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Abstract. In this paper, we investigate the Cauchy problem for the Dullin–Gottwald–Holm equa-
tion with a self-consistent source in the class of rapidly decreasing functions and present an algo-
rithm for constructing a solution via the IST method. Physically, sources arise in solitary waves
with variable speed and lead to a variety of dynamics in physical models. Such systems are com-
monly used to describe interactions between different solitary waves. We also present an efficient
method to obtain the time evolution of scattering data. The advantage of this method lies in its
reliability and applicability to other soliton equations with sources. The resulting equalities fully
determine the scattering data at any time t, enabling the application of the IST method to solve
the Cauchy problem for the Dullin–Gottwald–Holm equation with a self-consistent source. An
illustrative example of a one-soliton solution is provided.
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1. Introduction

The Dullin-Gottwald-Holm (DGH) equation

ut + uxxt + 2ω ux + 3uux + γuxxx = α2(uxxt + 2uxuxx + uuxxx) t > 0, x ∈ R, (1)

was derived in [1] describing the unidirectional propagation of surface waves in a shallow
water regime. Where the constants α2 and γ

2ω are squares of length scales and 2ω > 0
is the linear wave speed for undisturbed water at rest, at spatial infinity.It is important
to note that the equation (1) is connected with two separately integrable equations: for
α = 0 and γ ̸= 0 this equation becomes the Korteweg-de Vries equation

ut + 2ω ux + 3uux = −γ uxxx,
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when α = 1 and γ = 0, it reduces to the Camassa–Holm (CH) equation

ut + 2ωux + 3uux − uxxt = 2uxuxx + uuxxx.

Since [1] the DGH system has been the subject of various studies and several methods
for solving it have been developed[2–15]. For instance, the Cauchy problem for the Eq.(1)
has been studied in [2, 3]. It has been shown that this equation is locally well-posed for
initial data u0 ∈ HS (R), s > 3

2 . The scattering problem for equation (1) is investigated
in [3] through the associated iso-spectral problem. The inverse scattering problem for the
DGH equation is discussed in [4–6] where the reduction, by the Liouville transformation,
of the iso-spectral problem to the the classical Sturm-Liouville problem is used. In [7, 8],
the orbital stability of one single solitary waves and the sum of N peakons for Eq. [1] have
been proved. In [9–15], some peakons, kinks, compactons, solitons, solitary wave solutions
and exact solutions are obtained.

In the present paper, we study the Dullin-Gottwald-Holm equation with a source
ut − α2uxxt + 2ω ux + 3uux − α2 (2uxuxx + uuxxx) + γuxxx =

N∑
k=1

(
m′

xg
2
k + 2(m+Ω)(g2k)

′
x

)
,

g′′kxx =

(
1

4α2
+ ηk(m+Ω)

)
gk, k = 1, 2, . . . , N, x ∈ R, t > 0,

(2)
under the initial condition

u(x, t)|t=0 = u0(x), x ∈ R (3)

and the normalizing conditions

∞∫
−∞

(m+Ω)g2kdx = Ak(t), k = 1, 2, ..., N, (4)

where Ak(t) are given arbitrary positive continuous functions for all k ∈ {1, 2, ..., N},
m = u− α2uxx, Ω = ω + γ

2α2 = const > 0, m+ Ω > 0 and gk = gk(x, t) = g(x, ηk, t) is an
eigenfunction of the equation

ψ′′
xx =

(
1

4α2
+ η (m+Ω)

)
ψ (5)

corresponding to the eigenvalue ηk. Moreover, the function u0(x) satisfy the following
condition:

∞∫
−∞

(1 + |x|) (|u0(x)|+ |u0xx(x)|)dx <∞. (6)

Over the last few years, the interest has been growing in the soliton equations with a
self-consistent source [16–40]. Physically, sources arise in solitary waves with a variable
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speed and lead to a variety of dynamics of physical models. With regard to their appli-
cations, these kinds of systems are usually used to describe interactions between different
solitary waves.

The goal of this work is to obtain formulations for the solutions of the new system
constructed within the framework of the inverse scattering theory for equation (5).

2. Main facts about the scattering problem

In this section, we give the basic information about the scattering theory for the
problem (5)(see [4]). For convenience, we temporarily omit the variable t.

Consider the equation

ψ′′
xx =

(
1

4α2
+ η (m+Ω)

)
ψ, (7)

where m = u − α2uxx, η (k) = − 1
Ω

(
k2 + 1

4α2

)
, Ω = ω + γ

2α2 = const > 0, m + Ω > 0,
with the function u (x) satisfying the condition

∞∫
−∞

(1 + |x|) (|u(x)|+ |uxx(x)|)dx <∞. (8)

Under assumption (8), equation (7) possesses the Jost solutions with the following
asymptotics:

ψ1(x, k) = e−ikx + o(1), x→ +∞,

ψ2(x, k) = eikx + o(1), x→ +∞,
(9)

φ1(x, k) = e−ikx + o(1), x→ −∞,

φ2(x, k) = eikx + o(1), x→ −∞.
(10)

When k are real, the pairs {φ1, φ2} and {ψ1, ψ2} are pairs of linearly independent solutions
for equation (7). Therefore, the following relation holds:

φ1(x, k) = a(k)ψ1(x, k) + b(k)ψ2(x, k). (11)

One can readily see that

a(k) = − 1

2ik
W {ψ2(x, k), φ1(x, k)} .

The function a (k) admits an analytic continuation into the upper half-plane and has a
finite number of zeros k = ikn, kn > 0 ([4]). Meanwhile,

ηn = − 1

Ω

(
−kn2 +

1

4α2

)
, n = 1, 2, ..., N
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is an eigenvalue of Equation (7) so that

φ1(x, ikn) = bnψ2(x, ikn), n = 1, 2, ..., N. (12)

Moreover, the following expansion on the half-plane Im k > 0 takes place for the coefficient
a (k):

ln a(k) = −iσk +
N∑

n=1

ln
k − ikn
k + ikn

− 1

2πi

∞∫
−∞

ln
(
1− |R(k′)|2

)
k′ − k

dk′, (13)

where σ =
∞∫

−∞

(√
1 + m(x)

Ω − 1

)
dx, R(k) = b(k)

a(k) .

The set
{
R(k) = b(k)

a(k) , k ∈ R, kn, bn, n = 1, 2, ..., N
}
is called the scattering data for

Equation (7). The inverse scattering problem consists in recovering the function m (x),
and consequently u (x) of Equation (7) by the scattering data.

The inverse problem of recovering the function u (x) by the scattering data is solved
by means of the following equations [41]:

ψ1(x, k) =

(
ξ(x)

ξ′(x)

) 1
2

+

∞∫
−∞

R(k′)ψ2(x, k
′) [ξ(x)]2ik

′ dk′

k′ − k
+

N∑
n=1

bn [ξ(x)]
−2kn ψ1(x,−ikn)

ȧ(ikn)(ikn − k)
,

(14)
p = 1, 2, . . . , N,

ψ1(x,−ikp) =
(
ξ(x)

ξ′(x)

) 1
2

+

∞∫
−∞

R(k′)ψ2(x, k
′) [ξ(x)]2ik

′ dk′

k′ + ikp
+i

N∑
n=1

bn [ξ(x)]
−2kn ψ1(x,−ikn)

ȧ(ikn)(kp + kn)
,

(15)

e−
x
2 [ξ(x)]

1
2 =

(
ξ(x)

ξ′(x)

) 1
2

+

∞∫
−∞

R(k′)ψ2(x, k
′) [ξ(x)]2ik

′ dk′

k′ + i/2
+

+ i
N∑

n=1

bn [ξ(x)]
−2kn ψ1(x,−ikn)

ȧ(ikn)(kn + 1
2)

. (16)

Here

ξ(x) = exp

{
x+

∫ x

∞

(√
m(y) + Ω

Ω
− 1

)
dy

}
,

ψ1(x, k) ≡ ψ1(x, k) [ξ(x)]
ik ,

φ1(x, k) ≡ φ1(x, k) exp

{
ik

(
x+

∫ x

−∞

(√
m(y) + Ω

Ω
− 1

)
dy

)}
,
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φ1(x, k)

eiαka(k)
= ψ1(x, k) +R(k)ψ2(x, k) [ξ(x)]

2ik .

The function m (x), and consequently u (x) are defined as follows:

m(x) = Ω

[(
ξ′(x

ξ(x

)2

− 1

]
, (17)

u(x)− α2u′′(x) = m(x). (18)

We note that the functions

hn(x) =
d
dk (φ1 − bnψ2) |k=ikn

ȧ(ikn)
, n = 1, 2, ..., N, (19)

are solutions to the equation (7), and the asymptotics

hn(x) → −bne−knx when x→ −∞,

hn(x) → eknx when x→ ∞
(20)

are true. According to (12), (9), (20), the equalities

W {φ1n, hn} ≡ φ1nh
′
n − φ′

1nhn = 2knbn, n = 1, 2, ..., N (21)

hold, where φ1n = φ1(x, ikn), ψ2n = ψ2(x, ikn), n = 1, 2, ..., N .

Lemma 1. If functions f and g are solutions to equations

f ′′xx =

(
1

4α2
+ τ(m+Ω)

)
f,

g′′xx =

(
1

4α2
+ ν(m+Ω)

)
g,

the following equality holds for them:

(m+Ω)fg =
1

τ − ν

d

dx
W {g, f} .

The lemma is proved by direct verification.

3. Evolution of the Scattering Data

In this section, we derive the time evolution of the scattering data, which allows us to
present an algorithm for solving problem (2)–(6). Let us consider the equation

ut − α2uxxt + 2ω ux + 3uux − α2 (2uxuxx + uuxxx) + γuxxx = G (x, t) , (22)

where the function G = G(x, t) is sufficiently smooth and G(x, t) = o(1) when x → ±∞,
t ≥ 0.
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Lemma 2. If the function u(x, t) is a solution to Eq. (22), then the scattering data
{R(k, t), k ∈ R, kn(t), bn(t), n = 1, 2, ..., N} of the problem

ψ′′
xx =

(
1

4α2
+ η (m(x, t) + Ω)

)
ψ (23)

depend on t as follows:

dR

dt
= − ik

α2
R

(
4Ω

4α2k2 + 1
− 2γ

)
− 4α2k2 + 1

8ikΩa2(k)

∞∫
−∞

Gφ2
1dx (Im k = 0), (24)

dbn(t)

dt
=
knbn
α2

(
4Ω

1− 4α2k2n
− 2γ

)
+

1− 4α2k2n
8Ωkn

∞∫
−∞

Gφ1nhndx, (25)

dkn(t)

dt
= i

4α2k2n − 1

8Ωknbnȧ(ikn)

∞∫
−∞

Gφ2
1ndx , n = 1, 2, ..., N . (26)

Proof. We seek the Lax pair for Equation (22) in the form:

φ′′
1xx =

(
1

4α2
+ η(m+Ω)

)
φ1, (27)

φ′
1t =

(
1

2α2

(
1

η
+ 2γ

)
− u

)
φ′

1x +
1

2
u′xφ1 + βφ1 + F (x, k, t), (28)

where m(x, t) = u(x, t) − u′′xx(x, t), β = ik
2α2

(
1
η + 2γ

)
, and φ1 = φ1(x, k, t) are the

Jost solutions of the equation (27) with the asymptotics (10). Using the compatibility
condition

φ′′′
1xxt = φ′′′

1txx, (29)

and taking into account the equalities (22), (27) and (28), we obtain

F ′′
xx −

(
1

4α2
+ η(m+Ω)

)
F = ηGφ1. (30)

We seek solution of Eq. (30) in the form

F (x, k, t) = A(x, t)φ1(x, k, t) +B(x, t)φ2(x, k, t). (31)

Substituting (31) into (30) we get{
A′

xφ1 +B′
xφ2 = 0

A′
xφ

′
1x +B′

xφ
′
2x = ηGφ1.

(32)
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Passing to the limit x → −∞ in the equality (28) we derive that F (x, t) → 0. It follows
that the solution of the system of equations (32) has the form:

A(x, t) = − η

2ik

x∫
−∞

Gφ1φ2 dx, (33)

B(x, t) =
η

2ik

x∫
−∞

Gφ2
1 dx. (34)

Putting (33) and (31) into (28) we have

φ′
1t =

(
1

2α2

(
1

η
+ 2γ

)
− u

)
φ′
1x +

(
u′x
2

+ β

)
φ1

− η

2ik

 x∫
−∞

Gφ1φ2 dx

φ1 +
η

2ik

 x∫
−∞

Gφ2
1 dx

φ2 (35)

Passing to the limit x → ∞ in the equality (35) by virtue of (8), (9), (10) and (11), one
obtains

at(k, t) = − ik

2α2

(
1

η
+ 2γ

)
a(k, t) + βa(k, t) · η

2ik

∞∫
−∞

Gφ1φ2 dx

+
η

2ik

∞∫
−∞

Gφ2
1 dx · b(k, t), (36)

bt(k, t) =
ik

2α2

(
1

η
+ 2γ

)
b(k, t) + βb(k, t)− η

2ik

∞∫
−∞

Gφ1φ2 dx · b(k, t)

+
η

2ik

∞∫
−∞

Gφ2
1 dx · a(k, t). (37)

Now, using the definition of the function R (k, t) and substituting η (k) = − 1
Ω

(
k2 + 1

4α2

)
,

we get (24).
Further, we calculate the dependence of bn(t) and kn(t), n = 1, 2, ..., N, on time t.
Similarly to the case of the continuous spectrum, we seek the Lax pair in case of the

discrete spectrum in the following form:

φ′′
1nxx =

(
1

4α2
+ ηn(m+Ω)

)
φ1n, (38)
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φ′
1nt =

(
1

2α2

(
1

ηn
+ 2γ

)
− u

)
φ′

1nx +
1

2
u′xφ1n + βnφ1n + Fn. (39)

Then, using the compatibility condition (29) to the (38) and (39), we obtain the equation

F ′′
nxx −

(
1

4α2
+ ηn(m (x, t) + Ω)

)
Fn = ηnGφ1n. (40)

Let us solve (40) in the form

Fn(x, t) = An(x, t)φ1n +Bn(x, t)hn. (41)

Putting (41) into (40) we get

An(x, t) = − ηn
2knbn

x∫
−∞

Gφ1nhndx,

Bn(x, t) =
ηn

2knbn

x∫
−∞

Gφ2
1ndx.

Thus, the second equation (39) of the Lax pair in this case has the form :

φ′
1nt =

(
1

2α2

(
1

ηn
+ 2γ

)
− u

)
φ′
1nx +

(
u′x
2

+ βn

)
φ1n,

− ηn
2knbn

x∫
−∞

Gφ1nhn dx · φ1n +
ηn

2knbn

x∫
−∞

Gφ2
1n dx · hn. (42)

On the other hand, differentiating the equalities

φ1(x, ikn, t) = bn(t)ψ2(x, ikn, t), n = 1, 2, ..., N (43)

with respect to t, we obtain

∂φ1n

∂t
+
∂φ1

∂k
|k=ikn

d(ikn)

dt
=
dbn
dt
ψ2n + bn

(
∂ψ2n

∂t
+
∂ψ2

∂k
|k=ikn

d(ikn)

dt

)
.

According to (19), the last equality can be written as follows

∂φ1n

∂t
=
dbn
dt
ψ2n − ȧ(ikn)hn

d(ikn)

dt
+ bn

∂ψ2n

∂t
. (44)

Passing to the limit in this equality (42) when x → ∞, taking into account (44), and
the using asymptotics (10), (20) and (43), we obtain

1

2α2

(
1

ηn
+ 2γ

)
(−kn)bne−knx + βnbne

−knx −

 ηn
2knbn

∞∫
−∞

Gφ1nhn dx

 bne
−knx
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+
ηn

2knbn

∞∫
−∞

Gφ2
1n dx · eknx =

dbn
dt
e−knx − ȧ(ikn)

d(ikn)

dt
eknx.

Substituting ηn = − 1
Ω

(
−k2n + 1

4α2

)
and comparing the coefficients of the exponents, we

derive (25) and (26). □

The following theorem contains the main results in the paper.

Theorem 1. If the functions u(x, t), gk(x, t), k = 1, 2, ..., N are the solution to the
problem (2)–(4) then, the scattering data of the equation (5) changes with respect to t as
follows:

dR

dt
= − ik

α2

(
4Ω

4α2k2 + 1
− 2γ

)
R, (Im k = 0), (45)

dbn(t)

dt
=

(
kn
α2

(
4Ω

1− 4α2k2n
− 2γ

)
+

4α2k2n − 1

4Ω
An(t)

)
bn, (46)

dkn(t)

dt
= 0, n = 1, 2, . . . , N. (47)

Proof. Let us apply the result of Lemma 2 when

G =

N∑
k=1

(m′
xg

2
k + 2(m+Ω)(g2k)

′
x).

Using Lemma 1 for Imk = 0, one obtains

∞∫
− ∞

G(x, t)φ2
1(x, k, t)dx =

∫ ∞

−∞

(
2((m+Ω)g2k)

′
x −m′

xg
2
k

)
φ2
1 dx =

=

∫ ∞

−∞

(
m′

xg
2
k + 2(m+Ω)gkg

′
kx −m′

xg
2
k

)
φ2
1 dx+ (m+Ω)g2kφ

2
1

∣∣∣∞
−∞

−

−
∫ ∞

−∞
(m+Ω)g2k(φ

2
1)

′
x dx = 2

∫ ∞

−∞
(m+Ω)

(
gkg

′
kxφ

2
1 − g2kφ1φ

′
1

)
dx =

=
2

ηk − η

∫ ∞

−∞
W{φ1, gk}

d

dx
W{φ1, gk} dx =

1

ηk − η
W 2{φ1, gk}

∣∣∣∞
−∞

= 0.

(48)

According to (24) we get (45).
To prove (46) we use the equality gn(x, t) = cnφ1n(x, t). Let k ̸= n, then we have

∞∫
− ∞

G(x, t)φ1nhndx =

∫ ∞

−∞

(
2
(
(m+Ω)g2k

)′
x
−m′

xg
2
k

)
φ1nhn dx =

=

∫ ∞

−∞

(
(m+Ω)g2kφ

′
1n,xhn − g2kφ1nh

′
n

)
dx+(m+Ω)g2kφ1nhn

∣∣∣∞
−∞

−
∫ ∞

−∞
(m+Ω)g2k(φ1nhn)

′
x dx =
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=

∫ ∞

−∞
(m+Ω)

(
gkhn

(
g′kxφ1n − gkφ

′
1n,x

)
+ gkφ1n

(
g′kxhn − gkh

′
n,x

))
dx =

=
1

ηk − ηn

∫ ∞

−∞

(
d

dx
W{hn, gk}W{φ1n, gk}+

d

dx
W{φ1n, gk}W{hn, gk}

)
dx =

=
1

ηk − ηn
W{hn, gk}W{φ1n, gk}

∣∣∣∞
−∞

= 0. (49)

For k = n, according to (21) and (4) we get

∞∫
− ∞

G(x, t)φ1nhndx =

∞∫
−∞

(
2((m+Ω)g2n)

′
x −m′

xg
2
n

)
φ1nhndx =

∞∫
−∞

(
m′

xg
2
n + 2(m+Ω)gng

′
nx −m′

xg
2
n

)
φ1nhndx−

∞∫
−∞

(m+Ω)g2n(φ1nhn)
′
xdx =

=

∞∫
−∞

(m+Ω)
[
gnhn(g

′
nxφ1n − gnφ

′
1nx) + gnφ1n(g

′
nxhn − gnh

′
nx)
]
dx =

=

∞∫
−∞

(m+Ω)g2nW{hn, φ1n}dx = −2knbnAn(t).

(50)

Putting (49) and (50) into (25) we obtain (46).
Now we prove (47). For k ̸= n we deduce

∞∫
−∞

(
2((m+Ω)g2k)

′
x −m′

xg
2
k

)
φ2
1ndx =

∞∫
−∞

(
m′

xg
2
k + 2(m+Ω)gkg

′
kx −m′

xg
2
k

)
φ2
1ndx+

+(m+Ω)g2kφ
2
1n

∣∣∣∣∞
−∞

−
∞∫

−∞

(m+Ω)g2k(φ
2
1n)

′
xdx = 2

∞∫
−∞

(m+Ω)(gkg
′
kxφ

2
1n − g2kφ1nφ

′
1n)dx =

= 2

∞∫
−∞

(m+Ω)gkφ1n(g
′
kxφ1n − gkφ

′
1n)dx =

2

ηk − ηn

∞∫
−∞

W{φ1n, gk}
d

dx
W{φ1n, gk}dx

(51)

=
1

ηk − ηn
W 2{φ1n, gk}

∣∣∣∣∞
−∞

= 0.
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For k = n, using the equality gn(x, t) = cnφ1n(x, t), one obtains

∞∫
−∞

(
m′

xg
2
n + 2(m+Ω)gng

′
nx −m′

xg
2
n

)
φ2
1ndx+ (m+Ω)g2nφ

2
1n

∣∣∣∞
−∞

−
∞∫

−∞

(m+Ω)g2n(φ
2
1n)

′
xdx =

= 2

∞∫
−∞

(m+Ω)gnφ1n(g
′
nxφ1n − gnφ

′
1n)dx = 2

∞∫
−∞

(m+Ω)cnφ
2
1nW{φ1n, cnφ1n}dx = 0.

(52)
It follows from (51) and (52) that

∞∫
− ∞

G(x, t)φ2
1n(x, t)dx = 0. (53)

Substituting (53) into (26) we obtain (47).
Theorem is proved.

4. An Illustrative Example

We illustrate the application of Theorem 1 to solving problem (2)–(4) for the initial
condition

u0(x) =
1

2

∞∫
x

ex−zm0(z)dz +
1

2

x∫
−∞

e−(x−z)m0(z)dz

where

m0(x) = Ω

[
4

(3ex + 4)

[
3ex

(
cos

(
1

3

(
π − arccos

3√
3ex + 4

))
+

+
1√

3ex − 5
sin

(
1

3

(
π − arccos

3√
3ex + 4

)))
/
(
2
√
3ex + 4 ×

× cos

(
1

3

(
π − arccos

3√
3ex + 4

))
− 3

)]2
− 1

]
,

with α = 1. Solving the direct problem for the equation

ψ′′
xx =

(
1

4α2
+ η (m0(x) + Ω)

)
ψ,

we find the scattering data for t = 0:

b1(0) =
√
3, k1(0) =

1

4
, R(k, 0) = 0.

By Theorem 1, we have
R(k, t) = 0,
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k1(t) =
1

4
,

b1(t) =
√
3eB(t),

where B(t) = (4Ω3 − γ
2 )t+

3
16Ω

t∫
0

A1(τ)dτ .

Applying the inverse problem method, we find:

√
ξ(x, t) =

2

3

√
3ex−2B(t) + 4 cos

(
1

3
arccos(− 3√

3ex−2B(t) + 4
)

)
− 1.

Therefore,

m(x, t) = Ω

[(
ξ′(x, t

ξ(x, t

)2

− 1

]
=

= Ω

[
4(

3ex−2B(t) + 4
) [3ex−2B(t)

(
cos

(
1

3

(
π − arccos

3√
3ex−2B(t) + 4

))
+

+
1√

3ex−2B(t) − 5
sin

(
1

3

(
π − arccos

3√
3ex−2B(t) + 4

)))
/
(
2
√

3ex−2B(t) + 4 ×

× cos

(
1

3

(
π − arccos

3√
3ex−2B(t) + 4

))
− 3

)]2
− 1

 .
Thus, we find

u(x, t) =
1

2

∞∫
x

ex−zm(z, t)dz +
1

2

x∫
−∞

e−(x−z)m(z, t)dz.

Therefore, using representation (15), we obtain

ψ1(x,
i

4
, t) =

[ξ(x, t)]
5
4√

ξ′x(x, t)

1√
ξ(x, t) + eB(t)

,

and from the normalization (4), we obtain

c21

∞∫
−∞

(m(x, t) + Ω)ψ2
1

(
x,
i

4
, t

)
dx = A1(t),

c21 =
A1(t)

∞∫
−∞

(m(x, t) + Ω)ψ2
1

(
x, i4 , t

)
dx

,
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c1 =

√
A1(t)√

∞∫
−∞

(m(x, t) + Ω)ψ2
1

(
x, i4 , t

)
dx

,

g1(x, t) =

√
A1(t)√

∞∫
−∞

(m(x, t) + Ω)ψ2
1

(
x, i4 , t

)
dx

[ξ(x, t)]
5
4√

ξ′x(x, t)

1√
ξ(x, t) + eB(t)

.

5. Conclusion

We have solved the integrable Dullin–Gottwald–Holm equation with a self-consistent
source via IST method. Physically, sources arise in solitary waves with a variable speed
and lead to a variety of dynamics of physical models. With regard to their applications,
these kinds of systems are usually used to describe interactions between different solitary
waves. We also present an efficient method to obtain the time evolution of scattering data.
The advantage of this method is its reliability and the possibility of using other soliton
equations with a source to obtain the time evolution of scattering data. An example
is given illustrating the application of the obtained results to one soliton solution. The
results obtained will be useful in carrying out further analysis in the context of shallow
water waves that arises in the context of oceanography.
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