminus B$ is an open containing x and hence B is pre-open. By pre-regularity of X, there exists a pre-open set U_x such that $x \in U_x$, $U_x \cap B = \emptyset$ and $\operatorname{cl}(U_x) \cap B = \emptyset$. So, the family $\{U_x : x \in A\} \cup \{X \setminus B\}$ is pre-open cover of X. Since X is pre-Lindelöf, X has a countable subcover say $\{U_{x_i} : i \in \mathbb{N}\}$. Observe that $A \subseteq \bigcup_{i=1}^{\infty} U_{x_i}$ and $B \subseteq X \setminus \operatorname{cl}(\bigcup_{i=1}^{\infty} U_{x_i})$. Let $U = \bigcup_{i=1}^{\infty} U_{x_i}$ and $V = X \setminus \operatorname{cl}(\bigcup_{i=1}^{\infty} U_{x_i})$. Then, U and V are disjoint pre-open sets in X such that $A \subseteq U$ and $B \subseteq V$. Therefore, X is pre-normal.

Theorem 8. Every T_1 pre-regular pre-Lindelöf space is collectionwise pre-normal.

Proof. Let X be a pre-regular pre-Lindelöf space. By Theorem 7 X is pre-normal. Let $\mathcal{F} = \{F_s : s \in S\}$ be a discrete family of pairwise disjoint closed subsets of X. Then, $F_s \cap F_t = \emptyset$ for each $s \neq t$. By pre-normality of X, there exist two disjoint pre-open sets U_s and U_t in X such that $F_s \subseteq U_s$, $F_t \subseteq U_t$ and $\operatorname{cl}(U_s) \cap \operatorname{cl}(U_t) = \emptyset$ where $s \neq t$. Then, the family $\{U_s\}_{s \in S}$ is a family of pre-open sets in X. Now, we show that $\{U_s\}_{s \in S}$ is discrete. If not, there exists $x \in X$ such that for any pre-open neighborhood W_x of x we have $W_x \cap U_s \neq \emptyset \neq W_x \cap U_t$ with $s \neq t$. Thus, $x \in \operatorname{cl}(U_s)$ and $x \in \operatorname{cl}(U_t)$. Hence, $x \in \operatorname{cl}(U_s) \cap \operatorname{cl}(U_t)$, which is a contradiction. Hence, the family $\{U_s\}_{s \in S}$ must be a discrete family of pre-open sets in X such that $F_s \subseteq U_s$ for each $s \in S$. Since X is T_1 , we obtain X is collectionwise pre-normal.

Recall that: a space X is called *collectionwise Hausdorff* if X is T_1 and for every discrete collection $\{x_s\}_{s\in S}$ of points of X, there exists a disjoint collection $\{V_s\}_{s\in S}$ of open subsets of X such that $x_s \in V_s$ for each $s \in S$ [13]. Since every collectionwise Hausdorff p_1 -paracompact space is Hausdorff paracompact, and every pre-compact space is p_1 -paracompact, we conclude:

Corollary 7. Every collectionwise Hausdorff p_1 -paracompact space is collectionwise prenormal.

Observe that: every p_1 -paracompact space is paracompact, every pre-Lindelöf space is Lindelöf, every pre-compact space is compact, every p_1 -paracompact space is sub-maximal [12], every sub-maximal pre-regular space is regular [12], $\operatorname{int}(A) \subseteq p \operatorname{int}(A) \subseteq A \subseteq p \operatorname{cl}(A) \subseteq \overline{A}$ for each $A \subseteq X$ [11], and if X is sub-maximal space, then $p \operatorname{cl}(A) = \overline{A}$ for each $A \subseteq X$.

Lemma 1. [11], Let X be a space. Then:

- (1) Any dense subset of X is pre-open. If D is dense subset of X and A is closed subset of X, then $D \cup A$ and $D \setminus A$ are pre-open.
- (2) Let D be a dense subset of X. For any two disjoint closed subsets A and B, the sets $U = (D \setminus A) \bigcup B$ and $V = (D \setminus B) \bigcup A$ are pre-open subsets.

(3) If X has two disjoint dense subsets, then X is pre-normal.

Theorem 9. [11], Let X be a sub-maximal space. Fix a point $p \in X$ and let $M = X \setminus \{p\}$. Then, M is a sub-maximal subspace of X.

Observe that: the product space $\omega_1 \times \omega_1 + 1$ is not pre-normal, the product space $X = (\omega_0 + 1) \times (\omega_1 + 1)$ is pre-normal sub-maximal space and hence X is collectionwise pre-normal, the Tychonoff plank $M = (\omega_0 + 1) \times (\omega_1 + 1) \setminus \{(\omega_0, \omega_1)\}$ is dense sub-maximal subspace of X, which is not collectionwise pre-normal, every pre-normal sub-maximal space is normal, the product of two sub-maximal spaces is sub-maximal [11] and every p_1 -paracompact space is sub-maximal and paracompact [12].

Theorem 10. Every collectionwise pre-normal sub-maximal space is collectionwise normal.

Proof. Let $\{F_s\}_{s\in S}$ be a discrete family of closed subsets of X. Since X is collectionwise pre-normal, there exists a discrete family $\{U_s\}_{s\in S}$ of pre-open subsets of X such that $F_s\subseteq U_s$ for each $s\in S$. Since X is sub-maximal, every pre-open set in X is open. Therefore, $\{U_s\}_{s\in S}$ is a discrete family of open subsets of X such that $F_s\subseteq U_s$ for each $s\in S$. Hence, X is collectionwise normal.

Since every Hausdorff p_1 -paracompact space is Hausdorff paracompact, we get:

Corollary 8. Every Hausdorff p_1 -paracompact space is collectionwise normal and hence collectionwise pre-normal.

Note that: every Hausdorff countably compact normal space is collectionwise normal [9], thus we get the following results:

Theorem 11. Every T_1 countably compact pre-normal space is collectionwise pre-normal.

Proof. Let $\{F_s\}_{s\in S}$ be any discrete family of closed subsets of X. Since every discrete family is locally finite family, the family $\{F_s\}_{s\in S}$ is locally finite family of closed subsets of X. Since X is countably compact, the family $\{F_s\}_{s\in S}$ is finite family of pairwise disjoint closed subsets of X. Then, the family can be rewritten as $\{F_{s_i}\}_{i=1}^n$, for some $n\in\mathbb{N}$. By pre-normality of X, for any disjoint closed sets F_{s_i} and F_{s_j} , there exist two disjoint pre-open sets U_{s_i} and U_{s_j} in X such that $F_{s_i}\subseteq U_{s_i}$ and $F_{s_j}\subseteq U_{s_j}$, $\overline{U_{s_i}}\cap \overline{U_{s_j}}=\emptyset$ and thus $\mathrm{cl}(U_{s_i})\cap\mathrm{cl}(U_{s_j})=\emptyset$ for each $i\neq j$. Then, the family $\{U_{s_i}\}_{i=1}^n$ is a family of pre-open sets in X such that $F_{s_i}\subseteq U_{s_i}$ for each $i=1,2,3,\ldots,n$. It can be observed that the family $\{U_{s_i}\}_{i=1}^n$ is discrete. Therefore, the family $\{U_{s_i}\}_{i=1}^n$ is discrete family of pre-open sets in X such that $F_{s_i}\subseteq U_{s_i}$ for each $i=1,2,3,\ldots,n$. Hence, X is collectionwise pre-normal.

Since every countable countably-compact space is separable compact [9], we obtain:

Corollary 9. Every Countable Hausdorff countably compact space is collectionwise prenormal.

Since every collectionwise pre-normal space is T_1 and every finite T_1 -space is discrete, we get the following corollary:

Corollary 10. Every finite collectionwise pre-normal space is discrete and hence it is collectionwise normal.

Theorem 12. Collectionwise pre-normality is a topological property.

Proof. Let $X \cong Y$ and X be a collectionwise pre-normal space. Then, there exists a function $f: X \to Y$ such that f is 1-1, onto, continuous and f^{-1} is continuous. We show that Y is collectionwise pre-normal. Let $\mathcal{F} = \{F_s : s \in S\}$ be any discrete family of closed subsets of Y. Then, F_s is closed in Y for each $s \in S$. Since f is continuous, $f^{-1}(F_s)$ is a closed subset of X for each $s \in S$. Note that: $\{f^{-1}(F_s) : s \in S\}$ is a discrete family of closed subsets of X. Since X is collectionwise pre-normal, there is a discrete family $\{V_s : s \in S\}$ of pre-open subsets of X such that $f^{-1}(F_s) \subseteq V_s$ for each $s \in S$. So, $F_s \subseteq f(V_s)$ for each $s \in S$. Since f is homeomorphism, we have $f(V_s)$ is a pre-open subset of Y for each $s \in S$. Thus, we have $\{f(V_s)\}_{s \in S}$ is a discrete family of pre-open subsets of Y such that $F_s \subseteq f(V_s)$ for each $s \in S$. Therefore, Y is collectionwise pre-normal.

Theorem 13. The sum $X = \bigoplus_{s \in S} X_s$, $X_s \neq \emptyset$ for each $s \in S$, is collectionwise pre-normal if and only if each X_s is collectionwise pre-normal.

Proof. Let $X=\bigoplus_{s\in S}X_s$ be a collectionwise pre-normal space. Since $X_s\subseteq X$ is a clopen subspace of a collectionwise pre-normal space X and a clopen subspace of a collectionwise pre-normal space is collectionwise pre-normal (Corollary 12), we have X_s is collectionwise pre-normal for each $s\in S$. Now, let X_s be a collectionwise pre-normal space for each $s\in S$. We show that $X=\bigoplus_{s\in S}X_s$ is collectionwise pre-normal. Let $\{F_i:i\in I\}$ be a discrete family of closed subsets of X. Then, $\{F_i\cap X_s:i\in I\}$ is a discrete family of closed subsets of X_s for each $s\in S$. By collectionwise pre-normality of X_s , there exists a discrete family $\{U_{is}:i\in I\}$ of pre-open subsets of X_s such that $F_i\cap X_s\subseteq U_{is}$ for each $s\in S$. Thus, $\bigcup_{s\in S}(F_i\cap X_s)\subseteq\bigcup_{s\in S}U_{is}$. Put $U_i=\bigcup_{s\in S}U_{is}$, which is a pre-open set in X for each $i\in I$. So, we have $F_i\subseteq U_i$ for each $i\in I$. Hence, $\{U_i:i\in I\}$ is a discrete family of pre-open subsets of X such that $F_i\subseteq U_i$ for each $i\in I$. Therefore, $X=\bigoplus_{s\in S}X_s$ is collectionwise pre-normal.

Corollary 11. Collectionwise pre-normality is an additive property.

3. Characterizations of collectionwise pre-normality

Now, we give some characterizations of collectionwise pre-normal spaces. First, we need to recall the next definitions:

Definition 2. A subset A of X is called:

- generalized closed (briefly; g-closed) if $\overline{A} \subseteq U$ whenever $A \subseteq U$ and U is open [14].
- generalized pre-open (briefly; g-pre-open) if $F \subseteq p \operatorname{int}(A)$ whenever $F \subseteq A$ and F is closed[15].

- strongly generalized pre-open (briefly; g^* -pre-open) if $F \subseteq p$ int(A) whenever $F \subseteq A$ and F is g-closed [16].
- π -generalized pre-open, (briefly; πg -pre-open) if $F \subseteq p$ int(A) whenever $F \subseteq A$ and F is π -closed.[17]

Observe that: every open set is pre-open and every closed set is pre-closed. From the Definition 2, we have:

```
pre-open \Longrightarrow g^*-pre-open \Longrightarrow g-pre-open \Longrightarrow \pi g-pre-open g^*-closed (g-closed, \pi g-closed) \Longrightarrow g^*-pre-closed (g-pre-closed, \pi g-pre-closed)
```

Now, we give the following theorem, which is useful for giving some characterizations of collectionwise pre-normal spaces.

Theorem 14. Let X be a space. The following statements are equivalent:

- (1) X is collectionwise pre-normal.
- (2) for any discrete family $\{F_s\}_{s\in S}$ of closed sets in X, there exists a discrete family $\{U_s\}_{s\in S}$ of g^* -pre-open sets in X such that $F_s\subseteq p\operatorname{int}(U_s)$ for each $s\in S$.
- (3) for any discrete family $\{F_s\}_{s\in S}$ of closed sets in X, there exists a discrete family $\{U_s\}_{s\in S}$ of g-pre-open sets in X such that $F_s\subseteq p\operatorname{int}(U_s)$ for each $s\in S$.
- (4) for any discrete family $\{F_s\}_{s\in S}$ of closed sets in X, there exists a discrete family $\{U_s\}_{s\in S}$ of πg -pre-open sets in X such that $F_s\subseteq p\operatorname{int}(U_s)$ for each $s\in S$.
- Proof. (1) \Longrightarrow (2): Let X be collectionwise pre-normal. Let $\{F_s\}_{s\in S}$ be a discrete family of closed subsets of X. By collectionwise pre-normality of X, there exists a discrete family $\{U_s\}_{s\in S}$ of pre-open sets in X such that $F_s\subseteq U_s$ for each $s\in S$. Since every pre-open set is g^* -pre-open, we have $\{U_s\}_{s\in S}$ is a discrete family of g^* -pre-open sets in X such that $F_s\subseteq U_s$ for each $s\in S$. Since U_s is g-pre-open as every pre-open set is g-pre-open, and $F_s\subseteq U_s$ we have $F_s\subseteq p\operatorname{int}(U_s)$ for each $s\in S$.
- $(2) \Longrightarrow (3) \Longrightarrow (4)$ are obvious.
- $(4) \Longrightarrow (1)$: Suppose (4) holds. We show that X is collectionwise pre-normal. Let $\{F_s\}_{s \in S}$ be a discrete family of closed subsets of X. By (4), there exists a discrete family $\{U_s\}_{s \in S}$ of πg -pre-open sets in X such that $F_s \subseteq p \operatorname{int}(U_s)$ for each $s \in S$. Put $V_s = p \operatorname{int}(U_s)$ for each $s \in S$. Since $\{U_s\}_{s \in S}$ is discrete family and $V_s \subseteq U_s$ for each $s \in S$, we obtain $\{V_s\}_{s \in S}$ is a discrete family of pre-open subsets of X such that $F_s \subseteq V_s$ for each $s \in S$. Therefore, X is collectionwise pre-normal.

Theorem 15. A space X is collectionwise pre-normal if one of the next equivalent statements holds:

(1) for any discrete family $\{F_s\}_{s\in S}$ of g-closed sets in X, there exists a discrete family $\{U_s\}_{s\in S}$ of π -pre-open sets in X such that $p\operatorname{cl}(F_s)\subseteq U_s$ for each $s\in S$.

- (2) for any discrete family $\{F_s\}_{s\in S}$ of g-closed sets in X, there exists a discrete family $\{U_s\}_{s\in S}$ of pre-open sets in X such that $p\operatorname{cl}(F_s)\subseteq U_s$ for each $s\in S$.
- (3) for any discrete family $\{F_s\}_{s\in S}$ of g-closed sets in X, there exists a discrete family $\{U_s\}_{s\in S}$ of g^* -pre-open sets in X such that $p\operatorname{cl}(F_s)\subseteq p\operatorname{int}(U_s)$ for each $s\in S$.
- (4) for any discrete family $\{F_s\}_{s\in S}$ of g-closed sets in X, there exists a discrete family $\{U_s\}_{s\in S}$ of g-pre-open sets in X such that $p\operatorname{cl}(F_s)\subseteq p\operatorname{int}(U_s)$ for each $s\in S$.
- (5) for any discrete family $\{F_s\}_{s\in S}$ of g-closed sets in X, there exists a discrete family $\{U_s\}_{s\in S}$ of πg -pre-open sets in X such that $p\operatorname{cl}(F_s)\subseteq p\operatorname{int}(U_s)$ for each $s\in S$.
 - *Proof.* $(1) \Longrightarrow (2) \Longrightarrow (3) \Longrightarrow (4) \Longrightarrow (5)$ are obvious. Now, we show that:
- (5) \Longrightarrow collectionwise pre-normality: Suppose (5) holds. Let $\{F_s\}_{s\in S}$ be a discrete family of closed subsets of X. Since every closed set is g-closed, the family $\{F_s\}_{s\in S}$ is a discrete family of g-closed subsets of X. By (5), there exists a discrete family $\{U_s\}_{s\in S}$ of πg -pre-open sets in X such that $p\operatorname{cl}(F_s)\subseteq p\operatorname{int}(U_s)$ for each $s\in S$. Since F_s is pre-closed for each $s\in S$, we get $F_s\subseteq p\operatorname{int}(U_s)$ for each $s\in S$. Let $V_s=p\operatorname{int}(U_s)$ for each $s\in S$. Then, V_s is pre-open set in X for each $s\in S$. Since $V_s\subseteq U_s$ for each $s\in S$ and $\{U_s\}_{s\in S}$ is discrete, we conclude that $\{V_s\}_{s\in S}$ is a discrete family of pre-open sets in X such that $F_s\subseteq V_s$ for each $s\in S$. Therefore, X is collectionwise pre-normal.

4. Collectionwise pre-normality in subspaces

Now, we study collectionwise pre-normality in subspaces. The next example shows that collectionwise pre-normality is not a hereditary property in general.

Example 3. Consider the product space $X = (\omega_0 + 1) \times (\omega_1 + 1)$, which is pre-normal, but the subspace $M = X \setminus \{\langle \omega_0, \omega_1 \rangle\}$ is not pre-normal [11]. Since $X = (\omega_0 + 1) \times (\omega_1 + 1)$ is normal, it is pre-normal. The Tychonoff plank $M = X \setminus \{\langle \omega_0, \omega_1 \rangle\}$ is dense subspace of X. Since both $\omega_0 + 1$ and $\omega_1 + 1$ are sub-maximal spaces and the product of two sub-maximal spaces is sub-maximal, we obtain the space $X = (\omega_0 + 1) \times (\omega_1 + 1)$ is sub-maximal. By Theorem 9, $M = X \setminus \{\langle \omega_0, \omega_1 \rangle\}$ is sub-maximal subspace of X. Since the subspace M is not normal, we obtain M is not pre-normal. Since $M = X \setminus \{\langle \omega_0, \omega_1 \rangle\}$ is not collectionwise normal, we get $M = X \setminus \{\langle \omega_0, \omega_1 \rangle\}$ is not collectionwise pre-normal.

Lemma 2. [11], Let M be a closed domain subspace of X and $A \subseteq M$. A is pre-closed (pre-open) in M, if and only if A is pre-closed (pre-open) in X.

Theorem 16. Let M be a closed domain subspace of X. Then:

(1) A family $\{F_s\}_{s\in S}$ is discrete family of closed sets in M if and only if $\{F_s\}_{s\in S}$ is discrete family of closed sets in X, where $F_s\subseteq M$ for each $s\in S$.

(2) A family $\{F_s\}_{s\in S}$ is discrete family of pre-open sets in M if and only if $\{F_s\}_{s\in S}$ is discrete family of pre-open sets in X, where $F_s\subseteq M$ for each $s\in S$.

Proof. Let M be a closed domain subspace of X. Then:

- (1): Let $\{F_s\}_{s\in S}$ be a discrete family of closed sets in M. Then, F_s is closed subset of M for each $s\in S$. Since M is closed subset of X, we have F_s is closed set in X for each $s\in S$. Hence, $\{F_s\}_{s\in S}$ is discrete family of closed sets in X, where $F_s\subseteq M$ for each $s\in S$. Conversely, let $\{F_s\}_{s\in S}$ be a discrete family of closed sets in X, where $F_s\subseteq M$ for each $s\in S$. Then, F_s is closed in X for each $s\in S$. Since M is closed in X, we have $F_s\cap M=F_s$ is closed set in M for each $s\in S$. Then, $\{F_s\}_{s\in S}$ is a discrete family of closed sets in M.
- (2): Let $\{F_s\}_{s\in S}$ be a discrete family of pre-open sets in M. Then, F_s is pre-open set in M for each $s\in S$. Since M is closed domain set in X, by Lemma 2 F_s is pre-open set in X for each $s\in S$. Hence, $\{F_s\}_{s\in S}$ is a discrete family of pre-open sets in X, where $F_s\subseteq M$ for each $s\in S$. Conversely, let $\{F_s\}_{s\in S}$ be a discrete family of pre-open sets in X, where $F_s\subseteq M$ for each $s\in S$. Then, F_s is pre-open set in X for each $S\in S$. Since S is closed domain in S, by Lemma 2 we have S is pre-open set in S for each S is a discrete family of pre-open sets in S.

Lemma 3. [11], Let M be a closed domain subspace of X and $A \subseteq M$. Then:

- (1) A is pre-closed (pre-open) in M if and only if A is pre-closed (pre-open) in X.
- (2) If $A \subseteq X$ and A is pre-closed (pre-open) in X, then $A \cap M$ is pre-closed (pre-open) in M

Theorem 17. A closed domain subspace of a collectionwise pre-normal space is collectionwise pre-normal.

Proof. Let $\{F_s: s \in S\}$ be a discrete family of closed subsets of M. By Theorem 16, $\{F_s: s \in S\}$ is a discrete family of closed subsets of X. Since X is collectionwise pre-normal, there exists a family $\{U_s: s \in S\}$ of pre-open subsets of X such that $F_s \subseteq U_s$ for each $s \in S$. Thus, $F_s \cap M \subseteq U_s \cap M$ and so $F_s \subseteq U_s \cap M$ for each $s \in S$. By Lemma 3, we have $U_s \cap M$ is pre-open set in M for each $s \in S$. Hence, $\{U_s \cap M: s \in S\}$ is a discrete family of pre-open subsets of M such that $F_s \subseteq U_s \cap M$ for each $s \in S$. Therefore, M is collectionwise pre-normal.

Since every clopen subset of a space X is closed domain, we conclude the next corollary:

Corollary 12. A clopen subspace of a collectionwise pre-normal space is collectionwise pre-normal.

5. The product of collectionwise pre-normality

In this section, we study the product of collectionwise pre-normality as follows:

Theorem 18. Let (X_i, \mathcal{T}_i) be a topological space for each $i \in \{1, 2, 3, ..., n\}$, $n \in \mathbb{N}$. Let \mathcal{T} be the product topology on $X = \prod_{i=1}^n X_i$. If (X, \mathcal{T}) is collectionwise pre-normal, then (X_i, \mathcal{T}_i) is collectionwise pre-normal for each $i \in \{1, 2, 3, ..., n\}$.

Proof. Let $X = \prod_{i=1}^n X_i$ be a collectionwise pre-normal space. Let $m \in \{1, 2, 3, ..., n\}$ be arbitrary. Let $\{F_{s_m}\}_{s \in S}$ be any discrete family of closed subsets of X_m . Let π_m : $\prod_{i=1}^n X_i \longrightarrow X_m \text{ be the natural projection map from } X \text{ onto } X_m. \text{ Now, } \pi_m^{-1}(F_{s_m}) = \prod_{i=1}^n W_i, \text{ (where } W_i = X_i \text{ for each } i \neq m) \text{ is closed in } X. \text{ Then, } \{\pi_m^{-1}(F_{s_m})\}_{s \in S} \text{ is a discrete family of closed sets in } X. \text{ Since } X \text{ is collectionwise pre-normal, there exists a discrete family } \{U_s\}_{s \in S} \text{ of pre-open sets in } X \text{ such that } \pi_m^{-1}(F_{s_m}) \subseteq U_s \text{ for each } s \in S. \text{ Then, we have } F_{s_m} \subseteq \pi_m(U_s) \text{ for each } s \in S. \text{ Since } \pi_m \text{ is a clopen onto continuous function, then } \pi_m(U_s) \text{ is pre-open set in } X_m \text{ for each } s \in S. \text{ Thus, } \{\pi_m(U_s)\}_{s \in S} \text{ is a discrete family of pre-open sets in } X_m \text{ such that } F_{s_m} \subseteq \pi_m(U_s) \text{ for each } s \in S. \text{ Hence, } X_m \text{ is collectionwise pre-normal. Since } m \text{ was arbitrary, then } (X_i, \mathcal{T}_i) \text{ is collectionwise pre-normal for each } i \in \{1, 2, 3, ..., n\}.$

Corollary 13.

- If the product space $X \times Y$ is collectionwise pre-normal, then both X and Y are collectionwise pre-normal.
- If $X \times I$ is collectionwise pre-normal, then X is collectionwise pre-normal.
- A space X is collectionwise pre-normal if and only if $X \times \{0\}$ is collectionwise pre-normal.

Note that: collectionwise pre-normality is not productive in general. Here is an example:

Example 4. The space $\omega_1 \times (\omega_1 + 1)$, [10], is Tychonoff, mildly normal, locally compact and countably compact space which is neither almost normal, normal, compact nor Lindelöf. Since X is not normal, the space $\omega_1 \times (\omega_1 + 1)$ is not collectionwise normal. Since ω_1 and $\omega_1 + 1$ are sub-maximal spaces [11], we get $\omega_1 \times (\omega_1 + 1)$ is sub-maximal. Since $\omega_1 \times (\omega_1 + 1)$ is not normal, we conclude that $\omega_1 \times (\omega_1 + 1)$ is not pre-normal. Therefore, $\omega_1 \times (\omega_1 + 1)$ is not collectionwise pre-normal. This example shows that the product of two collectionwise pre-normal spaces cannot be collectionwise pre-normal.

Observe that: any Tychonoff space Y has a one-point compactification $X = Y \cup \{p\}, \ p \notin Y \text{ and } X \text{ is a Hausdorff compact space [18], we get:}$

Corollary 14. Any compactification X of a Tychonoff space Y is collectionwise prenormal. In particular, any Tychonoff space Y has a one-point compactification $X = Y \cup \{p\}, \ p \notin Y \text{ and } X \text{ is collectionwise pre-normal.}$

6. The closed extension and the discrete extension spaces of collectionwise pre-normality

Now, we study the closed extension and the discrete extension spaces of collectionwise pre-normality. In fact, collectionwise pre-normality is not preserved by the discrete extension space X_M in general. Here is a counterexample:

Example 5. [18, Example 8], The rational sequence topology [10, Example 65], is a first countable, zero-dimensional, Tychonoff, locally compact, separable space which is neither paracompact, normal nor Lindelöf [10]. By Corollary 14, \mathbb{R} with the rational sequence topology has a one-point compactification. Let $X = \mathbb{R} \cup \{p\}$, $p \notin \mathbb{R}$, be a one-point compactification of \mathbb{R} . By Corollary 14, X is Hausdorff compact. Hence, X is collectionwise pre-normal. Now, let $X_{\mathbb{R}} = \mathbb{R} \cup \{p\}$. Then, $X_{\mathbb{R}}$ is first countable, separable and Tychonoff space which is not normal and $\{p\}$ is clopen subset [18]. Since \mathbb{R} is clopen subspace in $X_{\mathbb{R}}$ and \mathbb{R} is not pre-normal, we conclude that $X_{\mathbb{R}}$ is not pre-normal. Therefore, $X_{\mathbb{R}}$ is neither collectionwise normal nor collectionwise pre-normal because \mathbb{R} with the rational sequence topology is sub-maximal [11]. Hence, $X_{\mathbb{R}}$ is a discrete extension space of a collectionwise pre-normal space $X = \mathbb{R} \cup \{p\}$ which is not collectionwise pre-normal.

Now, we give the following results:

Lemma 4. [11], Let M be a closed subspace of X and $A \subseteq M$. Then: if A is pre-closed (pre-open) in M, then A is pre-closed (pre-open) in X.

Lemma 5. Let M be a closed subspace of X. Then:

- (1) If A is a pre-closed (pre-open) set in X, then A is pre-closed (pre-open) set in X_M .
- (2) If A is a closed set in X_M , then $A \cap M$ is closed subset of a subspace M in X.
- (3) If A is a closed set in X_M , then $A_1 = A \cap M$ is a closed set in X.

Proof. Let M be a closed subspace of X.

- (1) Let A be a pre-closed (pre-open) set in X. Since $X \subset X_M$ is a closed subspace of X_M [18], and A is pre-closed (pre-open) in X, by Lemma 4 we conclude that A is pre-closed (pre-open) in X_M .
- (2) Let A be a closed set in X_M . Since $M \subset X_M$ is closed in both X and X_M and its topology coincides with the topology on M by the topology on X, i.e. $\mathcal{T}_M = \mathcal{T}_{(M)_M}$ [18], we get $A \cap M$ is a closed subset of a subspace M in X_M . Since $\mathcal{T}_M = \mathcal{T}_{(M)_M}$, $A \cap M$ is a closed subset of a subspace M in X.
- (3) Let A be a closed set in X_M . By part (2), $A_1 = A \cap M$ is a closed subset of a subspace M in X. Since M is closed subspace of X and $A \cap M$ is closed subset of M in X, we have $A_1 = A \cap M$ is a closed set in X.

Lemma 6. Let M be a closed subspace of a space X. Then: If $\{F_s\}_{s\in S}$ is a discrete family of closed sets in X_M , then $\{F_s\cap M\}_{s\in S}$ is a discrete family of closed sets in X.

Proof. Let M be a closed subspace of X and $\{F_s\}_{s\in S}$ be a discrete family of closed sets in X_M . Then, F_s is closed set in X_M for each $s\in S$. By Lemma 5, we get $F_s\cap M$ is closed subset of a subspace M in X for each $s\in S$. Put $G_s=F_s\cap M$ for each $s\in S$. Then, $\{G_s\}_{s\in S}$ is a family of closed subsets of X. Since $\{F_s\}_{s\in S}$ is a discrete family, $X=X_M$, $\mathcal{T}\subseteq \mathcal{T}_{(M)}$ and $G_s\subseteq F_s$ for each $s\in S$, we obtain $\{G_s\}_{s\in S}$ is a discrete family of closed subsets of X. Hence, $\{F_s\cap M\}_{s\in S}$ is a discrete family of closed sets in X.

Theorem 19. If X is collectionwise pre-normal and M is a closed subspace of X, then X_M is collectionwise pre-normal.

Proof. Let $\{F_s\}_{s\in S}$ be a discrete family of closed sets in X_M . Since M is closed in X, by Lemma 6 we get $\{F_s\cap M\}_{s\in S}$ is a discrete family of closed sets in X. By collectionwise pre-normality of X, there exists a discrete family $\{U_s\}_{s\in S}$ of pre-open sets in X such that $F_s\cap M\subseteq U_s$ for each $s\in S$. Let $V_s=U_s\cup F_s\setminus M$ for each $s\in S$. Then, V_s is pre-open set in X_M and $F_s\subseteq V_s$ for each $s\in S$. Observe that $\{V_s:s\in S\}$ is discrete. Hence, $\{V_s\}_{s\in S}$ is a discrete family of pre-open sets in X_M such that $F_s\subseteq V_s$ for each $s\in S$. Therefore, X_M is collectionwise pre-normal.

Since the closed extension space (X^p, \mathcal{T}^*) of a space (X, \mathcal{T}) is separable, first countable, second countable and T_0 -space which is neither T_1 , Hausdorff, regular nor normal [19], we get the next corollary:

Corollary 15. Any closed extension space (X^p, \mathcal{T}^*) of a collectionwise pre-normal space (X, \mathcal{T}) cannot be collectionwise pre-normal. That is: collectionwise pre-normality is not preserved by the closed extension spaces.

Proof. Since the closed extension space (X^p, \mathcal{T}^*) of a space (X, \mathcal{T}) is not T_1 -space, and every collectionwise pre-normal space is T_1 , we conclude that any closed extension space (X^p, \mathcal{T}^*) of a collectionwise pre-normal space (X, \mathcal{T}) is not collectionwise pre-normal.

Now, we present the next examples. Here is a Tychonoff space which is not collectionwise pre-normal:

Example 6. The rational sequence topology [10, Example 65], (\mathbb{R} , \mathcal{RS}) is a Tychonoff first countable, zero-dimensional, locally compact, separable and almost normal space which is neither paracompact, normal, extremally disconnected, π -normal nor Lindelöf [10, 11]. Observe that: the rational sequence topology is an example of a Tychonoff space which is neither pre-normal nor normal being sub-maximal space [11]. Therefore, the rational sequence topology is neither collectionwise pre-normal nor collectionwise normal

The following problems are still open in this research: is there an example of a T_1 prenormal space which is not collectionwise pre-normal?, is there a Tychonoff collectionwise pre-normal space which is not collectionwise normal?, is a closed subspace of a collectionwise pre-normal space, collectionwise pre-normal?, are the Niemytzki plane topology and the countable complement topology (\mathbb{R}, \mathcal{CC}), collectionwise pre-normal?, and is a quotient space of a collectionwise pre-normal space, collectionwise pre-normal?.

7. Conclusion

New topological property, called collectionwise pre-normality has been studied in this work. Some results, properties, relationships, characterizations and counterexamples were given and discussed. The importance of this study is to open a window for future studies and to help us for obtaining some new results of several weak versions of collectionwise normality in the future researches.

Acknowledgements

The authors would like to thank the anonymous referee for his/her comments that will help us improve this article.

References

- [1] C. Kuratowski. Topology I. Hafner, New York, 4 edition, 1958.
- [2] V. Zaitsev. On certain classes of topological spaces and their bicompactifications. *Doklady Akademii Nauk SSSR*, 178:778–779, 1968.
- [3] A. S. Mashhour, M. E. Abd El-Monsef, and I. A. Hasanein. On pretopological spaces. Bulletin Mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie, 28(76):39–45, 1984.
- [4] S. R. Malghan and G. B. Navalagi. Almost p-regular, p-completely regular and almost p-completely regular spaces. Bulletin Mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie, 34(82):317–326, 1990.
- [5] G. B. Navalagi. Pre-neighbourhoods. *The Mathematics Education*, 32(4):201–206, 1998.
- [6] J. H. Park. Almost p-normal, mildly p-normal spaces and some functions. Chaos, Solitons and Fractals, 18:267–274, 2003.
- [7] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deeb. On precontinuous and weak precontinuous mappings. *Proceedings of the Mathematical and Physical Society of Egypt*, 53:47–53, 1982.
- [8] C. Patty. Foundations of Topology. PWS-KENT Publishing Company, Boston, 1993.
- [9] R. Engelking. General Topology, volume 6 of Sigma Series in Pure Mathematics. Heldermann, Berlin, 1989.
- [10] L. A. Steen and J. A. Seebach. Counterexamples in Topology. Dover Publications, Inc., New York, 1995.
- [11] S. A. S. Thabit. π -Normality in topological spaces and its generalization. Malaysia, 2013.
- [12] G. B. Navalagi. p-normal, almost p-normal and mildly p-normal spaces. 2000. Topology Atlas Preprint 427.
- [13] T. Przymusinski. A note on collectionwise normality of product spaces. In *Colloquium Mathematicum*, volume XXXIII, pages 65–70, 1975.

- [14] N. Levine. Generalized closed sets in topology. Rendiconti del Circolo Matematico di Palermo, 19:89–96, 1970.
- [15] H. Maki, J. Umbehara, and T. Noiri. Every topological space is pre- $t_{\frac{1}{2}}$. Memoirs of the Faculty of Science Kochi University Series A (Mathematics), 17:33–42, 1996.
- [16] M. K. R. S. Veerakumar. g^* -preclosed sets. Acta Ciencia Indica, 28(1):51–60, 2002.
- [17] M. S. Sarsak and N. Rajesh. π -generalized semi-preclosed sets. *International Mathematical Forum*, 5(12):573–578, 2010.
- [18] Alyaa Alawadi, Lutfi Kalantan, and Maha Mohammed Saeed. On the discrete extension spaces. *Journal of Mathematical Analysis*, 9(2):150–157, 2018.
- [19] Dina Abuzaid, Suad Al-Qarhi, and Lutfi Kalantan. Closed extension topological spaces. European Journal of Pure and Applied Mathematics, 15(2):672–680, 2022.